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Abstract. A sequence A of strictly positive integers is said to be primitive if none of its terms divides the
others, Erdős conjectured that the sum f (A ,0) ≤ f (N1,0), where N1 is the sequence of prime numbers
and f (A ,h) = ∑

a∈A
1

a(log a+h) . In 2019, Laib et al. proved that the analogous conjecture of Erdős
f (A ,h) ≤ f (N1,h) is false for h ≥ 81 on a sequence of semiprimes. Recently, Lichtman gave the best lower
bound h = 1.04 · · · on semiprimes and he obtained other results for translated sums on k-almost primes
with 2 < k ≤ 20 and when k sufficiently large. In this note, we propose a new proof of the same result on
semiprimes, and we generalize the result on k -almost primes for any k ≥ 2.

Résumé. Une suite A d’entiers strictement positifs est dite primitive si aucun de ses termes ne divise les
autres, Erdős a conjecturé que la somme f (A ,0) ≤ f (N1,0), où N1 est la suite des nombres premiers et
f (A ,h) = ∑

a∈A
1

a(log a+h) . En 2019, Laib et al. ont prouvé que la conjecture analogue d’Erdős f (A ,h) ≤
f (N1,h) est fausse pour h ≥ 81 sur la suite de nombres semi-premiers. Récemment, Lichtman a donné
le meilleur minorant h = 1.04 · · · sur les nombres semi-premiers et il a obtenu d’autres résultats pour des
sommes translatées sur k-presque premiers avec 2 < k ≤ 20 et lorsque k est suffisamment grand. Dans cette
note, nous proposons une nouvelle démonstration du même résultat sur les nombres semi-premiers, et nous
généralisons le résultat sur les k-presque premiers pour tout k ≥ 2.

2020 Mathematics Subject Classification. 11B05, 11Y55, 11L20.
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1. Introduction

A sequence A of strictly positive integers is said to be primitive if none of its terms divides the
others. It is obvious that the sequenceN1 of prime numbers and the following examples

A d
k = {

pα1
1 pα2

2 . . . pαd
d

∣∣α1, . . . , αk ,d ∈N, α1 +·· ·+αd = k
}

Cd = {
pn ∈N1

∣∣n > d
}

,

Bd
k =A d

k ∪Cd ,

Nk = {n ∈N |Ω (n) = k} ,
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are primitive sequences, whereΩ(n) is the numbers of prime factors of n counted with multiplic-
ity. Note that the sequence (Nk )k >2 is the sequence of k-almost primes and N2 is the sequence
of semiprimes. In [2], Erdős proved that the series f (A ,0) converges uniformly for any primitive
sequence A ̸= {1}. In [3], Erdős and Zhang conjectured, for any primitive sequence A ̸= {1}, that
f (A ,0) ≤ f (N1,0). In [1], Cohen compute f (N1,0) and he obtained

f (N1,0) = 1.63661632335126086856965800392186367118159707613129 · · · .

In [3], Erdős and Zhang proved that f (A ,0) ≤ 1.84 and in [9], Lichtman and Pomerance proved
that f (A ,0) < 1.781 · · · . In [10], Zhang proved that f (Nk ,0) < f (N1,0) for all k > 1. Recently, in [5],
recently, Laib et al. proved that f (A ,h) > f (N1,h) for h ≥ 81 and the author improved it later
in [4] for h ≥ 60. Also, in [6], Laib and Rezzoug proved that for all k > 1 and

h ≥ kk !ek+1

(k +1)k−1 −k !
, f (Nk ,h) > f

(
B

dk
k ,h

)
> f (N1,h).

For the purposes of this note, we define hk as follows

Definition 1. For any integer k > 1, the value hk is defined as the greatest lower bound of the set of
all positive real numbers, where for any h ≥ hk , we have f (Nk ,h) ≥ f (N1,h).

Note that for k ≤ 10, we have h2 = 1.04466, h3 = 0.98214, h4 = 0.93018, h5 = 0.89038, h6 =
0.86146, h7 = 0.84126, h8 = 0.82759, h9 = 0.81859 and h10 = 0.81280.
In [8], Lichtman gave the best lower bound h2 = 1.04 · · · for semiprimes, and other best result hk

for k-almost primes when 2 < k ≤ 20.
Motivated by the above works, we show in this paper by different methods the general case k > 1.
Our main results are given by the following two theorems.

Theorem 2. For all k > 1 and any h > hk , we have f (Nk ,h) > f (N1,h), where hk is the common
limit of the decreasing sequence (x(k)

n )n≥0, and the increasing sequence (y (k)
n )n≥0 defined asx(k)

0 = kk !ek+1

(k+1)k−1−k !
,

f
(
Nk , x(k)

n

)
= f

(
N1, x(k)

n+1

) and

{
y (k)

0 = 0,

f
(
Nk , y (k)

n

)
= f

(
N1, y (k)

n+1

)
.

Moreover f (Nk ,h) > f (N1,h∞), for h > h∞, where h∞ = 0.8035236546387282 · · · is the unique real
solution of the equation f (N1,h) = 1, for all k sufficiently large.

The case when k = 2 becomes a special case of the previous theorem. A computer calculation
gives h2 = 1.0446 · · · , so we show the next result as the general case of [8, Theorem 2], and which
confirms that all hk ≤ h2.

Theorem 3. For h > h2 = 1.0446 · · · and for all k > 1, we have

f (Nk ,h) > f (N1,h) .

The proof strategy used by Lichtman in [8] is based on the introduction of the zeta function for
k-almost primes as

Pk (s) =
∑

n∈Nk

1

ns ,

where P1(s) := P (s) denotes the prime zeta function. He proved the decreasing of the function
s 7→ Pk (s)−P (s) over the interval (1, s′k ) with the condition tk < s′k , for 2 ≤ k ≤ 20 where tk , s′k are,
respectively, the solutions of the equations

Pk (s)/
(
2−s +3−s)= 1 and Pk−1 (s) = 1.

We present improvements and other proofs of [8, Theorems 1 and 2]. Our proofs are based on the
following lemmas.
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2. Lemmas

Lemma 4. Let f , g ∈C 1[a,b], be two strictly decreasing functions on the interval [a,b], such that
g (b) > f (b) and g (a) < f (a) and let (xn)n≥0 and (yn)n≥0 be two sequences defined as{

x0 = b, g (xi ) = f (xi+1) ,

y0 = a, g
(
yi

)= f
(
yi+1

)
, i ≥ 0.

Then, the sequence (xn)n≥0 is strictly decreasing and the sequence (yn)n≥0 is strictly increasing.
Furthermore, if there exist i , j ∈ N such that the function x 7→ g (x) − f (x) is monotonic on the
interval [y j , xi ], then these sequences are adjacent i.e. share a common limit.

Proof. Let (hn(x))n≥0 and (kn(x))n≥0 be two sequences of continuous and strictly increasing
functions defined on the interval [yn , xn] by hn(x) = g (xn)− f (x) and kn(x) = g (yn)− f (x). To
prove this lemma we proceed by induction on n ≥ 0. Indeed, for n = 0, since h0 is strictly
increasing with h0(b) > 0 > h0(a), by the intermediate value theorem, there exists a unique x1 ∈
(a,b) such that h0(x1) = 0. That is, g (b) = f (x1). Similarly, there exists a unique y1 ∈ (a,b) such
that g (a) = f (y1). And since g is strictly decreasing, 0 < g (a)− g (b) = f (y1)− f (x1) so f strictly
decreasing gives x1 > y1. Assume that b > x1 > ·· · > xn > yn > ·· · > y1 > a, g (xn) > f (xn) and
g (yn) < f (yn), since hn is strictly increasing with hn(xn) > 0 > hn(yn), by the intermediate value
theorem, there exists a unique xn+1 ∈ (yn , xn) such that hn(xn+1) = 0. That is, g (xn) = f (xn+1).
Similarly, there exists a unique yn+1 ∈ (yn , xn) such that g (yn) = f (yn+1). And since g is strictly
decreasing, 0 < g (yn)− g (xn) = f (yn+1)− f (xn+1) so f strictly decreasing gives xn+1 > yn+1.

For the second part of lemma, we have the two sequences (xn)n≥0, (yn)n≥0 are bounded and
monotonic. So, they converge, respectively, to some values l1 and l2 with xn > l1 ≥ l2 > yn for
any n ≥ 0, where g (l1) = f (l1) and g (l2) = f (l2). By the fact that the function x 7→ g (x)− f (x) is
monotonic on the interval [y j , xi ] for some indices i and j , it follows that g (x) = f (x) has a unique
root l ∈ [y j , xi ]. So necessarily l = l1 = l2 which completes the proof. □

Lemma 5 (Lichtman, 2022). For k ≥ 1, we have

Pk (s) =
k∑

j=1

Pk− j (s)P
(

j s
)

k
and f (Nk ,h) =

∫ ∞

1
Pk (s)e(1−s)hd s.

Lemma 6. For k > 13 and h ≥ 0 the series

Dk (h) :=
∫ ∞

1

(
(P (s))k

k !
−P (s)

)
e(1−s)hd s

has a unique real zero h = lk where lk < 1.9.

Proof. Let k > 13. According to Lemma 5 and from Theorem of Zhang [10], we get∫ ∞

1

(P (s))k

k !
e(1−s)0d s <

∫ ∞

1
Pk (s)e(1−s)0d s <

∫ ∞

1
P (s)e(1−s)0d s. (1)

Then, by [7, equation (5.10)], we have

0 < P (s)− log
( α

s −1

)
< 1.4(s −1) , s ∈ [1,2] ,

where α= exp(−∑
m≥2 P (m)/m) = 0.72926 · · · .

Thus, for every k > 13, since log(α/0.0134) < 4, we get∫ 1.0134

1
(P (s))k d s >

∫ 0.0134

0

(
log

(α
s

))k
d s

=α

∫ ∞

log(α/0.0134)
uk e−udu

>αΓ (k +1,4) > 0.72926k !,
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where Γ(k +1,4) is the incomplete Gamma function. It follows that∫ ∞

1

(P (s))k

k !
e(1−s)1.9d s ≥

∫ 1.0134

1

(P (s))k

k !
e(1−s)1.9d s

> e(−0.0134)1.9
∫ 1.0134

1

(P (s))k

k !
d s

> 0.72926e(−0.0134)×1.9

≥ 0.71 > 0.702

≥
∫ ∞

1
P (s)e(1−s)×1.9d s.

The series (P (s))k

k ! −P (s) changes sign from positive to negative around its unique real root σk > 1,

where P (σk ) = (k !)
1

k−1 . So we have

Dk (h)e(σk−1)h =
∫ σk

1

(
(P (s))k

k !
−P (s)

)
e(σk−s)hd s −

∫ ∞

σk

(
P (s)− (P (s))k

k !

)
e(σk−s)hd s.

The expression given represents the difference between two integrals, both of which have positive
integrands. The first integral is monotonically increasing, whereas the second is monotonically
decreasing with respect to the variable h ≥ 0. Consequently, the difference between the two
integrals is monotonically increasing with respect to h ≥ 0. Moreover, since Dk (1.9) > 0, it

follows that for all h ≥ 1.9, we have
∫ ∞

1
(P (s))k

k ! e(1−s)hd s > ∫ ∞
1 P (s)e(1−s)hd s. Combining this with

equation (1), we can conclude that the real zero h = lk of the series Dk (h) is unique and lies in the
interval [0,1.9]. This completes the proof. □

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. For 2 ≤ k ≤ 13, the two series of functions h 7→ f (Nk ,h) and h 7→ f (N1,h),
satisfy the conditions of Lemma 4 on the interval [y (k)

0 , x(k)
0 ]. So by Lemma 4 the sequence

(x(k)
n )n≥0 is strictly decreasing and the sequence (y (k)

n )n≥0 is strictly increasing, then they con-
verge. The series of functions h 7→ f (Nk ,h) converges uniformly according to Erdős [2] and the
series of derivatives functions

h 7→ d

dh
f (Nk ,h) := f ′ (Nk ,h) =− ∑

a∈Nk

1

a
(
log(a)+h

)2

converges uniformly on the interval [y (k)
0 , x(k)

0 ]. Also, for any h ∈ [y (k)
1 , x(k)

5 ], we have

f ′ (Nk ,h)− f ′ (N1,h) > f ′
(
Nk , y (k)

1

)
− f ′

(
N1, x(k)

5

)
=∆k

≥ f ′
(
N2, y (2)

1

)
− f ′

(
N1, x(2)

5

)
= f ′ (N2,0.5183)− f ′ (N1,1.56114)

=−0.2173 · · ·+0.2209 · · ·
≥ 0.0036 > 0.

So the two sequences (xn)n≥0, (yn)n≥0 converge to the common limit hk which is the unique
solution of f (Nk ,h) = f (N1,h) and f (Nk ,h) > f (N1,h) for any h > hk .

For k > 13, we have Pk (s) > (P (s))k

k ! , so from Lemma 5 and Lemma 6, we get

f (Nk ,h) >
∫ ∞

1

(P (s))k

k !
e(1−s)hd s > f (N1,h) , for any h ≥ 1.9.
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As f (Nk ,0) < f (N1,0), so there exists hk ∈ [0,1.9] such that f (Nk ,hk ) = f (N1,hk ) and f (Nk ,h) >
f (N1,h) for h > hk . However, for any h ∈ [0,1.9], we have

f
′
(Nk ,h)− f

′
(N1,h) > f

′
(Nk ,0)− f

′
(N1,1.9)

>− f (N1,0)

k log(2)
− f

′
(N1,1.9)

≥− 1.63 · · ·
14log(2)

+0.1764 · · ·
≥ 0.00778 > 0,

this implies that the solution hk is unique, which is the common limit of the two sequences
(xn)n≥0, (yn)n≥0. For the second part of Theorem 1, we use the same method used in [8],
which gives us the unique root of f (N1,h)− 1 is h∞ = 0.8035236546387282 · · · . This completes
the proof. □

Proof of Theorem 3. The proof of the theorem comes directly from the inequality f (Nk ,h2) >
f (N1,h2) for all k > 1 of [8] and the inequality f (Nk ,0) < f (N1,0) for all k > 1 of Zhang [10], so
the unique solution hk which is in the interval [0,1.9], becomes in the interval [0,h2]. Then for
h < hk , we have f (Nk ,h)− f (N1,h) < 0 and for h > hk we have f (Nk ,h)− f (N1,h) > 0, and since
h2 > hk , this completes the proof. □

4. Calculations table

For 2 ≤ k ≤ 13, by using Mathematica1 we compute (x(k)
i )1≤i≤5 and (y (k)

1 ) as the unique roots of

the equations f (Nk , x(k)
n ) = f (N1, x(k)

n+1) and f (Nk , y (k)
n ) = f (N1, y (k)

n+1), respectively, where x(k)
0 =

kk !ek+1

(k+1)k−1−k !
and y (k)

0 = 0. We remark that, for k ≥ 5 the sequences (x(k)
n )n≥0 and (y (k)

n )n≥0 converge
rapidly to hk which is the unique solution of f (Nk ,h) = f (N1,h), and for k ≥ 11 the two digits after
the point of hk are fixed with that of h∞, then for k ≥ 16 the three digits after the point of hk are
fixed with that of h∞, . . . etc.
So we can ask the question:

Open question: The sequence (hk )k ≥2, decrease and converges rapidly to

h∞ = 0.8035236546387282 · · · .

For 13 < k ≤ 25, we compute the unique root hk of the equation f (Nk ,h) = f (N1,h) by using
Mathematica. 2

1P [k −integer, s−] := If[k == 1,PrimeZetaP[s],Expand[(Sum[P [1, j ∗ s]∗P [k − j , s], j ,1,k −1]+P [1,k ∗ s])/k]]

FindRoot[NIntegrate[P [k, s]/e[(s−1)x(k)
n ], s,1,∞] == NIntegrate[PrimeZetaP[s]/e[(s−1)x(k)

n+1], s,1,∞], x(k)
n+1,0.1],

FindRoot[NIntegrate[P [k, s]/e[(s−1)y(k)
n ], s,1,∞] == NIntegrate[PrimeZetaP[s]/e[(s−1)y(k)

n+1], s,1,∞]y (k)
n+1,0.1],

∆k = NIntegrate[((1− s)P [k, s])/e[(s−1)y(k)
1 ], s,1,∞]−NIntegrate[((1− s)PrimeZetaP[s])/e[(s−1)x(k)

5 ], s,1,∞]
2FindRoot[NIntegrate[P [k, s]/e[(s−1)X ], s,1,∞] == NIntegrate[PrimeZetaP[s]/e[(s−1)X ], s,1,∞], X ,0.1]
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Table 1. The values of (x(k)
i )1≤ i ≤5, y (k)

1 ,hk and ∆k , for 2 ≤ k ≤ 13.

k x(k)
1 x(k)

2 x(k)
3 x(k)

4 x(k)
5 y (k)

1 hk ∆k

2 23.4028 8.47027 3.86317 2.21842 1.56114 0.5183 1.04466 0.00361
3 11.0425 2.65532 1.33427 1.06189 1.00053 0.73419 0.98214 0.25936
4 6.84739 1.4812 0.99408 0.93783 0.93110 0.80975 0.93018 0.32833
5 4.70836 1.09508 0.90330 0.89120 0.89043 0.82987 0.89038 0.36537
6 3.43161 0.94071 0.86419 0.86155 0.86146 0.83018 0.86146 0.38850
7 2.61004 0.87232 0.84184 0.84127 0.84126 0.82474 0.84126 0.40332
8 2.05938 0.83979 0.84167 0.82772 0.82759 0.81875 0.82759 0.41277
9 1.68123 0.82336 0.81862 0.81860 0.81860 0.81381 0.81859 0.41872

10 1.41757 0.81465 0.81280 0.81280 0.81280 0.81021 0.81280 0.42242
11 1.23208 0.80986 0.80915 0.80915 0.80915 0.80775 0.80915 0.42469
12 1.10107 0.80716 0.80689 0.80689 0.80689 0.80613 0.80689 0.42605
13 1.00855 0.80562 0.80551 0.80551 0.80551 0.80551 0.80551 0.42687

Table 2. The values of hk , for 13 < k ≤ 25.

k hk k hk k hk k hk

14 0.80469 17 0.80374 20 0.80356 23 0.80353
15 0.80420 18 0.80365 21 0.80355 24 0.80352
16 0.80391 19 0.80359 22 0.80355 25 0.80352
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