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Abstract. We complete the work of Lanneau–Möller [4] to show that there are no primitive Teichmüller curves
in Prym(2,2).

Résumé. Nous terminons un travail initié par Lanneau et Möller [4] en montrant qu’il n’existe pas de courbes
de Teichmüller primitives dans Prym(2,2).
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1. Introduction

Teichmüller curves are closed GL(2,R)-orbits in the moduli space of translation surfaces ΩMg

that descend to isometrically-immersed algebraic curves in the moduli space of genus g Riemann
surfaces Mg . Lanneau–Möller [4] searched for geometrically primitive Teichmüller curves, i.e.,
those not arising from a covering construction, in a certain locus Prym(2,2) of genus 3 translation
surfaces with two cone-points called Prym eigenforms. In the spirit of McMullen’s proof that
the decagon is the unique primitive Teichmüller curve in ΩM2(1,1) (see [5, Theorem 6.3]), they
reduced their search to considering whether any of 92 candidate Prym eigenforms generate a
Teichmüller curve. In this note, we analyze those 92 candidates and show:

Theorem 1. The Prym locus Prym(2,2) ⊂ΩM3 contains no primitive Teichmüller curves.

Our main tool is the newly-available SageMath package Flatsurf which partially computes the
GL(2,R)-orbit closure of an input translation surface. (See Appendix B of Delecroix–Rüth [2] for
an introduction to Flatsurf.) Using Flatsurf, we construct the 92 candidates Prym eigenforms and
find a periodic direction that violates the Veech dichotomy. See Section 2.2 for details.
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Background

Classifying the translation surfaces that generate Teichmüller curves, called Veech surfaces, is a
central problem in Teichmüller dynamics. See Hubert–Schmidt [3] for an introduction to Veech
surfaces, Möller [8] for a list of known examples of Teichmüller curves, Lanneau–Möller [4] for a
history of classification results, and McMullen [7] for a general survey.

While McMullen [6] classified all primitive Teichmüller curves in genus two, we do not have
a complete classification of primitive Teichmüller curves in all other genera. In genus three,
Bainbridge–Habegger–Möller [1] found a numerical bound on the number of algebraically prim-
itive Teichmüller curves, yet the bound is too large for a complete classification. (An algebraically
primitive Teichmüller curve is one for which the trace field of the generating Veech surface has
maximal degree, i.e., degree the genus of the Veech surface. We remark that algebraically prim-
itive Teichmüller curves are automatically geometrically primitive, yet the converse does not
hold.) In fact, all but finitely many geometrically primitive Teichmüller curves in genus 3 lie in
the Prym loci (see McMullen [7, Theorem 5.5]).

At another level, Lanneau–Möller [4] began searching for Teichmüller curves among trans-
lation surfaces having a certain Prym involution that generalizes the hyperelliptic involution in
genus 2. (See Lanneau–Möller [4] for the definition.) They showed that there are no geometrically
primitive Teichmüller curves in Prym(2,1,1) and initiated the proof for Prym(2,2) that we finish
in this note. The remaining case of whether there are primitive Teichmüller curves in the locus
Prym(1,1,1,1) is still open and seems interesting. Outside the Prym loci, Winsor [9] showed that
the Veech 14-gon generates the unique algebraically primitive Teichmüller curve in the hyperel-
liptic component of the stratumΩM3(2,2).

2. Proof of Theorem 1

2.1. Candidate surfaces

In this section we review, following Lanneau–Möller [4], how to construct the 92 candidate
surfaces that could generate a Teichmüller curve.

Every surface in Prym(2,2) decomposes into horizontal cylinders (after possibly rotating the
surface). The combinatorics of the horizontal separatrices matches one of the eight polygonal
models in Figure 1. (See also Figure 3 in Lanneau–Möller [4].) In each underlying polygonal
model, the Prym involution fixes one cylinder, called C2, and permutes the other two, called
C1 and C3. The surface is then determined by choices of the widths, heights and twists of the
cylinders C1 and C2, as well as of the length of a relative period called the slit parameter s. See
Proposition 8.1 in Lanneau–Möller [4] for an example of one of the eight possible separatrix
diagrams.

In this respect, Lanneau–Möller [4] determine a finite list of possible values for the width and
the height of C2, the surface being normalized with w(C1) = h(C1) = 1. More precisely, they first
show (see their Theorem 4.5 and Section 6.2) that the only possible trace fields are Q[

p
D] for

D ∈ {2,3,33}. They then encode the data of the widths and the heights of the horizontal and
vertical cylinders in a reduced intersection matrix. In Proposition 5.5 and Sections 6.3–6.5, they
compute a finite list of such matrices that could give rise to Teichmüller curves; we recall this list
in Table 1 along with the associated width and height of C2.

Having established the width and height parameters of the cylinders, it remains to control the
length of the slit parameter and the twists of the cylinders. In Section 8.2 of Lanneau–Möller [4]
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Figure 1. The 8 polygonal models. The slit parameter encodes the length of the bold red
relative period.
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Table 1. The list of trace fields and reduced matrices that could give rise to Teichmüller
curves1, and the corresponding width and height of the cylinder C2.

Trace field
Reduced

w(C2) h(C2)intersection matrix

Q[
p

2]

(
72 48
24 18

) p
2

2 2
p

2

Q[
p

3]

(
72 24
12 6

)
−1+p3

2 −2+2
p

3

Q[
p

3]

(
72 24
48 18

)
1+p3

2 2+2
p

3

Q[
p

3]

(
36 12
30 12

) p
3 2

p
3

3

Q[
p

33]

(
6 24

12 54

)
3+p33

2
3+p33

6

and the corresponding code, they explicitly enumerate the finite list of possible values for such
parameters that would lead to one of each admissible reduced intersection matrix. This amounts
to a finite list of candidate surfaces (see Table 2 of Lanneau–Möller [4]). In the code joint to this
note, we list all those candidate surfaces and construct them using Flatsurf.

2.2. Cylinder decompositions

Given a translation surface M , Flatsurf can efficiently generates many saddle connections on M .
For each such saddle connection, it can compute the decomposition of the straight-line flow on
M in that direction into cylinders and minimal components. Observe that if Flatsurf finds a di-
rection for which M decomposes completely into cylinders, yet those cylinders have incommen-
surable moduli, then this direction witness that M does not satisfy the Veech dichotomy (See
Hubert–Schmidt [3, Theorem 1]). Our code analyzes each of the 92 candidates and in each case
finds a direction that is not completely parabolic. We conclude that none of the candidates is
Veech, proving Theorem 1.
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