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Abstract. In this note, we show nonlinear stability in L∞ for Lipschitz solutions to genuinely nonlinear, multi-
dimensional scalar conservation laws. As an application, we are able to compute algebraic decay rates of the
L∞ norm of perturbations of global-in-time Lipschitz solutions, including perturbations of planar rarefaction
waves. Our analysis uses the De Giorgi method applied to the kinetic formulation and is an extension of the
method introduced recently by Silvestre in [Comm. Pure Appl. Math, 72 (6): 1321-1348, 2019].

Résumé. Dans cette note, nous montrons la stabilité non linéaire L∞ pour les solutions lipschitziennes
des lois de conservation scalaires, multidimensionnelles et vraiment non linéaires. En tant qu’application,
nous sommes capables de calculer des taux de décroissance algébriques explicites de la norme L∞ des
perturbations des solutions lipschitziennes globales en temps, y compris les perturbations des ondes de
raréfaction planes. Notre analyse utilise la méthode de De Giorgi appliquée à la formulation cinétique et
est une extension de la méthode récemment introduite par Silvestre dans [Comm. Pure Appl. Math, 72 (6):
1321-1348, 2019].
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1. Introduction

In this note, we study multi-dimensional scalar conservation laws of the form:

∂t u +∇x · A(u) = 0, (1)

where (t , x) ∈ R+ ×Rn are time and space, respectively, and u : R+ ×Rn → R is the unknown
conserved quantity with flux A : R→ Rn . We only consider solutions u which satisfy (1) in the
sense of distributions; are further bounded in that u(t , x) ∈ I = [−∥u∥L∞ ,∥u∥L∞ ]; and are entropic
in the sense that

∂t |u −k|+∇x ·
[
sgn(u −k)(A(u)− A(k))

]≤ 0, (2)
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in the sense of distributions, for each k ∈ I . Throughout the following, we will assume a standard
genuine nonlinearity condition on the flux, namely:

Definition 1. We say a flux A is genuinely nonlinear (on an interval I = [a,b]) with parameters
C0, C1 > 0 and α ∈ (0,1] if a =∇· A ∈C 1(I ) with ∥a∥L∞(I ) ≤C1 and

|{v ∈ I ||t +a(v) ·ξ| < δ}| ≤C0δ
α, for each t 2 +|ξ|2 = 1. (3)

Some of the simplest examples of genuinely nonlinear fluxes are when A : R→ R is a scalar,
strictly convex function, in which case α = 1. Definition 1 is one standard generalization of
such fluxes to the multi-dimensional setting that also allows the flux to be degenerate at some
points (i.e. A : R→ R can have inflection points when α < 1). Throughout, we have in mind the
prototypical genuinely nonlinear flux, the multi-dimensional Burgers flux:

A(u) = (A1(u), . . . , An(u)) = (
u2/2,u3/3, . . . , un+1/(n +1)

)
, (4)

which is genuinely nonlinear with exponent α= 1/n.
We mention that in this general setting, existence of global-in-time solutions in L1 ∩ L∞ is

classical and was shown by Kružkov using the vanishing viscosity method. We mention that in
one space dimension, one can additionally use the method of compensated compactness as done
by Tartar in [26]. Uniqueness and nonlinear stability in L1 are also classical and are shown using
the doubling of variables method introduced by Kružkov in [15]. However, Kružkov’s result relies
upon the large family of entropies |u −k| defined in (2) and is known to breakdown for systems.
Subsequently, in [3, 10] Dafermos and DiPerna introduced the relative entropy method, which
provides nonlinear stability of Lipschitz solutions in the L2 norm, with the advantage that it relies
upon a single convex entropy and is quite amenable to the study of systems. Our main result is
similar to that of Dafermos and DiPerna, but in the L∞ norm and restricted to the scalar setting.

More precisely, our main theorem is a generalization of a recent result of Silvestre in [24]:

Theorem 2. Suppose A : Rn → R is a genuinely nonlinear flux in the sense of Definition 1
with parameters C0, C1, and α on the interval [−Λ,Λ] for some Λ ∈ R+. Suppose u and ũ are
bounded entropy solutions to (1) on [s,T ]×Ω for Ω a bounded, open subset of Rn and s < T with
∥u∥L∞ ,∥ũ∥L∞ ≤Λ and ∥∇ũ∥L∞ ≤ Γ. Then, for any Ω̃ compactly contained in Ω, and any s < t < T ,

∥u − ũ∥L∞(
[t ,T ]×Ω̃) ≤ C (Λ,C0,C1,α,n)(1+d Γ)η

d (n+1)γ
∥u − ũ∥γ

L1([s,T ]×Ω)
, (5)

for γ= γ(α,n) ∈ (0,1), η= η(α,n) ∈ (0,α/2), and d = min(t − s,dist(∂Ω,Ω̃)).

Remark 3. Both exponents γ and η are explicitly computable, and are computed in the main
step of the proof in Section 3. However, the exponents γ and η in Theorem 2 are usually far from
optimal. At present, we care only that there exist some positive exponents satisfying (5), which
will allow us to deduce some asymptotic stability.

Theorem 2 was shown by Silvestre in [24], when ũ is a constant. More precisely, Silvestre’s
result yields the estimate (5) for solutions u which satisfy u(t , x)−m ∈ L1 ∩L∞, for some m ∈ R.
This provides L∞ stability with explicit algebraic decay rates of u to m as t →∞, with an optimal
rate if m = 0. In [23], Serre and Silvestre removed the restriction that u(t , x) ∈ L∞, at least for the
generalized Burgers equation, using the compensated integrability theory developed by Serre
in [21, 22].

As a consequence of Theorem 2, the L1 contraction property, and the maximum principle, we
deduce the following decay rates for general scalar conservation laws:
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Corollary 4. Suppose A : Rn → R is a genuinely nonlinear flux in the sense of Definition 1
with parameters C0, C1, and α on the interval [−Λ,Λ] for some Λ ∈ R+. Suppose u and ũ are
bounded entropy solutions to (1) on R+×Rn with initial data u0 and ũ0, respectively. Suppose that
u0 − ũ0 ∈ L1(Rn), ũ is Lipschitz, and further

∥u0∥L∞(Rn ) ≤Λ, ∥ũ0∥L∞(Rn ) ≤Λ, and sup
t ∈R+

t ∥∇ũ(t )∥L∞(Rn ) ≤ Γ.

Then,

∥u(t )− ũ(t )∥L∞(Rn ) ≤
C (Λ,C0,C1,α,n)

(
1+Γ

)η
t nγ

∥u0 − ũ0∥γL1(Rn )
, (6)

where γ and η are the exponents from Theorem 2.

Prior to Silvestre’s result [24, Theorem 1.5], decay rates in L∞ were largely limited to particular
one dimensional equations [4, 16]. Additionally, Lp decay rates for 1 ≤ p < ∞ were limited to
periodic solutions in multiple space dimensions [1, 5, 9, 11, 19]. While Silvestre’s result provided
a major extension of these preceding results, Silvestre’s result does not apply to solutions that
tend asyptotically towards a non-constant profile.

Importantly, in Corollary 4, neither u nor ũ needs to belong to L1(Rn), only their difference.
As a prototypical example, Corollary 4 applies when ũ is a planar rarefaction wave, which is
not covered by the results of [24]. The stability of planar rarefaction waves has been studied
extensively in the L2 setting by means of the relative entropy method (for instance, see [20]) and
by extension in Lp for 1 ≤ p <∞. We refer the reader to [6, Chapter 5] for a thorough overview of
such results. Additionally, stability of planar rarefaction waves has been studied in L∞ in various
viscous settings, but not uniformly in the viscosity parameter. Finally, in the one dimensional
setting, more is known: For fluxes with at most a single inflection point, the optimal decay rate
is known using a study of generalized characteristics [4] and the references therein (see also [6,
Chapter 11]). However, this method relies heavily upon the ordering of the real line and has not
been extended to multidimensional settings. To our knowledge, Corollary 4 appears to be the
first asymptotic stability result for planar rarefaction waves in the L∞ norm, at least in the purely
hyperbolic setting in multiple space dimensions.

Remark 5. The assumption that ∥∇ũ(t )∥L∞(Rn ) =O(t−1) is rather reasonable by scaling consider-
ations. For the prototypical global-in-time Lipschitz solutions, namely planar rarefaction waves,
this is the explicitly computable rate of decay. Additionally, this rate of decay holds in the spe-
cial case n = 1 and A : R→ R a strictly convex flux. Indeed, ũ(t , x) is increasing in x (because it
is globally Lipschitz) and the well-known Oleinik estimate, originally shown in [18], implies this
rate of decay, with an explicitly computable constant Γ= infu∈ [−Λ,Λ] A′′(u). In addition, one can
use the “asymptotic Oleinik estimate” shown in [14] for fluxes with a single inflection point to
obtain the existence of Γ for the fluxes A(u) = up , when p ≥ 2. However, in general, it is un-
clear whether the existence of Γ is guaranteed. Oleinik type estimates are known to fail even in
the one dimensional case when the flux has just two inflection points, and additionally for most
multi-dimensional fluxes [13]. Furthermore, in [2, 8], the authors show that C 0,α estimates with
α= 1/n, the genuine nonlinearity exponent, hold and are optimal for general entropy conserva-
tive solutions to the multi-dimensional Burgers equation. This suggests the difficulty of obtaining
quantitative estimates on the gradient.

Remark 6. Perhaps surprisingly, we are not able to sharpen the exponent γ using scaling, even
for homogeneous conservation laws like the multidimensional Burgers equation, where the flux
A(u) is defined in (4). For the flux A, there is a two-parameter scaling which allows us to track the
dependence of (6) on Λ and obtain

∥u(t )− ũ(t )∥L∞(Rn ) ≤
C (n)(1+Λn−1Γ)ηΛ1−γ/γ0 ∥u0 − ũ0∥γL1(Rn )

tγ
, (7)
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whereγ0 = (1+ n(n+1)
2 )−1 is the same as in [24], and should be the optimal decay rate. However, the

quantityΛ appears on the right hand side, which we expect to stay order 1 for all time, preventing
us from iteratively improving the estimate. Unfortunately, it seems we cannot use our method to
replace Λ with a quantity like the L∞ oscillation which is decaying (at least locally).

The remainder of the note is organized as follows: In Section 2, we introduce some preliminary
results needed in the proof of Theorem 2, namely the kinetic formulation of (1) and the associated
averaging lemmas. We also briefly summarize the main new idea behind Theorem 2. In Section 3,
we provide a complete proof of Theorem 2. In Section 4, we provide a short proof of Corollary 4.

2. Preliminaries and Proof Idea

2.1. Preliminaries

For bounded entropy solutions to (1), we recall that the associated kinetic function f is of the
form

f (t , x, v) =
{
χ[0,u(t ,x)](v) if u(t , x) ≥ 0

−χ[u(t ,x),0](v) if u(t , x) ≤ 0.
(8)

By the work of Lions, Perthame, and Tadmor (see [17]), this kinetic function satisfies the equation

∂t f +a(v) ·∇x f = ∂vµ, (9)

where µ is a (unique) locally finite Borel measure on Rn+2. Moreover, it is clear that f , and
consequently µ, are supported in Rn+1 × [−∥u∥L∞ ,∥u∥L∞ ] and u is recovered from f via the
relation

u(t , x) =
∫
R

f (t , x, v) d v. (10)

We will make heavy use of the following relatively standard averaging lemma. The version
used can be found with a proof in [25].

Theorem 7 ([25, Averaging Lemma 2.1]). Suppose f ∈ L2(Rn+1 ×Rv ) satisfies the equation

∂t f +a(v) ·∇x f = ∂vµ1 +µ0 + g ,

where g ∈ L1(Rn+1 ×R), and both µ1 and µ0 are Borel measure with total finite variation. Assume
further that a(v) satisfies the non-degeneracy condition (3) with parameters α, C0. Then, for any
ψ(v) ∈ L∞(Rv ), s = α

α+4 ,∥∥∥∥∫
ψ(v) f (t , x, v) d v

∥∥∥∥
W θ,r (Rn+1)

≲C0,α,ψ
∥∥ f

∥∥1−θ
L2(Rn+2)

(∥g∥L1 +∥µ0∥T V +∥µ1∥T V
)θ ,

where θ ∈ (0, s) and r = 2
1+θ .

2.2. Proof Idea

The main idea underlying the proof Theorem 2 is to bypass (1) and to work directly on the kinetic
formulation given by (9). This is motivated by the fact that if u and ũ are two non-negative
solutions to (1), w := u − ũ solves an equation of the form (1) with a new flux Ã, which is only
(t , x)-independent if ũ is identically constant. However, if f and g are the kinetic functions of u
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and ũ, respectively, with corresponding measures µ1 and µ2, linearity of (9) immediately implies
h := f − g solves

∂t h +a(v)∂x h = ∂v (µ1 −µ2)

h(t , x, v) =


1 if u(t , x) > v > ũ(t , x) > 0

−1 if ũ(t , x) > v > u(t , x) > 0

0 otherwise.

We see that h solves an equation very similar to (9), but at the expense of some rigidity on the
measure µ1 −µ2 (which now lacks a sign) and on the “shape of the equilibrium functions”. To
retain enough structure to apply the De Giorgi method of [24], we will need to assume µ2 = 0 and,
additionally, that ũ is Lipschitz. The De Giorgi method was initially introduced in [7] to study the
regularity of solutions to nonlinear elliptic equations. Since then, it has been applied in various
fields of partial differential equations far beyond its initial scope. In one such adaptation, Silvestre
utilized dispersive averaging lemmas instead of the original elliptic Caccioppoli inequality to
examine scalar conservation laws in [24]. Subsequently, the author modified Silvestre’s proof to
rely solely on the kinetic formulation, which enabled an application of the method to a system of
isentropic gas dynamics in [12]. As we necessarily rely heavily upon the kinetic formulation, we
follow the approach from [12] in the original context of scalar conservation laws.

3. Proof of Theorem 2

In this section, we prove Theorem 2. Throughout, we will treat time identically to the spatial
variables and so to simplify notation, we will introduce x = (t , x), A(u) = (u, A), and a = (1, a),
which yields the equivalent time-independent formulations of (1) and (9) as

∇· A(u) = 0 (11)

a(v) ·∇ f = ∂vµ. (12)

We work first at the unit scale and derive a local energy estimate for the difference u − ũ of two
solutions of (11), which will show a gain of integrability. To this end, we begin by showing local-
in-v control over the total variation of the entropy dissipation measure µ.

Lemma 8. Suppose u and ũ are bounded entropy solutions to (11) on B2 ⊂Rn+1 with 0 ≤ u, ũ ≤Λ
on B2 and ũ is entropy conservative. Let f and g be the kinetic functions associated to u and ũ,
respectively, and h = f − g . Then, for any Lipschitz w :Rn+1 →R with 0 ≤ w ≤Λ and 0 < r < R ≤ 2,
µ satisfies

µ ({(x, v) |x ∈ Br , v ∈ (w(x),∞)}) ≤C (Λ,n)∥a∥L∞(0,Λ)

(
∥w∥Li p(BR ) + 1

R − r

)
×

∫
BR

∫ ∞

w(x)
|h(x, v)| d vd x (13)

µ ({(x, v) |x ∈ Br , v ∈ (−∞, w(x))}) ≤C (Λ,n)∥a∥L∞(0,Λ)

(
∥w∥Li p(BR ) + 1

R − r

)
×

∫
BR

∫ w(x)

0
|h(x, v)| d vd x. (14)

Proof. Let us first note that ũ conserves entropy means exactly that g solves the homogeneous
equation,

a(v) ·∇x g = 0.
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Thus, h = f − g satisfies (12) with the same µ as u. Next, we devise appropriate test functions to
show (13). We fix two cutoff functions ϕ ∈C∞

c (B2) and ζ ∈C∞
c (R) such that:

ϕ(x) = 1 if x ∈ Br

ϕ(x) = 0 if x ∈ B2 \ BR

0 ≤ϕ(x) ≤ 1 for each x ∈ B2

|∇ϕ(x)| ≤C (R − r )−1 for each x ∈ B2.

and


ζε(v) = 1 if 2ε< v < ε−1

ζε(v) = 0 if −∞< v < ε or 2ε−1 < v

0 ≤ ζε(v) ≤ 1 for each v ∈R
|ζ′ε(v)| ≤C v−1 for each v ∈R+.

We would like to use [v − w(x)]+ϕ(x), which is evidently Lipschitz, as a test function in (12) to
obtain (13). However, because of the relatively arbitrary Borel measure µ, we need to ensure
that the v-derivative is continuous by smoothly cutting out a neighborhood of {v = w(x)}. More
precisely our test function is:

Φε(x, v) :=ϕ(x)ζε(v −w(x))[v −w(x)]+.

Using Φε(x, v) as a test function in (12) for h and remembering h is supported in B2 × [0,Λ], we
find ∫

B2

∫ Λ

0

[
a(v) ·∇xΦε(x, v)

]
h(x, v) d vd x =

∫
B2

∫ ∞

0
∂vΦε dµ(x, v). (15)

We first note that

∂vΦε(x, v) =ϕζ′ε(v −w(x))[v −w(x)]++ϕζε(v −w(x))χ(w(x),∞)(v).

Therefore, we see that |∂vΦε(x, v)| ≤ C uniformly in ε > 0 and ∂vΦε converges pointwise every-
where to ϕ(x)χ(w(x),∞)(v) as ε→ 0+. By the dominated convergence theorem for the measure µ,

lim
ε→0+

∫
B2

∫ Λ

0
Φε(x, v) dµ(x, v) =

∫
B2

∫ Λ

w(x)
ϕ(x) dµ(x, v) ≥µ ({(x, v) |x ∈ Br , v ∈ (w(x),Λ)}) . (16)

On the other hand, a similar computation shows |∇xΦε(x, v)| ≤C uniformly in ε on B2×[0,Λ] and

∇xΦε(x, v) = [v −w(x)]+∇xϕ(x)ζε(v −w(x))− [v −w(x)]+ϕ(x)ζ′ε(v −w(x))∇w(x)

−ϕ(x)ζε(v −w(x))χ(w(x),∞)(v)∇x w(x)

→ [v −w(x)]+∇xϕ(x)−ϕ(x)χ(w(x),∞)(v)∇x w(x),

pointwise for Lebesgue almost every x, v . By the dominated convergence theorem, we conclude
the left hand side of (15) converges to

lim
ε→0+

LHS =
∫

B2

∫ Λ

w(x)
a(v) · ([v −w(x)]+∇xϕ(x)−ϕ(x)∇x w(x)

)
h(x, v) d vd x

≤C (Λ,n)∥a∥L∞(0,Λ)

(
∥w∥Li p(BR ) + 1

R − r

)∫
BR

∫ Λ

w(x)
|h(x, v)| d vd x.

(17)

Combining (16) and (17) proves (13). To prove (14), we redefine Φε(x, v) as

Φε(x, v) :=ϕ(x)ζε(w(x)− v)[w(x)− v]+,

and apply the same argument using h is supported in B2 × [0,Λ]. □

In the standard De Giorgi iteration method, one estimates the level set functions (u −k)+ for
k ≥ 0, which are naturally positive subsolutions to the original equation. However, as observed
earlier, the functions (u−ũ−k)+ for k ≥ 0 are no longer subsolutions. One of the main ideas in the
proof of Theorem 2 is to replace the standard level set functions with a kinetic analogue, namely,

(u(x)− ũ(x)−k)+ =
∫ Λ

ũ(x)+k
h(x, v) d v.

This motivates the following estimate, in which we combine our total variation estimate on µ

with the averaging lemmas from Theorem 7 to find an energy estimate on these functions:
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Lemma 9 (Energy Estimate). Suppose u and ũ are bounded entropy solutions to (11) on B2 ⊂
Rn+1 with 0 ≤ u, ũ ≤ Λ on B2 and ũ Lipschitz with ∥ũ∥Li p(B2) ≤ Γ. Let f and g be the kinetic
functions associated to u and ũ, respectively, and h = f − g . Fix θ(α) = α/(α+ 4), where α and
C0, C1 > 0 are the parameters from the genuine nonlinearity condition (3). For any 0 < β <
1−θ

2 + θ
n+1 for any 0 < r < R < 2 and 0 ≤ ℓ1 < ℓ2 ≤Λ, we have∫

Br

∫ Λ

ũ+ℓ2

h d vd x ≤ C (Λ,C0,C1,α,β,n)

(ℓ2 −ℓ1)θ

(
Γ+ 1

R − r

)θ
×

(∫
BR

∫ Λ

ũ+ℓ1

h d vd x

) 1+θ
2

∣∣∣∣Br ∩
{∫ Λ

ũ(x)+ℓ2

h(x, v) d v > 0

}∣∣∣∣β (18)

∫
Br

∫ ũ−ℓ2

−Λ
|h| d vd x ≤ C (Λ,C0,C1,α,β,n)

(ℓ2 −ℓ1)θ

(
Γ+ 1

R − r

)θ
×

(∫
BR

∫ ũ−ℓ1

−Λ
|h| d vd x

) 1+θ
2

∣∣∣∣Br ∩
{∫ ũ(x)−ℓ2

−Λ
|h(x, v)| d v > 0

}∣∣∣∣β (19)

Proof. Set r∗ = (R + r )/2 and define ψ ∈C∞
c (B2 ×R+) a cut-off function satisfying

ψ(x, v) = 1 if v > ũ(x)+ℓ2 and x ∈ Br∗

ψ(x, v) = 0 if v < ũ(x)+ℓ1 or x ∈ B2 \ BR

0 ≤ψ(x, v) ≤ 1 for each x ∈ B2, v ∈R+

|∂vψ| ≤C (ℓ2 −ℓ1)−1 for each x ∈ B2, v ∈R+.

|∇xψ| ≤C (R − r∗)−1 for each x ∈ B2, v ∈R+.

Then, we localize h by considering the equation for h̃ :=ψ(x, v)h(x, v), namely,

a(v) ·∇x h̃ = ∂vµ1 +µ0 +H ,

where

µ1 :=ψ(x, v)µ(x, v), µ0 :=−∂vψ(x, v)µ(x, v), and H := h(x, v)a(v) ·∇xψ.

Applying Theorem 7 to h̃, we conclude∥∥∥∥∫ Λ

0
h̃ d v

∥∥∥∥
W s,p (Rn+1)

≤C (C0,C1,α, s,n)
∥∥h̃

∥∥1−θ
L2(Rn+2)

(
∥µ1∥T V +∥µ0∥T V +∥H∥L1(Rn+2)

)θ
, (20)

where

θ = α

α+4
, p = 1+θ

2
, and 0 < s < θ.

Next, we bound each term on the right individually. First, we see h is {0,1}-valued on the set
{v > ũ} so that ∥∥h̃

∥∥
L2(Rn+2) ≤

(∫
BR

∫ Λ

ũ(x)+ℓ1

h(x, v) d vd x

) 1
2

.

Second, we bound H as

∥H∥L1 =
∫

BR

∫ Λ

ũ(x)+ℓ1

∣∣h(x, v)a(v) ·∇xψ(x, v)
∣∣ d vd x ≤ C

R − r∗

∫
BR

∫ Λ

ũ(x)+ℓ1

h(x, v) d vd x.

Third, we bound µi using Lemma 8 as∥∥µi
∥∥

T V ≤ C

(ℓ2 −ℓ1)i
µ
(

{(x, v) | x ∈ Br∗ , v ∈ (ũ(x)+ℓ1,Λ)}
)

≤ C

(ℓ2 −ℓ1)i

(
Γ+ 1

r∗− r

)∫
Br∗

∫ Λ

ũ(x)+ℓ1

h(x, v) d vd x.
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Finally, we lower bound the left hand side of (20) using the Sobolev embedding W s,p (Rn+1)
,→Lq (Rn+1) and Hölder’s inequality to obtain∥∥∥∥∫ Λ

0
h̃(x, v) d v

∥∥∥∥
W s,p (Rn+1)

≥
∥∥∥∥∫ Λ

0
h̃(x, v) d v

∥∥∥∥
Lq (Rn+1)

≥
∥∥∥∥∫ Λ

ũ(x)+ℓ2

h(x, v) d v

∥∥∥∥
Lq (Br )

≥
(∫ Λ

ũ(x)+ℓ2

h(x, v) d vd x

)∣∣∣∣{x ∈ Br

∣∣∣∣∫ Λ

ũ(x)+ℓ2

h(x, v) d v > 0

}∣∣∣∣
−1
q′

,

Rearranging terms, yields∫
Br

∫ Λ

ũ+ℓ2

h d vd x

≤ C

(ℓ2 −ℓ1)θ

(
Γ+ 1

R − r

)θ (∫
BR

∫ Λ

ũ+ℓ1

h d vd x

) 1+θ
2

∣∣∣∣Br ∩
{∫ Λ

ũ(x)+ℓ1

h(x, v) d v > 0

}∣∣∣∣
1

q′

where

θ = α

α+4
and p = 1+θ

2
and q = p(n +1)

n +1−ps
and q ′ = q

q −1
and 0 < s < θ.

Noticing that as s approaches θ, 1/q ′ = (1−θ)/2+s/(n+1) tends to (1−θ)/2+θ/(n+1) completes
the proof of (18). The proof of (19) is identical up to using (14) instead of (13) to bound the
variation of µi . □

We are now ready to prove Theorem 2 at the unit scale, still in the time-independent setting
of (11):

Lemma 10 (De Giorgi Iteration). Suppose u and ũ are bounded entropy solutions to (11) on
B2 ⊂Rn+1 with 0 ≤ u, ũ ≤Λ on B2 and ũ Lipschitz with ∥ũ∥Li p(B2) ≤ Γ. There are γ= γ(α,n) ∈ (0,1),
η ∈ (0,α/2), and C̃ = C̃ (C0,C1,α,n,Λ) > 0 such that

∥[u − ũ]+∥L∞(B1) ≤ C̃ (1+Γ)η∥[u − ũ]+∥γL1(B2)

∥[ũ −u]+∥L∞(B1) ≤ C̃ (1+Γ)η∥[ũ −u]+∥γL1(B2)

Proof. Let us set up the iteration quantities. For 0 < K ≤Λ, we define

rk = 1+2−k and Bk = Brk and ℓk = K (1−2−k ) and Ak =
∫

Bk

∫
ũ(x)+ℓk

h(x, v) d vd x.

Now, directly applying Lemma 9 with r = rk+1 and R = rk and some 0 < β = (1−θ)/2+δ where
0 < δ< θ/(n +1), we obtain the recurrence

Ak+1 ≤
C (Λ,C0,C1,α,n)

(ℓk+1 −ℓk )θ

(
Γ+ 1

rk − rk+1

)θ
A

1+θ
2

k

∣∣∣∣Bk+1 ∩
{∫ Λ

ũ(x)+ℓk+1

h(x, v) d v > 0

}∣∣∣∣β .

It remains to bound the measure of the set appearing on the right hand side. To this end,
suppose x ∈ Bk+1 with

∫ Λ
ũ(x)+ℓk+1

h(x, v) d v > 0. Then, u(x) > ũ(x)+ℓk+1. Thus, h(x, v) = 1 for
v ∈ (ũ(x),ℓk+1). We conclude∫ Λ

ũ(x)+ℓk

h(x, v) d v >
∫ ũ(x)+ℓk+1

ũ(x)+ℓk

1 d v = ℓk+1 −ℓk = K 2−k−1.
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Thus, applying Chebychev’s inequality,∣∣∣∣Bk+1 ∩
{∫ Λ

ũ(x)+ℓk+1

h(x, v) d v > 0

}∣∣∣∣
=

∣∣∣∣Bk+1 ∩
{∫ Λ

ũ(x)+ℓk

h(x, v) d v > K 2−k−1
}∣∣∣∣≤ K −12k+1 Ak

and we find

Ak+1 ≤
C 2(2θ+β)(k+1)

K β+θ (1+Γ)θ A1+δ
k . (21)

Rearranging terms, setting γ−1 := (β+θ)/δ ∈ (0,1), and η := θ/(β+θ) ∈ (0,α/2), we find

(1+Γ)θ/δAk+1

K 1/γ
≤C 2(2θ+β)(k+1)

(
(1+Γ)θ/δAk

K 1/γ

)1+δ
.

Because 1 + δ > 1, Ak decays super-exponentially and A∞ = limk→∞ Ak = 0, provided (1 +
Γ)θ/δA0/K 1/γ is sufficiently small. More precisely, there is a C̃ = C̃ (Λ,C0,C1,α,n) such that if
(1+Γ)θ/δA0/K 1/γ ≤ C̃ 1/γ, then A∞ = 0. Picking K = C̃ (1+Γ)ηAγ

0 , yields

0 = A∞ =
∫

B1

∫ Λ

ũ(x)+K
h(x, v) d v

and so

u(x) ≤ ũ(x)+K ≤ ũ(x)+ C̃ (1+Γ)η
(∫

B2

∫ Λ

ũ(x)
h(x, v) d v

)γ
.

Rearranging terms gives the desired estimate on [u−ũ]+. The proof of the lower bound is identical
using the other energy estimate from Lemma 9 and similar reasoning to arrive at a recurrence
like (21). □

Remark 11. For time dependent equations like (1), there is a order of causality and one can show
the more precise estimate

∥u − ũ∥L∞([−1,0]×B1) ≤C
(
1+∥ũ∥Li p([−2,0]×B2)

)η ∥u − ũ∥γ
L1([−2,0]×B2)

.

This follows from a standard modification of the De Giorgi techniques applied in this section,
where one modifies the cut-offs in space and time.

Proof of Theorem 2. We will now show how Lemma 10 implies the full Theorem 2. Take 0 < s <
t < T , suppose Ω is an a bounded open subset of Rn with Ω̃ compactly contained in Ω, and let u
and ũ be bounded entropy solutions to (1) on [0,T ]×Ω as in the statement of Theorem 2. We will
now analyze u − ũ pointwise using Lemma 10.

Let us first assume both u, ũ are non-negative with L∞ bound Λ on [s,T ]×Ω. Fix x ∈ Ω̃ and
t < t∗ < T . Let d = min(t − s,dist(Ω̃,∂Ω)) Then, define w, w̃ : [−2,0]×B2 →R via

w(τ, y) = u(t∗+τd/2, x + yd/2) and w̃(y) = ũ(t∗+τd/2, x + yd/2).

By scaling, w, w̃ are solutions to (1) in the (τ, y) variables. Also,

∥w∥L∞([−2,0]×B2) ≤Λ and ∥w̃∥L∞([−2,0]×B2) ≤Λ and ∥w̃∥Li p([−2,0]×B2) ≤ dΓ

2
.

Applying Lemma 10 to w and w̃ , we find

|u(t∗, x)− ũ(t∗, x)| ≤ ∥w − w̃∥L∞([−1,0]×B1) ≤C (Λ,C0,C1,n,α)(1+dΓ)η ∥w − w̃∥γ
L1([−2,0]×B2)

≤ C (1+dΓ)η

dγ(n+1)
∥u − ũ∥γ

L1([s,T ]×Ω)

Thus, taking a supremum over t∗ ∈ [s,T ] and x ∈ Ω̃ proves Theorem 2 when u, ũ ≥ 0.
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Finally, the general case reduces to when both u, ũ are non-negative. Indeed, defining

m = min

(
essinf

t ∈ [s,T ], x∈Ω
u(t , x), essinf

t ∈ [s,T ] x∈Ω
ũ(t , x)

)
,

both u − m and ũ − m are non-negative and we can invoke the preceding part on u − m and
ũ −m. □

4. Decay Rates

In this section, we show how to use Theorem 2 to obtain explicit rates of convergence for
perturbations of global-in-time Lipschitz solutions. In particular, this result applies to planar
rarefaction waves, but is more general.

Proof of Corollary 4. Fix two global-in-time entropy solutions u and ũ to (1) as in the statement
of Corollary 4 with initial data u0 and ũ0, respectively. Namely, take ũ a global-in-time Lipschitz
entropy solution and ∥u0∥L∞ , ∥ũ0∥L∞ ≤ Λ and u0 − ũ0 ∈ L1(Rn). Then, the standard maximum
principle and L1-contraction estimate for scalar conservation laws (for a precise reference see [6,
Theorem 6.2.3]) imply that for each t ∈R+,

∥u(t )∥L∞(Rn ) ≤Λ, ∥ũ(t )∥L∞(Rn ) ≤Λ, and ∥u(t )− ũ(t )∥L1(Rn ) ≤ ∥u0 − ũ0∥L1(Rn ) .

Now, fix t ∈R+ and x ∈Rn and apply Theorem 2 with T = 2t , s = t/2, Ω= Bt (x) and Ω̃= Bt/2(x):

|u(t , x)− ũ(t , x)| ≤ C (Λ,C0,C1,α,n)(1+dΓ)η

dγ(n+1)
∥u − ũ∥γ

L1([s,T ]×Bt (x))
,

where d = min(t − s,dist(∂Ω,Ω̃)) = t/2 and Γ= ∥∇t ,x ũ∥L∞([t/2,T ]×Bt (x)). Thus, we have

|u(t , x)− ũ(t , x)| ≤
C

(
1+ t supt/2<τ<2t

∥∥∇t ,x ũ(τ)
∥∥

L∞(Rn )

)η
tγn

∥u0 − ũ0∥γL1(Rn )
.

Finally, using ũ is Lipschitz, ũ satisfies (1) pointwise. One can readily show |∂t ũ| ≤C (C1,Λ) |∇ũ|,
which completes the proof of Corollary 4. □
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