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Abstract. If a positive integer n has at least two distinct prime divisors and can be written as n = pα1
1 +·· ·+pαt

t ,
where p1 < ·· · < pt are prime divisors of n and α1, . . . ,αt are positive integers, then we define such n as
weakly prime-additive. Obviously, t ⩾ 3. Following Erdős and Hegyvári’s work, Fang and Chen [J. Number
Theorey 182(2018), 258-270] obtained the following result: for any positive integer m, there exist infinitely
many weakly prime-additive numbers n with m | n and n = pα1

1 +·· ·+pα5
5 , where p1, . . . , p5 are distinct prime

divisors of n and α1, . . . ,α5 are positive integers. In this paper, we prove the existence of such n with general
length t , where t ≡ 3 (mod 4) and t > 3. The main result is summarized as follows: for any positive integers
m, t with t ≡ 3 (mod 4) and t > 3, there exist infinitely many weakly prime-additive numbers n with m | n and
n = pα1

1 +·· ·+pαt
t , where p1, . . . , pt are distinct prime divisors of n and α1, . . . ,αt are positive integers.
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1. Introduction

If a positive integer n has at least two distinct prime divisors and can be written as n = pα1
1 +

·· · + pαt
t , where p1 < ·· · < pt are prime divisors of n and α1, . . . ,αt are positive integers, then

we define such n as weakly prime-additive. Obviously, t ⩾ 3. In 1992, Erdős and Hegyvári [2]
firstly considered weakly prime-additive numbers and proved that, for any prime p, there exist
infinitely many weakly prime-additive numbers n such that p|n.

In 2018, Fang and Chen [5] made further research on weakly prime-additive numbers and
obtained the following result:

Theorem 1. For any positive integer m, there exist infinitely many weakly prime-additive num-
bers with t = 3 which are divisible by m if and only if 8 ∤m.

In [5], Fang and Chen also proved that:
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Theorem 2. For any positive integer m, there exist infinitely many weakly prime-additive num-
bers n with m | n and

n = pα1
1 +·· ·+pα5

5 ,

where p1, . . . , p5 are distinct prime divisors of n and α1, . . . ,α5 are positive integers.

Afterwards, Fang [3] proved that, for any positive integers m, t with t ≡ 1 (mod 4) and t > 1,
there exist infinitely many weakly prime-additive numbers n with m | n and n = pα1

1 + ·· ·+pαt
t ,

where p1, . . . , pt are distinct prime divisors of n and α1, . . . ,αt are positive integers. In this paper,
by adding some tricky arguments, we solve the case t ≡ 3 (mod 4), where t > 3, that is:

Theorem 3. For any positive integers m, t with t ≡ 3 (mod 4) and t > 3, there exist infinitely many
weakly prime-additive numbers n with m | n and

n = pα1
1 +·· ·+pαt

t , (1)

where p1, . . . , pt are distinct prime divisors of n and α1, . . . ,αt are positive integers.

Let k, l be integers with k ⩾ 2 and l ⩾ 3. Write

Sk =
{

n : n = ∑
p|n

pk ,ω(n)⩾ 2

}
,

where ω(n) is the number of distinct prime factors of n. In 2005, De Koninck and Luca [1]
obtained many nice results about Sk . As a main result, they considered the nature of Sk and
identified all integers n in S3 withω(n) = 3. Let {Pm}m⩾0 denote the Pell sequence given by P0 = 0,
P1 = 1 and Pm+1 = 2Pm +Pm−1 for m ⩾ 1. In 2022, Fang [4] proved that, a positive integer n can
be expressed as n = 22 + p2 + q2, where p, q are distinct odd prime factors of n, if and only if,
n = 22 +P 2

2m+1 +P 2
2m+3 for some positive integer m, where P2m+1, P2m+3 are both primes. One

may refer to [1] and [4] for details.

2. Proof of Theorem 3

The idea is from [5, Theorem 1.3] and [3, Theorem 1].

Proof. Write t = 4k+3 and m = 2am1, where a ⩾ 0 and 2 ∤m1. Then k ⩾ 1. Letφ denote the Euler
totient function. Similar to [3, Theorem 1], we consider the integers

n = 2u +pα1
1 +pα2

2 +·· ·+pα4k+1
4k+1 +p4k+2, (2)

where pi are primes fixed later,

u = (a +2)φ(m1)
4k+2∏
i=1

(pi −1) and αi =
4k+2∏
j=i+1

p j −1

2
for i = 1,2, . . . ,4k +1.

(The method of this proof and the construction are the same as [3, Theorem 1], but we use a tricky
idea during the choices of p1, p2, . . . , p4k+2, which is the key point during the proof.)

By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p1 >
max{2a+2,m1,5} such that

p1 ≡ 1 (mod 2a+2), p1 ≡−1 (mod m1).

By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p2 > p1 such that

p2 ≡−1 (mod 2a+2), p2 ≡ 1 (mod m1), p2 ≡ 1 (mod p1).

By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p3 > p2 such that

p3 ≡−1 (mod 2a+2), p3 ≡ 1 (mod m1), p3 ≡−1 (mod p1), p3 ≡ 1 (mod p2).
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By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p4 > p3 such that

p4 ≡−1 (mod 2a+2), p4 ≡−1 (mod m1), p4 ≡ 1 (mod p1), p4 ≡−1 (mod p2), p4 ≡ 1 (mod p3).

For i ⩾ 5, we will choose pi successively according to the parity of i . For j ⩾ 3, we firstly choose
p2 j−1, where 3 ⩽ j ⩽ 2k. By the Chinese remainder theorem and Dirichlet’s theorem there exists
a prime p2 j−1 > p2 j−2 such that

p2 j−1 ≡−1 (mod 2a+2), p2 j−1 ≡−1 (mod m1),

p2 j−1 ≡−1 (mod p1), p2 j−1 ≡ 1 (mod p2), p2 j−1 ≡ 1 (mod p3), p2 j−1 ≡ 1 (mod p4),

p2 j−1 ≡ 1 (mod p2s−1), p2 j−1 ≡−1 (mod p2s ) for s = 3,4, . . . , j −1.

(If j = 3, then we omit the last procedure).
Now we choose p2 j . For 3 ⩽ j ⩽ 2k, by the Chinese remainder theorem and Dirichlet’s

theorem there exists a prime p2 j > p2 j−1 such that

p2 j ≡−1 (mod 2a+2), p2 j ≡ 1 (mod m1),

p2 j ≡ 1 (mod p1), p2 j ≡−1 (mod p2), p2 j ≡−1 (mod p3), p2 j ≡−1 (mod p4),

p2 j ≡−1 (mod p2s−1), p2 j ≡ 1 (mod p2s ) for s = 3,4, . . . , j −1, p2 j ≡−1 (mod p2 j−1).

Furthermore, we add the restriction

p2 ≡ p3 ≡ 1 (mod 3), p4 ≡ 2 (mod 3), p2 j ≡ 1 (mod 5) for j = 3,4, . . . ,2k. (3)

(If 3 | m1, then the congruences p2 ≡ p3 ≡ 1 (mod 3) and p4 ≡ 2 (mod 3) follow from the condition
p2 ≡ p3 ≡ 1 (mod m1) and p4 ≡ −1 (mod m1); if 5 | m1, then the congruences p2 j ≡ 1 (mod 5)
follow from the condition p2 j ≡ 1 (mod m1) for j = 3,4, . . . ,2k; if (3,m1) = 1 or (5,m1) = 1, then (3)
follows from Dirichlet’s theorem.)

By the Chinese remainder theorem and Dirichlet’s theorem there exists a prime p4k+1 > p4k

such that

p4k+1 ≡−1 (mod 2a+2), p4k+1 ≡ 1 (mod m1),

p4k+1 ≡−1 (mod p1), p4k+1 ≡ 1 (mod p2), p4k+1 ≡ 1 (mod p3), p4k+1 ≡ 1 (mod p4),

p4k+1 ≡ 1 (mod p2s−1), p4k+1 ≡−1 (mod p2s ) for s = 3,4, . . . ,2k.

Finally, we will choose p4k+2. By the Chinese remainder theorem and Dirichlet’s theorem there
exists a prime p4k+2 > p4k+1 such that

p4k+2 ≡ 4k −1 (mod 2a+2), p4k+2 ≡−2 (mod m1),

p4k+2 ≡−1 (mod p1), p4k+2 ≡−3 (mod p2), p4k+2 ≡−3 (mod p3),

p4k+2 ≡−3 (mod p4), p4k+2 ≡ 1 (mod p5),

p4k+2 ≡−5 (mod p2s ), p4k+2 ≡ 1 (mod p2s+1) for s = 3,4, . . . ,2k.

(If k = 1, then we delete the middle stage and choose p5 and p6 by the last process).
Obviously,

p4k+2 > p4k+1 > ·· · > p2 > p1 > max{2a+2,m1,5}.

Noting that p1 ≡ 1 (mod 4), p4k+2 ≡ 4k −1 ≡ 3 (mod 4) and pi ≡ 3 (mod 4) (i = 2, . . . ,4k +1), we
could deduce from the law of quadratic reciprocity that(

p1

p j

)
=

(
p j

p1

)
for j = 2, . . . ,4k +2,

(
pi

p j

)
=−

(
p j

pi

)
for 2⩽ i < j ⩽ 4k +2. (4)

It follows from the definition of αi and

p
1
2 (p j −1)
i ≡

(
pi

p j

)
(mod p j ), 1⩽ i < j ⩽ 4k +2



278 Jin-Hui Fang and Fang-Gang Xue

that

pαi
i ≡

(
pi

p j

)
(mod p j ), 1⩽ i < j ⩽ 4k +2.

Thus, for each positive integer n with the form (2), we could deduce from (4) and the fact αi is
odd that

n ≡ 0+1+ (−1)+·· ·+ (−1)︸ ︷︷ ︸
4k times

+(4k −1) ≡ 0 (mod 2a+2),

n ≡ 1+ (−1)+1+1+ (−1)+ (−1)+1+·· ·+ (−1)+1+1+ (−2) ≡ 0 (mod m1),

n ≡ 1+0+1+ (−1)+1+ (−1)+·· ·+1+ (−1)+ (−1) ≡ 0 (mod p1),

n ≡ 1+
(

p1

p2

)
+0+1+ (−1)+·· ·+1+ (−1)+1+ (−3) ≡ 0 (mod p2),

n ≡ 1+
(

p1

p3

)
+

(
p2

p3

)
+0+1+1+ (−1)+·· ·+1+ (−1)+1+ (−3) ≡ 0 (mod p3),

n ≡ 1+
(

p1

p4

)
+

(
p2

p4

)
+

(
p3

p4

)
+0+1+ (−1)+·· ·+1+ (−1)+1+ (−3) ≡ 0 (mod p4).

For j ⩾ 3, we firstly consider p2 j−1, where 3⩽ j ⩽ 2k +1, we have

n ≡ 1+
(

p1

p2 j−1

)
+·· ·+

(
p2 j−2

p2 j−1

)
+0+ (−1)+1+·· ·+ (−1)+1+1 ≡ 0 (mod p2 j−1).

Now we consider p2 j , where 3⩽ j ⩽ 2k, we have

n ≡ 1+
(

p1

p2 j

)
+·· ·+

(
p2 j−1

p2 j

)
+0+ (−1)+1+·· ·+1+ (−1)+ (−5) ≡ 0 (mod p2 j ).

Finally, we consider p4k+2, we could deduce from (3) and (4) that

n ≡ 1+
(

p1

p4k+2

)
+

(
p2

p4k+2

)
+·· ·+

(
p4k

p4k+2

)
+

(
p4k+1

p4k+2

)
≡ 1+1−

( p2

3

)
−

( p3

3

)
−

( p4

3

)
+ (−1)+

( p6

5

)
+·· ·+ (−1)+

( p4k

5

)
+ (−1)

≡ 0 (mod p4k+2).

To sum up,

n = 2u +pα1
1 +pα2

2 +·· ·+pα4k+1
4k+1 +p4k+2

and 4mp1p2 . . . p4k+1p4k+2 = 2a+2m1p1p2 . . . p4k+1p4k+2 | n.

This completes the proof of Theorem 3. □
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