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Abstract. Let K ×M V be the homogenous vector bundle over K /M = Sp(n)×Sp(1)/Sp(n −1)×Sp(1) asso-
ciated to an irreducible representation (δν,V ) of Sp(1). We give an image characterization of the Poisson
transform Pλ,ν of L2-section of K ×M V . We also show that Pλ,ν f , f ∈ Lp (K ×M V ) satisfies a Hardy-type
estimate.
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1. Introduction and main results

Let G be a connected real semi simple noncompact Lie group with finite center and K be a max-
imal compact subgroup of G. Then X = G/K is a Riemannian symmetric space of noncompact
type. Let G = K AN be an Iwasawa decomposition of G , and let M be the centralizer of A in K . We
write g = κ(g )eH(g )n(g ), for each g ∈G according to G = K AN . A central result in harmonic anal-
ysis (see [10]) asserts that all joint eigenfunctions F of the algebra D(X ) of invariant differential
operators, are Poisson integrals

F (g ) =Pλ f (g ) :=
∫

K
e−(iλ+ρ)H(g−1k) f (k)dk,

of a hyperfunction f on K /M , for a generic λ ∈ a∗c (the complexification of a∗ the real dual of a).
This result suggests the problem of characterization of the Lp -range of the Poisson transform

on the Furstenberg boundary K/M (see [4, 7–9, 11],..), some of these results were generalized to
some class of homogenous vector bundles (see [1–3, 5, 6]).

Now we restrict ourselves to the hyperbolic quaternionic space Sp(n,1)/Sp(n)× Sp(1). We
introduce the homogenous vector bundle that we consider in this paper. Let δν be a unitary
irreducible representation of Sp(1) realized on a (ν+1)-dimensional Hilbert space (V ,〈·, ·〉ν). We
extend δν to a representation τν of K by setting τν ≡ 1 on Sp(n) (i.e τν = 1⊗δν). As usual the space
of sections of the homogeneous vector bundle G ×K V associated with τν, will be identified with
the space Γ(G/K ,τν) of vector valued functions F : G →V which are right K -covariant of type τν,
i.e.,

F (g k) = τν(k)−1F (g ), ∀ g ∈G , ∀ k ∈ K . (1)
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We denote by C∞(G/K ,τν) the elements of Γ(G/K ,τν) that are smooth. Let σν denote the
restriction of τν to the group M ≃ Sp(n−1)×Sp(1), and let K×M V be the associated homogeneous
vector bundle. We identify the section space Lp (K ×M V ) with Lp (K /M ,σν), the space of all
functions f : K →V that are Lp with respect to the Haar measure of K and satisfy

f (km) =σν
(
m−1) f (k)

for all k ∈ K ,m ∈ M .
For λ ∈C and f ∈ L1(K /M ,σν), the Poisson transform Pλ,ν f is defined by

Pλ,ν f (g ) =
∫
K

e−(iλ+ρ)H(g−1k)τν
(
κ

(
g−1k

))
f (k)dk

where ρ = 2n + 1 is the half sum of the positive roots with multiplicities (for more detail see
section 2).

Let us mention that in [6] for λ ∈ R\{0}, we gave an image characterization of the Poisson
transform Pλ,ν of L2-sections, as application we obtain a characterization of the L2-range of the
generalized spectral projections.

The aim of this paper is to give a characterization of the Poisson transform Pλ,ν of L2-sections
and a Lp -Hardy type estimate for ℜ(iλ) > 0 and iλ+2n ± (ν+1) ∉ 2Z−.

Let Ω denote the Casimir element of the Lie algebra g of G , viewed as a differential operator
acting on C∞(G/K ,τν). Pλ,ν map Lp (K /M ,σν) into Eλ(G/K ,τν) the space of eigensections of the
Casimir operator the space of all F ∈C∞(G/K ,τν) satisfying

ΩF =−(
λ2 +ρ2 −ν(ν+2)

)
F. (2)

We define the Hardy type norm ∥ ·∥λ,p for F ∈C∞(G/K ,τν), by

∥ F ∥λ,p= sup
t >0

e(ρ−ℜ(iλ))t

 ∫
K

∥F (kat )∥p
τν dk

 1
p

,

where ∥ ·∥τν is the norm on V.
We introduce the subspace E

p
λ

(G/K ,τν) of Eλ(G/K ,τν), defined by

E
p
λ

(G/K ,τν) =
{

F ∈ Eλ (G/K ,τν) ; ∥ F ∥λ,p<∞
}

.

The first main result in this paper can be stated as follows.

Theorem 1. Let λ ∈C such that ℜ(iλ) > 0 and iλ+2n ± (ν+1) ∉ 2Z−.
The map Pλ,ν is a topological isomorphism of the space L2(K /M ,σν) onto the space

E 2
λ

(G/K ,τν).
Moreover, there exists a positive constant γλ such that for every f ∈ L2(K /M ,σν), we have

|cν(λ)|∥ f ∥2 ≤ ∥Pλ,ν f ∥λ,2 ≤ γλ∥ f ∥2, (3)

where cν(λ) is the Harish–Chandra c-function associated with τν given by

cν(λ) = 2ρ−iλΓ(ρ−1)Γ(iλ)

Γ
(

iλ+ν+ρ
2

)
Γ

(
iλ+ρ−ν−2

2

) .

Remark 2. We should notice that forλ real the asymptotic behaviour of Poisson transform Pλ,ν f
is different from the case λ ∈ C\R, the above Theorem 1 complete our study on the L2-range of
Pλ,ν initiated in [6].

The second main result in this paper is a Hardy type estimate of the Poisson transform Pλ,ν f ,
f ∈ Lp (K /M ,σν)), stated as follows.
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Theorem 3. Let λ ∈ C such that ℜ(iλ) > 0 and iλ+ 2n ± (ν+ 1) ∉ 2Z−. There exists a positive
constant γλ such that for every f ∈ Lp (K /M ,σν) with 1 < p <+∞, we have

|cν(λ)|∥ f ∥p ≤ ∥∥Pλ,ν f
∥∥
λ,p ≤ γλ∥ f ∥p , (4)

Remark 4. Since Pλ,ν(Lp (K /M ,σν)) is a subspace of Eλ(G/K ,τν), then from the right side of (4)
we deduce that Pλ,ν is a continuous map from Lp (K /M ,σν) into E

p
λ

(G/K ,τν).
We think that by similar reasoning as in [2], Pλ,ν is an isomorphism from Lp (K /M ,σν) onto

E
p
λ

(G/K ,τν).
Due to some technical difficulties we are blocked, we hope to return to the problem in the near

future.

We now describe the plan of the paper.
In Section 2, we recall some basic known results of harmonic analysis on the quaternionc

hyperbolic spaces, In Section 3, we define the Poisson transform Pλ,ν. In Section 4, we prove
Theorem 3. Section 5, is devoted to prove Theorem 1.

2. Preliminaries

In this section we recall some background of harmonic analysis on the quaternionic hyperbolic
space.

Let G = Sp(n,1) be the group of all linear transformations of the right H-vector space Hn+1

which preserve the sesquilinear form

[u, v] =
n∑

j=1
u j v j −un+1 vn+1, u = (

u j
)

, v = (
v j

) ∈Hn+1,

where q → q is the standard involution ofH.
By Sp(q) we denote the group of all q × q matrices over H keeping the inner product on Hn

〈u, v〉 = ∑q
j=1 u j v j invariant. In particular Sp(1) is identified with the group of quaternions of

norm equal to one. Let

K =
{(

u 0
0 v

)
;u ∈ Sp(n), v ∈ Sp(1)

}
≃ Sp(n)×Sp(1).

K is a maximal compact subgroup of G . The quaternionic hyperbolic space is the rank one
symmetric space G/K of the noncompact type. It can be realized as the unit ball B(Hn) = {x ∈
Hn ; | x |< 1}. The group G acts on B(Hn) by the fractional transformations

x 7→ g .x = (ax +b)(cx +d)−1,

for g = ( a b
c d ). Denote by g the Lie algebra of G ; g= k⊕p the Cartan decomposition of g, where k is

the Lie algebra of K and p is the vector space of matrices of the form

p=
{(

0 x
x∗ 0

)
, x ∈Hn

}
, and k=

{(
X 0
0 q

)
, X ∗+X = 0, q +q = 0

}
,

where X ∗ is the conjugate transpose of the matrix X and q ∈H.
Let H = ( 0n e1

t e1 0 ) ∈ p with t e1 = (1,0, · · · ,0). Then a = RH is a Cartan subspace in p, and
A = {at = exp t H ; t ∈R} is the corresponding analytic subgroup where

at =
cosh t 0 sinh t

0 In−1 0
sinh t 0 cosh t

 .
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The group M is equal to

M =
g =

q 0 0
0 m 0
0 0 q

 ,m ∈ Sp(n −1), | q |= 1

≃ Sp(n −1)×Sp(1).

Let α ∈ a∗ be defined by α(H) = 1. Then a system Σ of restricted roots of the pair (g,a) is
Σ = {±α,±2α} if n ≥ 2 and Σ = {±2α} if n = 1, with Weyl group W ≃ {±I d}. A positive subsystem
of roots corresponding to the positive Weyl chamber a+ ≃ R+ in a is Σ+ = {α,2α} if n ≥ 2 and
Σ+ = {2α} if n = 1.

Let n = gα+g2α be the direct sum of the positive root subspaces, with dimgα = 4(n −1) and
dimg2α = 3 and N the corresponding subgroup of G . Then the half sum of the positive restricted
roots with multiplicities counted ρ is equal to (2n + 1)α, and shall be viewed as a real number
ρ = 2n +1 by the identification a∗c ≃C via λα↔λ.

3. Poisson transform

In this section we define the Poisson transform on the vector bundle G×K V over Sp(n,1)/Sp(n)×
Sp(1) associated with τν and derive some results referring to [12, 13] and [14] for more details on
the subject. Let P = M AN the minimal standard parabolic subgroup of G . For λ ∈C we consider
the representation σλ,ν of P on V defined by σλ,ν(man) = aρ−iλσν(m). Then σλ,ν defines a
principal series representations of G on the Hilbert space

Hλ,ν :=
{

f : G →V
∣∣∣ f (g man) =σ−1

λ,ν(man) f (g ) , ∀ man ∈ M AN , f|K ∈ L2
}

,

where G acts by the left regular representation. We shall denote by C−ω(G ,σλ,ν) the space of its
hyperfunctions vectors. By the Iwasawa decomposition, the restriction map from G to K gives an
isomorphism from Hλ,ν onto the space L2(K ,σν). This yields the compact picture of Hλ,ν, with
the group action given by

πλ,ν(g ) f (k) = e(iλ−ρ)H(g−1k) f
(
κ

(
g−1k

))
.

By C−ω(K /M ,σν) we denote the space of its hyperfunctions vectors. The Poisson transform Pλ,ν

is the continuous, linear, G-equivariant map from C−ω(G/P,σλ,ν) to C∞(G/K ,τν) defined by

Pλ,ν f (g ) =
∫
K

τν(k) f (g k)dk,

The integral is a formal notation with the meaning that the hyperfunction τν(.) f (g .) on K has to
be applied to the constant function 1. In the compact picture the Poisson transform is given by

Pλ,ν f (g ) =
∫
K

e−(iλ+ρ)H(g−1k)τν
(
κ

(
g−1k

))
f (k)dk.

Let D(G/K ,τν) denote the algebra of left invariant differential operators on C∞(G/K ,τν).

Proposition 5 ([6]).

(i) D(G/K ,τν) is the algebra generated by the Casimir operatorΩ of g.
(ii) For λ ∈C,ν ∈N, the Poisson transform Pλ,ν maps C−ω(G/P,σλ,ν) to Eλ(G/K ,τν).

We end this section by recalling a result of Olbrich [12] on the range of the Poisson transform
on vector bundles which reads in our case as follows

Theorem 6 ([12]). Let ν ∈N and λ ∈C such that

(i) −2iλ ∉N
(ii) iλ+ρ ∉ 2Z−−ν∪2Z−+ν+2.

Then the Poisson transform Pλ,ν is a K -isomorphism from C−ω(K /M ,σν) onto Eλ(G/K ,τν).
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4. Fatou-type Theorem

The proof of the right part of the estimate (4) follows from the following result.

Proposition 7. Let 1 < p <+∞, and λ ∈C such that ℜ(iλ) > 0. There exists a positive constant γλ
such that for every f ∈ Lp (K /M ,σν), we have

sup
t >0

e(ρ−ℜ(iλ))t

∫
K

∥∥Pλ,ν f (kat )
∥∥p
τν

dk

 1
p

≤ γλ∥ f ∥p . (5)

Proof. We recall that Pλ,ν f (kat ) = ∫
K

e−(iλ+ρ)H(a−t k−1h) f (h)dh, then

∥∥Pλ,ν f (kat )
∥∥
τν

≤
∫
K

e−(ℜ(iλ)+ρ)H(a−t k−1h) ∥∥ f (h)
∥∥
τν

dh

the right term of the above inequality can be written as a convolution over the compact group K∫
K

e−(ℜ(iλ)+ρ)H(a−t k−1h) ∥∥ f (h)
∥∥
τν

dh =
(∥∥ f (·)∥∥τν ∗eλ,t

)
(k)

where eλ,t (h) = e−(ℜ(iλ)+ρ)H(a−t h−1), hence by using Hausdorff–Young inequality we get∫
K

∥∥Pλ,ν f (kat )
∥∥p
τν

dk

 1
p

≤ ∥eλ,t∥1∥ f ∥p

then the desired result follows from the following estimate∥∥eλ,t
∥∥

1 =
∫
K

eλ,t (k) =ϕ
(
ρ− 1

2 ,− 1
2

)
−iℜ(iλ) (t ) ≤ γλe(ℜ(iλ)−ρ)t ,

where γλ is a positive constant, ϕ(α,β)
λ

is the Jacobi function and the last inequality above follows

from the fact that for ℜ(iλ) > 0 the Jacobi functionϕ(α,β)
λ

verify as t →+∞ the following identities

ϕ
(α,β)
λ

(t ) = e(iλ−α−β−1)t

 2−iλ+α+β+1Γ(1+α)Γ(iλ)

Γ
(

iλ+α+β+1
2

)
Γ

(
iλ+α−β+1

2

) +o(1)


□

Theorem 8 (Fatou type Theorem). Let λ ∈C such that ℜ(iλ) > 0 and iλ+2n± (ν+1) ∉ 2Z−, then
we have

lim
t →+∞e(ρ−ℜ(iλ))t Pλ,ν f (kat ) = cν(λ) f (k) (6)

(i) uniformly for f ∈C∞(K /M ,σν)

(ii) in the Lp (K ,V ) for f ∈ Lp (K /M ,σν) with 1 < p <+∞, where cν(λ) = 2ρ−iλΓ(ρ−1)Γ(iλ)

Γ( iλ+ν+ρ
2 )Γ( iλ+ρ−ν−2

2 )
.

Proof. For (i) see [13] and [14], it remains to show (ii).
Let ϵ > 0, and f ∈ Lp (K /M ,σν). Since C∞(K /M ,σν) is dense in Lp (K /M ,σν) there exists

ϕ ∈C∞(K /M ,σν) such that
∥ϕ− f ∥p ≤ ε.

For every t > 0 and k ∈ K we put P t
λ,ν f (k) :=Pλ,ν f (kat ), then we have∥∥∥e(ρ−ℜ(iλ))t P t

λ,ν f (k)−cν(λ) f (k)
∥∥∥

p
≤

∥∥∥e(ρ−ℜ(iλ))t P t
λ,ν( f −ϕ)(k)

∥∥∥
p

+
∥∥∥e(ρ−ℜ(iλ))t P t

λ,νϕ(k)−cν(λ)ϕ(k)
∥∥∥

p
+|cν(λ)|∥∥ f −ϕ∥∥

p
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from the first part (i) and Lebesgue Theorem we get

lim
t →+∞

∥∥∥e(ρ−ℜ(iλ))t P t
λ,νϕ(k)−cν(λ)ϕ(k)

∥∥∥
p
= 0.

On the other hand by using (5) we find that∥∥∥e(ρ−ℜ(iλ))t P t
λ,ν( f −ϕ)(k)

∥∥∥
p
≤ γλ

∥∥ f −ϕ∥∥
p ≤ ϵγλ

therefore ∀ ϵ> 0, we have

lim
t →+∞

∥∥∥e(ρ−ℜ(iλ))t P t
λ,ν f (k)−cν(λ) f (k)

∥∥∥
p
≤ ϵ(γλ+|cν(λ)|)

hence the result follows. □

Now we are able to prove the Theorem 3.

Proof. The right side of the estimation (4) is just a reformulation of Proposition 7. For the left
side, from (ii) in Theorem 8 we deduce that there exists a sequence t j →+∞ as j →+∞ such that

lim
j →+∞

e(ρ−ℜ(iλ))t j Pλ,ν f
(
kat j

)
= cν(λ) f (k)

almost everywhere, hence

lim
j →+∞

e(ρ−ℜ(iλ))pt j

∥∥∥Pλ,ν f
(
kat j

)∥∥∥p

τν
= |cν(λ)|p ∥∥ f (k)

∥∥p
τν

almost everywhere, therefore by using the classical Fatou’s lemma we get

|cν(λ)|p ∥ f ∥p
p =

∫
K

lim
j →+∞

ep(ρ−ℜ(iλ))t j

∥∥∥Pλ,ν f
(
kat j

)∥∥∥p

τν
dk

≤ lim
j →+∞

ep(ρ−ℜ(iλ))t j

∫
K

∥∥∥Pλ,ν f
(
kat j

)∥∥∥p

τν
dk

≤ ∥∥Pλ,ν f
∥∥p
λ,p .

and the desired result follows. □

5. The L2-range of the Poisson transform

We first recall some results of harmonic analysis on the homogeneous vector bundle K ×M V
associated to the representation σν of M .
We recall from the introduction that the space L2(K×M V ) is identified with the space L2(K /M ,σν)
of V -valued functions f on K which satisfy f (km) =σν(m−1) f (k) (k ∈ K ,m ∈ M) and ∥ f ∥ ∈ L2(K ).

Let K̂ be the set of unitary equivalence classes of irreducible representations of K . For δ ∈ K̂
let Vδ denote the representation space of δ with dδ = dimVδ. We denote by K̂ (σν) the set of δ ∈ K̂
such that σν occurs in δ |M with multiplicity mδ > 0.

The decomposition of L2(K /M ,σν) under K (the group K acts by left translations on this
space) is given by the Frobenius reciprocity law

L2 (K /M ,σν) =
⊕

δ∈ K̂ (σν)

Vδ⊗HomM (V ,Vδ),

where v ⊗L, for v ∈ Vδ,L ∈ HomM (V ,Vδ) is identified with the function (v ⊗L)(k) = L∗(δ(k−1)v),
where L∗ denotes the adjoint of L.
For each δ ∈ K̂ (σν) let (L j )mδ

j=1 be an orthonormal basis of HomM (V ,Vδ) with respect to the inner

product < L1,L2 >= 1
ν+1 Tr (L1L∗

2 ). Let {v1, · · · , vdδ } be an orhonormal basis of Vδ. Then

f δi j : k →
√

dδ
ν+1

L∗
i

(
δ

(
k−1)v j

)
,1 ≤ i ≤ mδ, 1 ≤ j ≤ dδ, δ ∈ K̂ (σ)
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form an orthonormal basis of L2(K /M ,σν).
For f ∈ L2(K /M ,σν) we have the Fourier series expansion f (k) = ∑

δ∈ K̂ (σ)
∑mδ

i=1

∑dδ
j=1 aδi j f δi j (k)

with

∥ f ∥2
2=

∑
δ∈ K̂ (σ)

mδ∑
i=1

dδ∑
j=1

∣∣∣aδi j

∣∣∣2
.

We define for δ ∈ K̂ (σ) and λ ∈C, the Eisenstein integral

ΦL
λ,δ(g ) =

∫
K

e−(iλ+ρ)H(g−1k)τν
(
κ

(
g−1k

))
L∗δ

(
k−1)dk, L ∈ HomM (V ,Vδ). (7)

It is easy to see thatΦL
λ,δ satisfies the following identity

ΦL
λ,δ(k1g k2) = τν

(
k−1

2

)
ΦL
λ,δ(g )δ

(
k−1

1

)
, k1,k2 ∈ K , g ∈G .

and for every g ∈G and v ∈V we have

Pλ,ν
(
L∗δ−1(·)v

)
(kat ) =ΦL

λ,δ(kat )v (8)

In order to prove Theorem 1 we need the following Lemma.

Lemma 9. Let λ ∈ C such that ℜ(iλ) > 0 and iλ+ 2n ± (ν+ 1) ∉ 2Z−, δ ∈ K̂ (σ). Then for
L,S ∈ HomM (V ,Vδ) we have

lim
t →+∞e2(ρ−ℜ(iλ))t Tr

[
ΦL
λ,δ(at )∗ΦS

λ,δ(at )
]
= |cν(λ)|2 Tr

[
LS∗]

(9)

Proof. Since Pλ,ν(L∗δ−1(·)v)(kat ) =ΦL
λ,δ(kat )v , for every L ∈ HomM (V ,Vδ) and v ∈ Vδ, then by

using (6) in particular for k = e (the identity element), we find that

lim
t →+∞e(ρ−ℜ(iλ))tΦL

λ,δ(at )v = cν(λ)L∗(v). (10)

We have

lim
t →+∞e2(ρ−ℜ(iλ))t Tr

[
ΦL
λ,δ(at )∗ΦS

λ,δ(at )
]
= lim

t →+∞e2(ρ−ℜ(iλ))t
dδ∑

i=1

〈
ΦS
λ,δ(at )vi ,ΦL

λ,δ(at )vi

〉
=

dδ∑
i=1

lim
t →+∞

〈
e(ρ−ℜ(iλ))tΦS

λ,δ(at )vi ,e(ρ−ℜ(iλ))tΦL
λ,δ(at )vi

〉
where {v1, · · · , vdδ } is an orhonormal basis of Vδ. Therefore by (10) we get

lim
t →+∞e2(ρ−ℜ(iλ))t Tr

[
ΦL
λ,δ(at )∗ΦS

λ,δ(at )
]
= |cν(λ)|2

dδ∑
i=1

〈
S∗vi ,L∗(vi )

〉
= |cν(λ)|2 Tr

[
LS∗]

.

□

Now we are able to prove Theorem 1.

Proof. From Proposition 7 and Theorem 6 it follows that Pλ,ν is a continuous map from
L2(K /M ,σν) into E 2

λ
(G/K ,τν).

We now prove the sufficiently condition, let F ∈ E 2
λ

(G/K ,τν). Then by Theorem 6 there exists a
functional f such that F =Pλ,ν f . By using the Fourier series expansion

f (k) = ∑
δ∈K̂ (σ)

mδ∑
i=1

dδ∑
j=1

aδi j f δi j (k)

F =Pλ,ν f can be written as

F (g ) = ∑
δ∈ K̂ (σ)

√
dδ
ν+1

dδ∑
j=1

mδ∑
i=1

aδi jΦ
Li
λ,δ(g )v j in C∞(G ,τν).
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Moreover by using Schur relations and a straightforward computation we find that∫
K

∥F (kat )∥2
τdk = 1

ν+1

∑
δ∈ K̂ (σν)

dδ∑
j=1

mδ∑
i ,i ′=1

aδi j aδi ′ j Tr
[
Φ

Li ′
λ,δ(at )ΦLi

λ,δ(at )
]

.

LetΛ be a finite subset in K̂ (σ), since ∥ F ∥λ,2<∞ it follows that

1

ν+1

∑
δ∈Λ

dδ∑
j=1

e2(ρ−ℜ(iλ))t
mδ∑

i ,i ′=1

aδi j aδi ′ j Tr
[
Φ

Li ′
λ,δ(at )ΦLi

λ,δ(at )
]
≤∥ F ∥2

λ,2<∞. (11)

By using (9) we find that

lim
t →+∞e2(ρ−ℜ(iλ))t

mδ∑
i ,i ′=1

aδi j aδi ′ j Tr
[
Φ

Li ′
λ,δ(at )ΦLi

λ,δ(at )
]
= |cν(λ)|2

mδ∑
i ,i ′=1

aδi j aδi ′ j Tr
[
Li L∗

i ′
]

= (ν+1) |cν(λ)|2
δ∑

i=1

∣∣∣aδi j

∣∣∣2
.

(12)

By going to the limit in (11) when t →+∞, using (12) we get

|cν(λ)|2 ∑
δ∈Λ

dδ∑
j=1

mδ∑
i=1

∣∣∣aδi j

∣∣∣2 ≤∥ F ∥2
λ,2<∞.

Since the subsetΛ is arbitrary in K̂ (σ), then∥∥ f
∥∥2

2 =
∑

δ∈ K̂ (σ)

dδ∑
j=1

mδ∑
i=1

∣∣∣aδi j

∣∣∣2 ≤ |cν(λ)|−2 ∥ F ∥2
λ,2<∞.

Thus f ∈ L2(K /M ,σν) and the proof is finished. □
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