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Abstract. Ifa positive integer n has at least two distinct prime divisors and can be written as n = p(lxl +oot p([x’,
where p; < -+ < pr are prime divisors of n and ay,...,a; are positive integers, then we define such n as
weakly prime-additive. Obviously, ¢ > 3. Following Erdés and Hegyvdri’s work, Fang and Chen [J. Number
Theorey 182(2018), 258-270] obtained the following result: for any positive integer m, there exist infinitely
many weakly prime-additive numbers n with m | nand n = p‘fl +oo pg 5, where p1, ..., ps are distinct prime
divisors of n and a;, ..., a5 are positive integers. In this paper, we prove the existence of such n with general
length ¢, where ¢ = 3 (mod 4) and ¢ > 3. The main result is summarized as follows: for any positive integers
m, t with ¢ =3 (mod 4) and ¢ > 3, there exist infinitely many weakly prime-additive numbers n with m | n and
n= pfl +o 4 p?‘, where pj,..., pr are distinct prime divisors of n and a3,..., a; are positive integers.
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1. Introduction

If a positive integer n has at least two distinct prime divisors and can be written as n = p{' +
et pf’, where p; < --- < p; are prime divisors of n and ay,...,a; are positive integers, then
we define such n as weakly prime-additive. Obviously, ¢ > 3. In 1992, Erdds and Hegyvari [2]
firstly considered weakly prime-additive numbers and proved that, for any prime p, there exist
infinitely many weakly prime-additive numbers z such that p|n.

In 2018, Fang and Chen [5] made further research on weakly prime-additive numbers and
obtained the following result:

Theorem 1. For any positive integer m, there exist infinitely many weakly prime-additive num-
bers with t = 3 which are divisible by m if and only if 8 Y m.

In [5], Fang and Chen also proved that:
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Theorem 2. For any positive integer m, there exist infinitely many weakly prime-additive num-
bers n with m | n and
n:p‘lxl +...+pg5,

where py, ..., ps are distinct prime divisors of n and a,, ..., a5 are positive integers.

Afterwards, Fang [3] proved that, for any positive integers m, ¢ with £ =1 (mod 4) and ¢ > 1,
there exist infinitely many weakly prime-additive numbers n with m | n and n = pf” +-+ plt,
where p;,..., p; are distinct prime divisors of n and a1, ..., @; are positive integers. In this paper,
by adding some tricky arguments, we solve the case ¢ = 3 (mod 4), where t > 3, that is:

Theorem 3. For any positive integers m, t with t =3 (mod 4) and t > 3, there exist infinitely many
weakly prime-additive numbers n with m | n and

a a
n=p'+--+p;’ 1)
where py, ..., pr are distinct prime divisors of n and a;, ..., a; are positive integers.

Let k, I be integers with k > 2 and ! > 3. Write

Sk = {n:nz Y prom 22},
pln
where w(n) is the number of distinct prime factors of n. In 2005, De Koninck and Luca [1]
obtained many nice results about Si. As a main result, they considered the nature of Sy and
identified all integers n in S3 with w(n) = 3. Let {P,} >0 denote the Pell sequence given by Py =0,
Py =1and Pp+1 =2Py + Py for m > 1. In 2022, Fang [4] proved that, a positive integer n can
be expressed as n = 22 + p? + g%, where p, q are distinct odd prime factors of 7, if and only if,
n=22+p? _+P2 . forsome positive integer m, where P21, Papms3 are both primes. One

2m+1 2m+3
may refer to [1] and [4] for details.

2. Proof of Theorem 3

The idea is from [5, Theorem 1.3] and [3, Theorem 1].

Proof. Write t =4k+3 and m =2%m;, where a > 0 and 21 m;. Then k > 1. Let ¢ denote the Euler
totient function. Similar to [3, Theorem 1], we consider the integers

n=2"+pt +pyt 4+ Pt + parea, 2)
where p; are primes fixed later,
4k+2 4k+2 pj—1
u=(a+2)p(m) [ (pi-1 and a;= [] fori=1,2,...,4k+1.

i=1 j=i+l
(The method of this proof and the construction are the same as [3, Theorem 1], but we use a tricky
idea during the choices of p1, p2, ..., pak+2, which is the key point during the proof.)
By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p; >
max{2%*2, m,, 5} such that

p1=1(@mod2%"?), p;=-1(mod m;).
By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p» > p; such that
p2=-1(mod2°*?), p,=1(modm;), p2=1(mod py).
By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p3 > p» such that

ps=-1(mod2°"%), ps=1(modm;), ps=-1(modp1), ps=1(mod py).
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By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p4 > p3 such that
ps =—1 (mod 2%%2), py = —1 (mod my), ps = 1 (mod p1), ps = —1 (mod p»), ps = 1 (mod p3).

For i > 5, we will choose p; successively according to the parity of i. For j > 3, we firstly choose
p2j-1, where 3 < j < 2k. By the Chinese remainder theorem and Dirichlet’s theorem there exists
aprime pzj-1 > p2j—2 such that

p2j-1=-1(mod2**?), p,j_1=-1(mod my),

p2j-1=-1(mod p1),  pz2j-1=1(mod p), p2j-1=1(mod p3), p2j-1=1(mod p4),

p2j-1=1(mod p2s-1), p2j-1=-1(mod p;) fors=3,4,...,j—1.
(If j = 3, then we omit the last procedure).

Now we choose pyj. For 3 < j < 2k, by the Chinese remainder theorem and Dirichlet’s
theorem there exists a prime p»; > p2;-1 such that

p2j=-1(mod2*%),  p,;=1(modm),
p2j =1 (mod py), p2j=-1(mod p2), p2j=-1(modps), p2j=-1(mod p,),
p2j =-1(mod p25-1), p2j=1(mod pss) fors=3,4,...,j-1, p2j =—1(mod pzj-1).

Furthermore, we add the restriction
p2=p3=1(mod3), ps =2 (mod3), p2j =1 (mod 5) for j =3,4,...,2k. (3)

(If 3| m;, then the congruences p; = p3 = 1 (mod 3) and p4 = 2 (mod 3) follow from the condition
p2 = p3 =1 (mod m;) and ps = -1 (mod my); if 5 | my, then the congruences p2; =1 (mod 5)
follow from the condition p2; =1 (mod m,) for j =3,4,...,2k; if (3, m;) =1 or (5, m;) = 1, then (3)
follows from Dirichlet’s theorem.)

By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime psx+1 > pPak
such that

Pak+1 = —1 (mod 2°*%),  pajs1 =1 (mod my),

Pak+1 =—1 (mod p1), Paks1 =1 (mod p2),  pak+1 =1 (mod p3),  pak+1 =1 (mod py),
Pak+1 =1 (mod pas—1),  Pags1 = -1 (mod pas) fors=3,4,...,2k.

Finally, we will choose p4r+2. By the Chinese remainder theorem and Dirichlet’s theorem there
exists a prime pyii2 > pak+1 such that

Pak+2 =4k —1 (mod 27%), Pak+2 = —2 (mod my),

Pak+2 = —1 (mod p1), Pak+2 = =3 (mod py), Pak+2 = =3 (mod p3),
Pak+2 = —3 (mod py), Pak+2 =1 (mod ps),

Pak+2 = —5 (mod pog), Pak+2 =1 (mod posi1) for s=3,4,...,2k.

(If k = 1, then we delete the middle stage and choose p5 and pg by the last process).
Obviously,

2942 my,5).

Pak+2 > Pak+1 >+ > p2 > p1 > max{
Noting that p; =1 (mod 4), psx+2 =4k—1=3 (mod 4) and p; =3 (mod 4) (i =2,...,4k + 1), we

could deduce from the law of quadratic reciprocity that
(ﬂ) = (ﬁ) for j=2,...,4k +2, (ﬁ) _ (ﬁ) for2 <i<j<4k+2. @)
pj p pj bi
It follows from the definition of a; and

3(pj=1) _
; =

(%) (mod pj), 1<i<j<4k+2
j
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that

@i _

P :(ﬁ) (mod pj), 1<i<j<4k+2.
Pj
Thus, for each positive integer n with the form (2), we could deduce from (4) and the fact a; is
odd that
N=0+1+(=1)+---+ (1) +(@4k—1) =0 (mod 29*?),
[ ——

4k times

n=1+-D+1+1+CD+CED+1+--+ (1D +1+1+(—2) =0 (mod m,),
n=1+0+1+(=D+1+(=1D+-+1+(=1)+(=1)=0 (mod p),

n=1+ Zl 0414+ (=D 4+ 1+ (D +1+(=3) =0 (mod py),
2

_ p1 p2 =

n= +( ( )+0+1+1+( D+--+1+(=1)+1+(-3) =0 (mod p3),
p3 P3

_1+(P1 (”2) (”3)+o+1+( D+ +1+(=1)+1+(=3) =0 (mod py).
Pa b4 b4

For j > 3, we firstly consider p; 1, where 3 < j <2k + 1, we have

nzl+(£)+---+ P2jz2 +0+(-D+1+-++(-1)+1+1=0(mod pzj-1).
p2j-1 p2j-1
Now we consider p», where 3 < j < 2k, we have
_1+( PL ) +(p2j_1)+0+(—1)+1+---+1+(—1)+(—5)zO(modpgj).
b2j b2j

Finally, we consider p4j.2, we could deduce from (3) and (4) that

nEl+(L)+(£)+'“+ ﬂ).ﬁ. M\J
Pak+2 Pak+2 Pak+2 Pak+2

—1+1—(%)—(%)—(’;’4)+( 1)+(5) (= 1)+(p;")+(—1)
=0 (mod pyg+2)-

To sum up,

_ ol a a: k-
n=2"+pit 4 py? 4o+ PR+ paiia

2
and 4mpipz...Pag+1 Pak+2 =2 mip1pa... Pags1 Pak+2 | .

This completes the proof of Theorem 3. g
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