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Abstract. We give an infinite family of monoids ΠN (for N = 2,3, . . . ), each with a single defining relation
of the form bUa = a, such that the Dehn function of ΠN is at least exponential. More precisely, we prove
that the Dehn function ∂N (n) of ΠN satisfies ∂N (n) ⪰ N n/4. This answers negatively a question posed by
Cain & Maltcev in 2013 on whether every monoid defined by a single relation of the form bUa = a has
quadratic Dehn function. Finally, by using the decidability of the rational subset membership problem in the
metabelian Baumslag–Solitar groups BS(1,n) for all n ≥ 2, proved recently by Cadilhac, Chistikov & Zetzsche,
we show that eachΠN has decidable word problem.

Résumé. Nous donnons une famille infinie de monoïdes ΠN (pour N = 2,3, . . . ), chacun avec une seule
relation de définition de la forme bUa = a, telle que la fonction de Dehn de ΠN est au moins exponentielle.
Plus précisément, nous démontrons que la fonction de Dehn ∂N (n) de ΠN satisfait à ∂N (n) ⪰ N n/4. Cela
répond négativement à une question posée par Cain & Maltcev en 2013, à savoir si tout monoïde défini
par une seule relation de la forme bUa = a possède une fonction de Dehn quadratique. Enfin, en utilisant
la décidabilité du problème de l’appartenance à un sous-ensemble rationnel dans les groupes métabéliens
de Baumslag–Solitar BS(1,n) pour tout n ≥ 2, prouvée récemment par Cadilhac, Chistikov & Zetzsche, nous
montrons que chaqueΠN a un problème de mots décidable.
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The word problem for one-relation monoids is arguably the most important unsolved problem in
semigroup theory, and has been open for over a century. Given two words u, v over an alphabet
A (denoted u, v ∈ A∗), the monoid M with the single defining relation u = v is defined as the
quotient of the free monoid A∗ by the least congruence containing the pair (u, v). This monoid
is denoted Mon〈A | u = v〉. The word problem for such a monoid – a one-relation monoid – asks
for a decision procedure which, given two words w1, w2 ∈ A∗, decides whether (w1, w2) lies in the
above congruence or not. Despite numerous efforts, the word problem for one-relation monoids
in general remains open. Thue [29] gave a still inchoate study of this problem when the defining
relation is of the form u = 1, where 1 is the empty word, and solved it in some particular cases.
Adian in the 1960s made the first targetted effort towards solving the problem, and solved the
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word problem in two important cases: first, whenever the relation is of the form u = 1 (the special
case), and second, whenever the relation u = v satisfies that the first letters of u and v differ, and
the last letters of u and v differ (the cycle-free or cancellative case). Both results are proved via a
reduction to Magnus’ classical theorem on the decidability of the word problem in all one-relator
groups [23].

More detailed studies were later made by Adian [2] and Adian & Oganesian [3, 4]. These
studies were focussed on the case of left cycle-free monoids. In the case of one relation, this says
that the relation u = v has the first letters of u and v distinct, but the last letters may coincide.
Adian [2] introduced a pseudo-algorithm A which, for any given left cycle-free monoid M , gives a
procedure for studying the left divisibility problem in M . Here, the left divisibility problem refers
to the problem of deciding whether a word w1 is left divisible by some other word w2, i.e. if there
is some word z such that w1 = w2z. We detail this pseudo-algorithm in § 1. Using A, Adian &
Oganesian [4] proved that the word problem for a given one-relation monoid Mon〈A | u = v〉 can
be reduced to the word problem for a one-relation monoid of one of the forms:

(1) Mon〈a,b | bUa = aV a〉, or (2) Mon〈a,b | bUa = a〉,
where U ,V are some words, i.e. the word problem for all one-relation monoids reduces to
the word problem for all 2-generated left cycle-free one-relation monoids. This reduction is
very constructive, and easy to find in practice (see [25, § 3, Example 3.14] for details). The
word problem remains open for left cycle-free monoids in general, even lifting the simplifying
assumption of a single relation (see [25, § 2.2] for the general definition). Let Mℓ be a left cycle-
free monoid. Other than Adian’s classical result that Mℓ is left cancellative, some further results
are known. For example, Valitskas proved that if Mℓ is also right cancellative, then Mℓ is group-
embeddable.1 Furthermore, Guba [18, Theorem 5.1] proved that the set of principal right ideals
of Mℓ is a semi-lattice under intersection, and that any finitely generated right ideal of Mℓ can be
generated by two elements. These are strong structural properties not satisfied by all semigroups.

A one-relation monoid of the form Mon〈a,b | bUa = a〉 will be called monadic. These have
seen a good deal of study. Oganesian, in particular, used A to prove a number of remarkable
statements in this setting. For example, Oganesian [27] proved that the isomorphism problem for
one-relation monoids can be reduced to the word problem for all monadic one-relation monoids,
and further (see [26]) proved that the word problem for all monadic one-relation monoids
reduces to the left divisibility problem for all cycle-free monoids.2 More specifically, Oganesian
proved the remarkable fact that if M is a monadic one-relation monoid with defining relation
bUa = a, then the monoid S(M) generated by all suffixes of bUa is cycle-free, and furthermore
the word problem for M reduces to the left divisibility problem in S(M). Guba [18] extended this
latter result to prove that S(M) embeds in a one-relator group G(M) as the submonoid generated
by all suffixes of the defining relation of G(M). As the left divisibility problem in S(M) reduces
to the membership problem for S(M) in G(M), this shows that the word problem for all monadic
one-relation monoids reduces to the submonoid membership problem for all one-relator groups.
We will return to this chain of reductions in § 3.

The starting point for the present article, which is focussed on a class of monadic one-relation
monoids, comes in the form of two pre-prints from 2013, by Cain & Maltcev [10, 11]. These pre-
prints attempt to construct finite complete rewriting systems for monadic left cycle-free monoids
M in which the defining relation bUa = a satisfies the condition that bUa has a short “relative
length”, i.e. the shortest way, in terms of number of alternations, to write bUa as an alternating
product of b’s and a’s. Specifically, in [10] it is shown that if bUa is of the form bαaβbγaδ for some

1This result was never published; Guba [17, Theorem 4] filled in the details in a later paper.
2Sarkisian claimed a solution to the latter problem, but a gap was found in the 1990s, and it remains open. See [25,

§ 4.4] for further details.
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α,β,γ,δ ≥ 1 (i.e. bUa has relative length 4), then M admits a finite complete rewriting system.
In [11], the same claim was made for the case of bUa having relative length 6; however, as we
shall see, the monoid Π2 of this article demonstrates the existence of gap in the proof (but not, a
priori, a counterexample to the statement), see § 3.

Their approach was in line with answering the (still open) question of whether every one-
relation monoid admits a finite complete rewriting system. Of course, a positive answer to this
question would resolve the word problem, and so would represent an incredible leap forward
from our current understanding; however, a negative answer may be obtained even without
involving the word problem. Based on historical results, such a negative answer may be obtained
via considering appropriate types of homological finiteness properties, see e.g. [21]. For recent
progress on this subject, see the result by Gray & Steinberg [15] that every one-relation monoid
satisfies the homological finiteness property FP∞, a condition satisfied by all monoids admitting
finite complete rewriting systems.

Cain & Maltcev noticed, based on their rewriting systems constructed, that the Dehn function
of all monadic one-relation monoids Mon〈a,b | bUa = a〉 in which bUa has relative length 4 is at
most quadratic. This prompted the authors to ask the following question, see [10, Open Problem
5.1(1)]:

Question (Cain & Maltcev, 2013). Does every monoid Mon〈a,b | bUa = a〉have at most quadratic
Dehn function?

Here, the Dehn function is a measure of the complexity of the “naïve” method of attempting to
solve the word problem in a given monoid, see § 1 for details. In this article, we provide a negative
answer to their question. More specifically, we will show the following main theorem:

Theorem 1. For every N ≥ 2, the Dehn function ∂N of the one-relation monoid

ΠN = Mon
〈

a,b
∣∣aa(ba)N = a

〉
satisfies ∂N (n) ⪰ N n/4, i.e. the Dehn function ofΠN is at least exponential.

Hence, Theorem 1 answers negatively Cain & Maltcev’s question. The proof of Theorem 1 is
enacted via the proof of a Main Lemma, which shows that for every k ≥ 1 and every N ≥ 2 we have

ab2k a2k a = b2k−1a2k baa inΠN ,

but that the shortest sequence of elementary transformations of ΠN verifying this grows expo-
nentially in k (with base N ).

In spite of the above result, in § 3 we will also prove (Theorem 19) that the word problem is
decidable in allΠN , by reducing it to the decidability of the rational subset membership problem
in solvable Baumslag–Solitar groups. Finally, we will mention some links with other results,
including residual finiteness, positive one-relator groups, finite complete rewriting systems,
automaticity, and one-relation inverse monoids.

1. Transformations in cycle-free monoids

We assume the reader is familiar with the basics of combinatorial group and semigroup theory,
in particular the theory of presentations. The reader may consult [1, 24, 28] if they are not. We
will denote monoid (resp. group) presentations as Mon〈A | R〉 resp. Gp〈A | R〉, where A is the
generating set, and R is the set of defining relations resp. relators. The free monoid on an alphabet
A is denoted A∗. For two words u, v ∈ A∗ with a maximal shared prefix p, i.e. u = pu′ and v = pv ′

(p may be empty) and the first letters of u′ and v ′ differ (or both are empty), we let (u, v)p-red

denote the pair (u′, v ′), i.e. the pair obtained by removing the maximal shared prefix of u and v .
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We say that the pair (u, v) is (left-)reduced if (u, v)p-red = (u, v), i.e. u and v have no shared non-
empty prefix. We omit many of the details of Adian’s theory of cycle-free monoids, and refer the
reader to [25].

1.1. Dehn functions

For a finitely presented monoid M = Mon〈A | R〉, each equivalence class of a word w ∈ A∗ can be
regarded as a metric space. Concretely, if u, v ∈ A∗ are such that u = v in M , then we can define
a metric ∂M (u, v) as the shortest sequence of elementary transformations of M transforming u
into v , i.e. the shortest sequence of applications of relations connecting u and v . Overloading
notation, this metric gives rise to the monotone non-decreasing Dehn function ∂M : N→N (also
called the least isoperimetric function) for M defined as:

∂M (n) = max
{
∂M (u, v) : u, v ∈ A∗,u =M v and |u|+ |v | ≤ n

}
.

Here |v | denotes the length of v ∈ A∗ (as a word over the alphabet A). In other words, ∂M (n)
measures the complexity of the “naïve” approach to solving the word problem in a monoid via
enumerating equalities by using the defining relations. It is easy to see that the word problem
for M is decidable if and only if ∂M (n) is a recursive function (with respect to any generating
set A). For two functions ϕ,ψ : N → N, we write ϕ ⪯ ψ if there is a constant c ∈ N such that
ϕ(n) ≤ cψ(cn)+cn for all n ∈N, and we write ϕ∼ψ if ϕ⪯ψ and ψ⪯ϕ. Then ∼ is an equivalence
relation on the set of all functions ϕ : N→N. The equivalence class – i.e. the asymptotic growth
rate – of ∂M under ∼ can easily be shown to not depend on the particular finite generating set A
chosen (which justifies our somewhat abusive suppression of any mention of the generating set
above). Thus, we may speak of a monoid having a linear, quadratic, polynomial, exponential, etc.,
Dehn function, where e.g. M having a quadratic Dehn function means that ∂M (n) ∼ n2. This is
true, for example, for the free commutative monoidN×N∼= Mon〈a,b | ab = ba〉, in which proving
that anbn equals bn an requires ∼ n2 elementary transformations.

1.2. Algorithm A

In 1976, Adian [2] described a pseudo-algorithm for solving the left divisibility problem in a given
left cycle-free monoid (and hence also the word problem). This pseudo-algorithm is calledA, and
takes as input the defining relations of a left cycle-free presentation for a monoid M , a word w ,
and a letter x, and outputs either “yes” or “no”, depending on whether w is left divisible by x in M .
It is termed a pseudo-algorithm rather than an algorithm because it does not always terminate,
and it has no built-in mechanism for detecting non-termination, even for a fixed set of defining
relations and letter. In the sequel, we will be somewhat sloppy and write A as taking only a single
word as input (with a minor modification below to allow for two words), and let context make the
defining relations and the letter clear.

We will only describe A for the case of a left cycle-free one-relation monoid M = Mon〈a,b |
bP = aQ〉. For a full description, we refer the reader to [25, § 4.2]. We will make use of prefix
decompositions of a word (with respect to the above presentation). Let A = {a,b}. For a word
w ∈ A∗, we find the prefix decomposition R(w) of w as follows. From left to right, factorise w into
a product of maximal prefixes of either bP or aQ (as M is left cycle-free, this is well-defined). If
any of these maximal prefixes is the entire defining word bP or aQ, then we stop, and call this the
head of R(w). The remaining suffix of w is called the tail of R(w). If R(w) has no head, then it is
called a headless decomposition. We write

R(w) = w1 | w2 | · · · | wk H w ′
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to denote that the wi are maximal proper prefixes of bP or aQ, and that H = bP or H = aQ
is the head of the prefix decomposition of w ; the word w ′ is the tail. In the case of a headless
decomposition, we write this simply

R(w) = w1 | w2 | · · · | wk .

Example 2. Let M0 = Mon〈a,b | b2a2 = a〉. We give an example of two prefix decompositions
with a head, and one that is headless.

R(bbbbabbaabbab) = bb | bba bbaa bbab. (1)

R(bbabbababab) = bba | bba | b a bab. (2)

R(bbabbabb) = bba | bba | bb. (3)

We shall see below that results due to Adian allow us to conclude, from the latter of these three
decompositions, that bbabbabb is not left divisible by a in M0.

We shall make one notational simplification. If the prefix decomposition of a word w begins
with p > 1 copies of a prefix u, i.e. if R(w) is of the form

R(w) = u | u | · · · | u︸ ︷︷ ︸
p times

| v · · · (4)

and none of these occurrences of u are the head (if any) of the decomposition, then we will simply
write this as

R(w) = up | v · · · .

This is not very abusive, as we know by the prefix decomposition (4) that up is not itself a prefix
of any defining relation.

Adian’s algorithm A, with input a word w and a letter x ∈ A, is now described as follows.
First, if w begins with x, the procedure halts, and outputs yes. Otherwise, compute the prefix
decomposition R(w). If R(w) is headless, then halt, and output no. If R(w) has a head, then
replace the head by the other side of the defining relation. This results in a word w ′. We say
A(1)

x (w) = w ′ or simply A(1)(w) = w ′ (leaving the letter x implicit). We then iterate this procedure,
finding A(2)(w),A(3)(w), . . . . This process does not always terminate.

Example 3. We continue Example 2. Fixing the letter x = a, and suppressing it in writing A
below, we have, using the decompositions (1) and (2), that

A(1)(bbbbabbaabbab) = bbbba ·a ·bbab,

A(1)(bbabbababab) = bbabbab ·bbaa ·bab,

and as bbabbabb has a headless prefix decomposition, A terminates immediately on input
bbabbabb. We leave the reader to verify that

A(2)(bbbbabbaabbab) = bbabbab,

which has a headless prefix decomposition. Furthermore, it is not hard to see that A does not
terminate on input bbabbabababab as above. Indeed, we even have

A(1)(ba) = bbbaa, A(2)(ba) = bbbbbaaa, , . . . , A(i )(ba) = b2i+1ai+1, . . .

and so A does not even terminate on input ba.

In general, as our alphabet consists of only two letters a and b, when writing A(w), we will
implicitly assume that the letter x is simply the letter which w does not begin with (as otherwise
A would terminate immediately).
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Theorem (Adian, 1976). Let M = Mon〈A | R〉 be a left cycle-free monoid. Suppose A is applied to
a word u ∈ A∗. Then u is left divisible by x ∈ A if and only if A terminates, when input u and x,
in a word beginning with x. That is, u is left divisible by x if and only if A outputs yes on input u
and x.

In view of the remarkable result by Guba [18, Theorem 4.1] that the word problem is equivalent
to the left divisibility problem in the case of monadic left cycle-free one-relation monoids, it
follows that the halting problem for A for the monoid is in these cases equivalent to the word
problem for the monoid.

We shall make a notational modification for A, and use this to denote another, very closely
related, algorithm. This will operate on pairs of words u, v ∈ A∗ with no common non-empty
prefix, as follows. First, if either of u or v are empty, then A halts. If both u and v are non-empty,
then A will perform a single step of Adian’s (usual) algorithm A on u. Suppose A(1)(u) = u′. Then
we set A(1)(u, v) = (u′, v)p-red. As this results in a pair of words (u′′, v ′) with no common non-
empty prefix, we may iterate A on (u′′, v ′), obtaining A(2)(u, v), etc. When we write A(k)(u, v) =
(ε,ε), we mean that A takes exactly k steps to reach (ε,ε) when applied to the pair (u, v).

The following is one of the key properties of A, and is a direct and easy reformulation of the
proof of [2, Theorem 1].

Proposition 4 (Adian, 1976). Let M = Mon〈A | R〉 be a left cycle-free monoid, and u, v ∈ A∗.
Then u =M v if and only if there is some (necessarily unique) k ∈ N such that A(k)(u, v) = (ε,ε).
Furthermore, if such k exists, then ∂M (u, v) = k.

In other words, stated geometrically (and for the reader familiar with the details of semigroup
diagrams, cf. e.g. [18]), for equal words u and v , A can be used to produce a (u, v)-diagram with
the least number of cells over all (u, v)-diagrams. Furthermore, this is the only (u, v)-diagram
with this number of cells.

2. Equalities inΠN

2.1. Basic lemmas inΠN

As mentioned in the introduction, the monoids

ΠN = Mon
〈

a,b
∣∣baa(ba)N = a

〉
,

where N ≥ 2, hold center stage. In the sequel, we will so frequently use the abbreviation

X = ba

that it deserves its own line. Note that this makes the defining relation of ΠN as X aX N = a. We
state two lemmas on word transformations via A as applied to ΠN . In the sequel, whenever we
write “word” we mean “word over {a,b}”; whenever we write A, we mean A as applied to ΠN ;
when we write “u is left divisible by v” we mean “u is left divisible by v inΠN ”, etc.

Lemma 5. Let P,Q be arbitrary words. Suppose A(k)(P ) =W for some word W and k ∈N. If either

(1) P begins with a, and is left divisible by b; or
(2) P begins with b, and is left divisible by a.

Then we have A(k)(PQ) =W Q.

The proof is easy by using Adian’s Theorem on A (as above) to conclude that for all k0 < k
the word A(k0)(P ) has a head, so the head of the prefix decomposition of A(k0)(PQ) is inside this
distinguished subword P .
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Lemma 6. Let Y = bY ′ be a word beginning with b. Let ℓ ≥ 0 be such that for all 0 ≤ k ≤ ℓ, we
have that A(k)(Y ) also begins with b. Then for all s ≥ 1, we have A(ℓ)(bs Y ) = bsA(ℓ)(Y ).

The proof of this lemma is immediate by strong induction on ℓ.

2.2. The Main Lemma

We now turn to the proof of Theorem 1, which will pass via a Main Lemma. For every k ≥ 0, we
define the following pairs of words:

Uk = ab2k a2k a, Vk = b2k−1a2k baa.

The main equalities we shall prove are the following:

Uk =Vk inΠN for all k ≥ 1 and all N ≥ 2. (5)

We remark immediately that the words Uk and Vk do not depend on N . That is, these words are
equal in allΠN . Indeed, we have

|Uk | = |Vk | = 4k +2.

We shall prove that although the equality Uk = Vk holds in ΠN , this can only be proved using
sequences of elementary transformations whose length are exponential, with exponent k and
base N 2. More precisely, we prove the following:

Main Lemma. For every k ≥ 1 and N ≥ 2, we have Uk =Vk inΠN . Furthermore, the shortest chain
of elementary transformations ofΠN verifying this equality has length σN (k), where

σN (k) := 2N

N 2 −1

(
N 2k −1

)
+4k −2.

In other words, we have ∂N (Uk ,Vk ) =σN (k).

Using the Main Lemma it is easy to see that Theorem 1 follows. Indeed, assuming it holds, we
find the following:

Proof of Theorem 1. First, we have |Uk |+ |Vk | = 8k +4. Let n ∈N with n ≥ 4, and let k ∈N be the
greatest k such that n ≥ 8k +4. In particular, k = ⌊n−4

8 ⌋. Then by the Main Lemma we have

∂N (n) ≥ ∂N (8k +4) ≥ ∂N (Uk ,Vk ) ∼ N 2k = N 2
⌊ n−4

8

⌋
∼ N n/4.

Hence ∂N (n) ⪰ N n/4, andΠN has Dehn function ∂N (n) at least exponential. □

The remainder of the section will be devoted to the proof of the Main Lemma.

2.3. Proof of the Main Lemma

Let us recall the definition of the words Uk and Vk , for k ≥ 1:

Uk = ab2k a2k a, Vk = b2k−1a2k baa.

As noted above, we shall also very frequently make use of the abbreviation X = ba. Thus, the
defining relation of ΠN is X aX N = a. The overall strategy of the proof is to apply A to the pair
(Uk ,Vk ). This process will be divided into two parts. The first will serve to reduce the pair (Uk ,Vk )
to one of the form (W, a), where the precise form of W depends both on k and N . The second part
will be to reduce the pair (W, a) to a pair (X p aX pN , a), where p = p(k, N ) is a “very large” number.
Of course, no matter the value of p, we have that Adian’s algorithm reduces (X p aX pN , a) to (ε,ε)
in X p steps. In total, keeping a precise count, Adian’s algorithm will take σN (k) steps to reduce
(Uk ,Vk ) to (ε,ε), which will complete our proof by Proposition 4.
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We begin with a somewhat technical lemma, but which is often very useful. In essence, the
lemma says that X ’s can be “pushed” to the right of an aa, as long as one applies an appropriate
multiplicative factor of N 2.

Lemma 7. Let p, q ≥ 0. Then A(pN+p)(X p aaX q ) = aaX q+pN 2
.

Proof. The proof of the claim is now by induction on p. If p = 0, then there is nothing to prove.
Assume the lemma is proved for all p < p ′ with p ′ > 0. We prove the claim for p = p ′. As p > 0, the
prefix decomposition of W = X p aaX q = X p−1baaaX q is

R
(
X p aaX q )= X p−1∣∣baa a X q ,

so we find thatA(1)(W ) = X p−1baa ·(ba)1aX N ·X q . Here, the prefix decomposition is easily found
to be

R
(
X p abaaX N X q )= X p−1∣∣baa(ba)1 a X N X q ,

and so A(2)(W ) = X p−1baa(ba)2aX 2N X q . Continuing iteratively, we thus find that

A(N )(W ) = X p−1baa(ba)N aX N 2
X q ,

where the head of the prefix decomposition of this word is the underlined segment baa(ba)N .
Consequently,

A(N+1)(W ) = X p−1aaX q+N 2

and as A((p−1)N+p−1)(X p−1aaX q+N 2
) = aaX q+N 2+(p−1)N 2

by the inductive hypothesis, we find
that

A(pN+p)(W ) =A(N+1+(p−1)N+p−1)(W ) = aaX q+pN 2
,

which is what was to be proved. □

We define three sequences sN , tN , and TN of natural numbers as follows:

sN (n) =
{

N , if n = 0,

N 2sN (n −1)−N 2 +N , if n > 0.

tN (n) =
{

0, if n = 0,

(N +1)(sN (n −1)−1)+1, if n > 0.

TN (n) =
n∑

i=0
tN (i ).

Note that tN (n) is defined via a recurrence on sN , rather than on tN . For example, for N = 2, the
sequences begin as follows:

s2(n) : 2,6,22,86,342,1366, . . . ,

t2(n) : 0,4,16,64,256,1024, . . . ,

T2(n) : 0,4,20,84,340,1364, . . . .

The reader may well recognise the sequence t2(n) above, and that s2(n) appears very similar
to T2(n); of course, this is no coincidence. Indeed, it is an easy exercise in undergraduate
combinatorics to derive a closed form for the three sequences above, as follows:

Lemma 8. The sequences sN , tN , and TN admit the following closed forms:

(1) sN (n) = N
N+1 (N 2n+1 +1) for all n ≥ 0.

(2) tN (n) = (N 2)n for all n > 0.
(3) TN (n) = N 2

N 2−1
(N 2n −1) for all n ≥ 0.

Having diverged somewhat from considering words, we now return to our words Uk and Vk .
We begin with a useful lemma, which will use all three of the above functions.
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Lemma 9. Let q ≥ 0. Let Q be an arbitrary word. Then

A(TN (q)) (
X N (aX N )2q , a2qQ

)= (
X sN (q),Q

)
.

Proof. The proof is by induction on q . If q = 0, then X N (aX N )2q = X N , and as TN (q) = 0 and
sN (q) = N , the claim holds. Assume the claim holds for all q < q ′ for some q ′ > 0. We prove the
claim for q = q ′.

As X N (aX N )2(q−1) is, by the inductive hypothesis, left divisible by a, it follows from Lemma 5,
taking P = X N (aX N )2(q−1)), and the inductive hypothesis that we have

A(TN (q−1))
(

X N (
aX N )2q

, a2qQ
)
=

(
X sN (q−1) (aX N )2

, a2Q
)

.

We will now rewrite this pair further. First, we find the prefix decomposition of X sN (q−1)(aX N )2

as:

R
(

X sN (q−1) (aX N )2
)
=R

(
X sN (q−1)−1baaX N (

aX N ))
,

= X sN (q−1)−1 baaX N aX N ,

and hence we find, replacing this head by a, that

A(1)
(

X sN (q−1) (aX N )2
, a2Q

)
= (

X sN (q−1)−1aaX N , a2Q
)

. (6)

By Lemma 7, we have

A((sN (q−1)−1)(N+1)) (
X sN (q−1)−1aaX N )= aaX N+(sN (q−1)−1)N 2

= aaX N 2sN (q−1)−N 2+N

= aaX sN (q).

(7)

Now, applying Lemma 5 with P = X sN (q−1)−1aaX N , we can combine (6) and (7), and thus find:

A((sN (q−1)−1)(N+1)+1)
(

X sN (q−1) (aX N )2q
, a2qQ

)
= (

aaX sN (q), aaQ
)

p-red

= (
X sN (q),Q

)
.

(8)

Thus we are almost done by induction; it remains to count the steps performed in transforming
(X N (aX N )2q , a2qQ) to (X sN (q),Q). By the inductive hypothesis, we first have TN (q −1) steps in
transforming the pair (X N (aX N )2q , a2qQ) to (X sN (q−1)(aX N )2, a2Q). The above reasoning shows
that an additional (

sN (q −1)−1
)

(N +1)+1

steps were subsequently performed. Thus the total number of steps performed was

TN (q −1)+ (sN (q −1)−1)(N +1)+1︸ ︷︷ ︸
tN (q)

= TN (q −1)+ tN (q) = TN (q),

which is what was to be shown. □

Lemma 10. Let W be an arbitrary word. For all k ≥ 1 and N ≥ 2, we have

A(TN (k−1)+2k−1)(aW,Vk ) =
(

X sN (k−1)−1W, a
)

.

Proof. Of course, the prefix decomposition of aW has the distinguished letter a as its head. In
particular, we find A(aW ) = baaX N W , and hence, removing the shared prefix b from baaX N W
and Vk , we find:

A(1)(aW,Vk ) =
(
b ·aaX N W,b ·b2k−2a2k baa

)
p-red

=
(
aaX N W,b2k−2a2k baa

)
.
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The head of aaX N W is the first distinguished a. Hence, continuing iteratively, continuously
removing the b’s from the beginning of the second entry of the pair, we eventually find:

A(2k−1)(aW,Vk ) =
(
baaX N · (aX N )2k−2

W,baaa2k−2baa
)

p-red

=
(

X N (
aX N )2k−2

W, a2k−2baa
)

p-red
.

If k = 1, then (X N (aX N )2k−2W, a2k−2baa) = (X N W,baa), and as, by definition, X N = (ba)N , we
have that (X N W,baa)p-red = (X N−1W, a), as required.

Thus, assume that k > 1. By Lemma 9, we have

A(TN (k−1))
(

X N (
aX N )2k−2

, a2k−2baa
)
=

(
X sN (k−1),baa

)
p-red

,

=
(

X sN (k−1)−1, a
)

.

As the proof of Lemma 9 shows that the prefix decomposition of each of the TN (k −1) interme-
diary words in this rewriting has a head, we may perform the above rewriting first when applying
A to the pair (X N (aX N )2k−2W, a2k−2baa). Hence, combining this rewriting with the above 2k−1
steps, we find

A(TN (k−1)+2k−1)(aW,Vk ) =
(

X sN (k−1)−1W, a
)

.

This is precisely what was to be shown. □

We are now ready to enact the first part of Adian’s algorithm on the pair (Uk ,Vk ). It is worth
keeping in mind that this part will only affect the first letter a in the word Uk , but will transform
all of Vk into a.

Lemma 11. For every k ≥ 1 and N ≥ 2, we have

A(TN (k−1)+2k−1)(Uk ,Vk ) =
(

X sN (k−1)−1b2k a2k a, a
)

.

Proof. This is immediate by Lemma 10, taking aW =Uk = ab2k a2k a. □

Thus we have completed the first part of Adian’s algorithm when applied to the pair (Uk ,Vk ).
Already, this is a large number of steps – note that TN (k) grows as N 2k , so if we could prove (by
whatever means) that Uk = Vk in ΠN , then we could conclude just on the basis of this first part
that ΠN has at least an exponential Dehn function. We continue with our precise count of the
steps.

The second part of Adian’s algorithm now consists in proving that, for all k ≥ 1 and N ≥ 2, we
have that X sN (k−1)−1b2k a2k a is equal to a inΠN .

Lemma 12. For every p ≥ 1 and q > 1 and N ≥ 2, we have

A(pN+p+1) (
b2q−1X p a2q )= b2(q−1)−1X pN 2−N a2(q−1).

Proof. Note that the word b2q−1X p a2q is of the form b2q−1X p aaQ for a word Q. By Lemma 7,
we have that A(pN+p)(X p aa) = aaX pN 2

, and as no word in the corresponding sequence of
elementary transformations begins with a except the last, i.e. aaX pN 2

, it hence follows from
Lemma 6 that

A(pN+p) (b2q−1X p aa ·a2q−2)= b2q−1aaX pN 2
a2q−2.

Consequently, as the prefix decomposition of b2q−1aaX pN 2
a2q−2 is

R
(
b2q−1aaX pN 2

a2q−2
)
= b2q−2 baaX N X pN 2−N a2q−2,



Carl-Fredrik Nyberg-Brodda 723

we find that

A(pN+p+1) (b2q−1X p aa ·a2q−2)= b2q−2aX pN 2−N a2q−2

= b2(q−1)−1X pN 2−N+1a2(q−1).

This is precisely what was to be shown. □

For ease of bookkeeping, we define another three sequences s′N , t ′N , and T ′
N of natural num-

bers as follows:

s′N (n) =
{

1, if n = 0,

N 2s′N (n −1)−N +1, if n > 0.

t ′N (n) =
{

0, if n = 0,

(N +1)s′N (n −1)+1, if n > 0.

T ′
N (n) =

n∑
i=0

t ′N (i ).

Note that t ′N (n) is defined via a recurrence on s′N , rather than on t ′N . For example, for N = 2 these
sequences begin:

s′2(n) : 1,3,11,43,171,683, . . . ,

t ′2(n) : 0,4,10,34,130,514, . . . ,

T ′
2(n) : 0,4,14,48,178,692, . . . .

Analogously to Lemma 8, we can easily find closed form expressions for these functions.

Lemma 13. The sequences s′N , t ′N , and T ′
N admit the following closed forms:

(1) s′N (n) = N
N+1 (N 2n + 1

N ) for all n ≥ 0.
(2) t ′N (n) = N 2n +2 for all n ≥ 1.
(3) T ′

N (n) = N
N 2−1

(N 2n −1)+2n for all n ≥ 0.

We remark that an immediate consequence of Lemma 8 and Lemma 13 is the relationship

s′N (k)−1 = N (sN (k −1)−1). (9)

We shall presently use this. First, however, we will use our new functions s′N , t ′N , and T ′
N to count

the number of steps performed by A to prove that b2k a2k a is left divisible by a.

Lemma 14. For every k ≥ 1 and N ≥ 2, we have

A(T ′
N (k))

(
b2k a2k a

)
= aX s′N (k).

Proof. Consider the word b2k a2k a = b2k−1X 1a2k . We may apply Lemma 12 to this word to find
that

A(N+2)
(
b2k−1X 1a2k

)
= b2(k−1)−1X N 2−N+1a2(k−1)

∴A
(
t ′N (1)

) (
b2k−1X 1a2k

)
= b2(k−1)−1X s′N (1)a2(k−1)

Of course, the word b2(k−1)−1X s′N (1)a2(k−1) is also of the correct form for applying Lemma 12, and
we find

A((N+1)s′N (1)+1)
(
b2(k−1)−1X s′N (1)a2(k−1)

)
= b2(k−2)−1X N 2s′N (1)−N+1a2(k−2).

As t ′N (2) = (N +1)s′N (1)+1 and s′N (2) = N 2s′N (1)−N +1, we conclude

A
(
t ′N (1)+t ′N (2)

) (
b2k a2k a

)
= b2(k−2)−1X s′N (2)a2(k−2).
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This word is again of the required form to apply Lemma 12, etc. and hence, continuing iteratively
for k −1 steps and using T ′

N (k) =∑k
i=1 t ′N (i ), we find

A
(
T ′

N (k−1)
) (

b2k a2k a
)
= bX s′N (k−1)a2. (10)

Rewriting bX s′N (k−1)a2 is easy. Indeed, by Lemma 7 we have

A
(
(N+1)s′N (k−1)

) (
bX s′N (k−1)a2

)
= baaX N 2s′N (k−1). (11)

Note that (N +1)s′N (k −1) = t ′N (k)−1. Furthermore, we obviously have

A(1)
(
baaX N 2s′N (k−1)

)
= aX N 2s′N (k−1)−N , (12)

and N 2s′N (k −1)−N = s′N (k). We can now assemble all our rewritings (10), (11), and (12), to find
that

A
(
T ′

N (k−1)+t ′N (k)−1+1
) (

b2k a2k a
)
= aX s′N (k)−1

which is to say

A
(
T ′

N (k)
) (

b2k a2k a
)
= aX s′N (k)−1.

This is precisely what was to be proved. □

Note that no word, except the last, in the rewriting process described in the proof of Lemma 14
begins with a. In particular, any prefix decomposition of X q b2k a2k is simply a prefix decomposi-
tion of b2k a2k preceded by q prefixes of the form X | X | · · · | X |. Therefore, just as in the statement
of Lemma 6 (replacing bs with (ba)s = X s ) that Lemma 14 also describes the rewriting process for
X q b2k a2k , for any q ≥ 0. In particular, taking q = sN (k −1)−1, we conclude:

Lemma 15. For every k ≥ 1, we have

A
(
T ′

N (k)
) (

X sN (k−1)−1b2k a2k a, a
)
=

(
X sN (k−1)−1aX s′N (k)−1, a

)
.

By (9), the pair of words produced in Lemma 15 is of the form (X p aX pN , a). We are now almost
done, as Adian’s algorithm applied to any word X p aX pN will clearly result in a after p steps. We
write out the exact statement and a brief proof.

Lemma 16. For every k ≥ 1, we have

A(sN (k−1)−1)
(

X sN (k−1)−1aX s′N (k)−1, a
)
= (ε,ε).

Proof. First, note that by (9) we have that the word

X sN (k−1)−1aX s′N (k)−1

is of the form X p aX pN for p ≥ 0. For any word of this form, it is easy to see that it is equal to
a; indeed, one may with little difficulty write down the sequence of transformations carried out
by A directly. One may also note that the rewriting system X aX N → a will rewrite any word
X p aX pN to a in p steps, and that the resulting sequence of elementary transformations is right
directed – indeed, there are no independent transformations (cf. [2] for this terminology). Hence,
by Proposition 4, this sequence must be the one produced by A, so A(p)(X p aX pN , a) = (ε,ε), as
desired. □

This completes the description of the second part of the action of A when applied to the pair
(Uk ,Vk ). For brevity, let

σN (k) = TN (k −1)+ (2k −1)︸ ︷︷ ︸
Lemma 11

+ T ′
N (k)︸ ︷︷ ︸

Lemma 15

+ (sN (k −1)−1)︸ ︷︷ ︸
Lemma 16

. (13)

ThenσN (k) is the total number of steps taken by A to rewrite the pair (Uk ,Vk ) into (ε,ε), as it is
simply the sum of the number of steps in the indicated lemmas; explicitly, we have the following:
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Proposition 17. For every N ≥ 2 and k ≥ 1, we have

A(σN (k))(Uk ,Vk ) = (ε,ε). (14)

Hence, the shortest sequence of elementary transformations verifying the identity Uk = Vk in ΠN

has length σN (k).

Proof. First, the equality (14) follows by first performing the rewriting from Lemma 11, followed
by the one in Lemma 15, followed finally by the one in Lemma 16. The second part of the
proposition now follows from the first by Proposition 4. □

We give a closed form expression for σN (k).

Lemma 18. For every N ≥ 1 and k ≥ 1, we have

σN (k) = 2N

N 2 −1

(
N 2k −1

)
+4k −2.

In particular, we have σN (k) ∼ N 2k .

Proof. This follows immediately from the definition (13), the closed form expressions for TN (k−
1) and sN (k − 1) from Lemma 8, the closed form expression for T ′

N (k) from Lemma 13, and
elementary algebraic manipulations. □

By Lemma 18, notice that for fixed N , we have

σN (k) = 2

(
2k +1+

k∑
i=1

N 2k

)
.

For example, for a fixed N we have that σN (k) for k = 1,2, . . . begins:

σN (k) : 2(N +1),2
(
N 3 +N +3

)
,2

(
N 5 +N 3 +N +5

)
, . . .

This is a particularly simple expression for σN (k). As an example, when N = 2, we have the
following values for k = 1,2, . . . :

σ2(k) : 6,26,94,354,1382,5482,21870, . . . .

In summary, for example taking k = 4 and N = 2, A will terminate on the pair

(U4,V4) = (
ab8a8a,b7a8baa

)
,

requiring a total of 354 steps to do so. Similarly (and somewhat strikingly), if one instead takes
N = 4, then A will take 34966 steps to prove that U4 =V4 inΠ4.

The statement of the Main Lemma is now obtained by combining Proposition 17 and
Lemma 18. This completes the proof of the Main Lemma. □

3. Some remarks onΠN

We make some general remarks on the monoids ΠN . First, we note that it is very tempting
to conjecture that the Dehn function of ΠN is exponential, and not just bounded below by
an exponential function. Proving this, however, seems somewhat intricate. Baumslag–Solitar
groups BS(k,ℓ) with |k| ̸= |ℓ| are well-known to have exponential Dehn function; this is proved
in two steps. First, Gersten [14, Theorem B] gave a series of null-homotopic words whose van
Kampen diagrams require a very large number of cells to fill. Thus the Dehn function is at least
exponential. Second, one uses the fact that such Baumslag–Solitar groups are asynchronously
automatic [5, Corollary E1] and any group with this property has at most exponential Dehn
function, see [13]. We have, in essence (using word transformations rather than diagrams),
effected the first step for our “Baumslag–Solitar”-esque monoidsΠN . However, the second seems
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more elusive, as it is not clear that the ΠN are automatic (see below), nor does this take into
account the fact that automaticity is a less powerful property for semigroups than groups. We
will, at least, prove that the Dehn function ofΠN is always recursive.

Note, first, that the group defined by the same presentation as ΠN is easily recognised as one
of the famous characters of combinatorial group theory:

Gp
〈

a,b
∣∣baa(ba)N = a

〉= Gp
〈

a,b
∣∣baa(ba)N−1b = 1

〉
∼= Gp

〈
a,b

∣∣babN−1ba−1 = 1
〉

= Gp
〈

a,b
∣∣a−1ba = b−N 〉= BS(1,−N ),

a metabelian Baumslag–Solitar group, where the indicated isomorphism comes from applying
the free group automorphism induced by a 7→ a and b 7→ ba−1. All metabelian Baumslag–Solitar
groups are residually finite, and hence have decidable word problem, providing an alternative
route to using Magnus’ theorem in this case. It may therefore be tempting to conjecture that
ΠN is also residually finite for every N . This, however, is not at all the case. In general, it
is an open problem to classify which one-relation monoids are residually finite; however, in
the monadic case Mon〈a,b | bUa = a〉, a full classification due to Bouwsma exists, but seems
relatively unknown (e.g. it is not included in the reference list of [25]).

Theorem (Bouwsma, 1993). The monoid defined by Mon〈a,b | bUa = a〉 is residually finite if
and only if U = bk for some k ≥ 0.

That is, the only residually finite 2-generated monadic one-relation monoids are those of the
form Mon〈a,b | bk a = a〉. The result was never published, except in Bouwsma’s 1993 Ph.D.
thesis [8, Corollary 2.5] (supervised by G. Lallement). From the above, we immediately conclude
that ΠN is not residually finite for any N . We must therefore turn to an alternative approach to
solving the word problem in ΠN . To do this, we turn to a remarkable result by Guba [18] and
the decidability of the rational subset membership problem in the metabelian Baumslag–Solitar
groups BS(1, N ). We refer the reader to the survey [22] for details and definitions regarding the
rational subset membership problem in groups.

Theorem 19. For every N ≥ 2, the word problem in ΠN is decidable. In particular, the Dehn
function ofΠN is recursive.

Proof. In proving this, we will defer to an article and method by Guba [18, Theorem 2.1], and refer
the reader to this article for an introduction to the notation, which is rather cumbersome to define
succinctly here. The core idea of the proof is that the word problem for any monadic one-relation
monoid Mon〈a,b | bUa = a〉 can be reduced to the membership problem in a fixed submonoid of
some one-relator group G = Gp〈B | w = 1〉, where Guba gives a procedure to effectively compute
B and w from bUa. We will use this procedure to show that, in the case of ΠN , the group G is
a solvable Baumslag–Solitar group, in which the submonoid membership problem is decidable.
We now give the details.

The submonoid of ΠN generated by the suffixes of the defining word, i.e. the monoid of ends,
is denoted S(ΠN ). It is clear that this is generated by a and ba. It follows immediately from the
proof of [18, Corollary 3.1] that

S(ΠN ) ∼= Mon
〈

x, y
∣∣ y x y N = x

〉
with the isomorphism x 7→ a and y 7→ ba. This is a cycle-free presentation, so S(ΠN ) embeds
in the one-relator group with the same presentation via the identity map, which is obviously
BS(1,−N ). In fact, to see this embedding is very simple, as every suffix of baa(ba)N is left divisible
by ba. To see this, it suffices to show that a is left divisible by ba, as every suffix of baa(ba)N
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begins either with ba or with a. But ba ·a(ba)N = a, so obviously this holds. Hence, the graph of
ends ofΠN has only a single component (cf. [18, p. 1145]), and hence G(ΠN ) = BS(1,−N ).

The word problem for ΠN reduces to its left divisibility problem. By Oganesian’s result [26,
Theorem 1], the left divisibility problem in ΠN reduces to the left divisibility problem in S(ΠN ).
The left divisibility problem in S(ΠN ) can be reduced to the submonoid membership problem in
G(ΠN ) = BS(1,−N ), see [18, Corollary 2.1] for details. But the submonoid membership problem,
indeed the rational subset membership problem, is decidable for any BS(1, N ) with N ≥ 2 by [9,
Theorem 3.3]. It is well-known that BS(1, N ) and BS(1,−N ) are commensurable (see e.g. [12,
Lemma 6.1]), and as decidability of the rational subset membership problem is inherited by
taking subgroups (obviously) and by taking finite extensions (by Grunschlag [16]), we conclude
that the rational subset membership problem, and hence also the submonoid membership
problem, is decidable in BS(1,−N ). This solves the word problem inΠN . □

Remark 20. The non-Russian-reading reader interested in Oganesian’s remarkable work on the
connection between left cycle-free monoids Π and their associated semigroup of ends S(Π) may
first be inclined to consult the English translation of [26]. Unfortunately, this translation is rather
poor, and can make for confusing reading.3 Instead, we advise the reader to first consult Guba’s
overview of Oganesian’s work in the case of a single relation, found in [18].

Remark 21. One can prove, using automata-theoretic methods, that A in fact always terminates
for ΠN whenever N ≥ 1, see [8, Theorem 4.3]. This provides an alternative proof of Theorem 19,
but as the Ph.D. thesis [8] is not easily accessible, we have opted for the above proof. Note that as
A always terminates, it follows, using an encoding due to Guba (see [25, § 6.4] for details) that the
Collatz-like function fN : N×N→N defined by:

fN (m,n) =


(⌊ m

2

⌋
,
⌊ n

2

⌋)
if m ≡ n mod 2,( m

2 ,22N+1n + 1
3

(
22N+1 +1

))
if m ̸= n and m ≡ 0 mod 2,

(n,m) if m ̸= n and m ≡ 1 mod 2.

always terminates for any input pair (m,n) ∈N×N and any N ≥ 2, where termination is meant in
the sense that the sequence

(m,n) → fN (m,n) → f 2
N (m,n) → . . .

eventually results in f ℓN (m,n) = (0,k) or (k,0) for some k,ℓ ∈N.

3.1. Superexponential Dehn functions

It would be interesting to see how quickly the Dehn function of a one-relator monoid can grow,
even if exhibiting a non-recursive growth currently seems somewhat out of reach. A good starting
point seems to be the following:

Question 22. Does there exist a one-relation monoid Mon〈a,b | bUa = a〉 whose Dehn function is
not bounded above by any finite tower of exponentials?

The exponential growth found as a lower bound for the Dehn function of ΠN in this article is,
of course, connected to the exponential Dehn function of the Baumslag–Solitar group BS(1,−N ).
One way of resolving Question 22 would be connected with the following well-known result.
Gersten [14] proved that the one-relator group

BG = Gp
〈

a,b
∣∣[a,bab−1]= a−1〉

3For two brief examples, on p. 89 (of the translation), the system (2) is said to have “no cycles” instead of the correct
“no left cycles”; on p. 92, one reads “it is impossible to find out whether X is divisible by d”, but it should read “it is
possible”. Further examples are not hard to find.
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introduced by Baumslag [6], has a Dehn function which is not bounded above by any finite tower
of exponentials. This group, however, is not a positive one-relator group, as it is easily observed
to not be residually solvable (indeed, it is clear that a lies in every term of the derived series), but
every positive one-relator group is residually solvable [7]. We therefore pose the following, purely
group-theoretic, question:

Question 23. Does there exist a positive one-relator group whose Dehn function is not bounded
above by any finite tower of exponentials?

While a positive answer to Question (23) would not have a direct implication for Question 22
(or vice versa), it would seem to have a strong indication towards a positive answer.

3.2. Finite complete rewriting systems and automaticity

In [11], Cain & Maltcev claimed that every one-relation monoid with a presentation of the form

Mon
〈

a,b
∣∣∣bαaβbγaδbεaϕ = a

〉
,

i.e. a monadic one-relation monoid with defining relation bUa = a in which bUa has relative
length 6, admits a finite complete rewriting system. This claim is repeated (by the author of the
present article) in [25, p. 339]. Cain & Maltcev further claim that using these rewriting systems,
one may observe that every such monoid has at most quadratic Dehn function. By the results in
this present article, this cannot, however, be correct; taking N = 2, the monoidΠ2 is defined by

Π2 = Mon〈a,b | baababa = a〉,
but by Theorem 1 its Dehn function is at least exponential. The source of the error is that
their claimed finite complete rewriting system for Π2 is not complete. This leads us to pose the
following question.

Question 24. DoesΠN admit a finite complete rewriting system for all N ≥ 2?

Of course, an affirmative answer to Question 24 would give an alternative proof of decidability
of the word problem inΠN (i.e. Theorem 19). Finally, we note a connection with automaticity and
the fellow traveller property, and ask the following natural question (we refer the reader to [19] for
definitions and more details):

Question 25. Are the monoidsΠN (bi)automatic?

By [30, Theorem 4.1], any left cancellative automatic monoid whose automatic structure
satisfies the fellow traveller property has an at most quadratic Dehn function. An affirmative
answer to Question 25 would thus, in view of Theorem 1, give a rather simple family of left
cancellative automatic monoids without the fellow traveller property.

Remark 26. We wish to make a final remark regarding a well-known result due to Ivanov,
Margolis & Meakin [20]. This asserts (as a special case) that the word problem for any monoid
Mon〈a,b | bUa = a〉 reduces to the word problem for the special one-relation inverse monoid
Inv〈a,b | a−1bUa = 1〉. In particular, the word problem for ΠN reduces to the word problem
for IN = Inv〈a,b | a−1baa(ba)N = 1〉. Based on the results above, we conjecture that the Dehn
function for IN is also (at least) exponential, and indeed that the word problem for IN is decidable.
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