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Abstract. We show that the lower-semicontinuous envelope of a non-convex double integral may not admit
a representation as a double integral. By taking an integrand with value +∞ except at three points (say −1, 0
and 1) we give a simple proof and an explicit formula for the relaxation that hopefully may shed some light
on this type of problems. This is a simplified version of examples by Mora-Corral and Tellini, and Kreisbeck
and Zappale, who characterize the lower-semicontinuous envelope via Young measures.

Résumé. Nous montrons que l’enveloppe semi-continue inférieure d’une intégrale double non convexe peut
ne pas admettre de représentation sous forme d’intégrale double. En prenant un intégrande avec une valeur
infinie sauf en trois points (disons -1, 0 et 1), nous donnons une preuve simple et une formule explicite pour la
relaxation qui, espérons-le, pourra éclairer ce type de problèmes. Ceci est une version simplifiée des exemples
de Mora-Corral et Tellini, et de Kreisbeck et Zappale, qui caractérisent l’enveloppe semi-continue inférieure
via les mesures de Young.

Manuscript received 11 May 2023, accepted 30 August 2023.

Double-integral functionals defined in Lp spaces of the form

F (u) :=
∫
Ω×Ω

f (u(x)−u(y))d xd y (1)

can be treated using the direct methods of the Calculus of Variations. To that end, necessary
and sufficient conditions for the lower semicontinuity of F with respect to weak Lp topologies
turn out to be the convexity and lower semicontinuity of f , exactly as in the case of single-
integral functionals (see e.g. [1, 5]). In the case of non-convex f the parallel is lost. Indeed,
in [4] it is shown that the lower-semicontinuous envelope of F cannot be represented as a double
integral of the same form when the function f is a simple double-well potential. The proof in [4]
relies on the representation of the relaxed functional in terms of Young measures and on the
study of the optimality conditions satisfied by such measure-valued minimizers. We now give
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a simple explanation of the non-representability of the relaxed functional when f is a double-
well potential (or rather a “triple-well” potential with wells in −1, 0 and 1) with “infinite depth”;
namely,

f (z) =


0 if z ∈ {−1,1}

1 if z = 0

+∞ otherwise.

(2)

For simplicity we chose Ω = (0,1). We remark that we can extend this example to everywhere
finite integrands f by approximation.

We note that other examples are shown in [3] when the integrand is of the form f (u(x),u(y)).
In that case the functionals are not invariant by translations, so the parallel with local functionals
would be with integrands depending on (u(x),∇u(x)), for which lower-semicontinuity conditions
are more complex [2].

We now turn to the analysis of the counterexample.

1. Characterization of the lower-semicontinuous envelope

Note preliminarily that a lower bound for the lower-semicontinuous envelope F of F with respect
to the weak L1-convergence is

F0(u) :=
∫
Ω×Ω

f ∗∗(u(x)−u(y))d xd y, (3)

where the lower-semicontinuous convex envelope of f is

f ∗∗(z) =
{

0 if z ∈ [−1,1]

+∞ otherwise;
(4)

that is,

F0(u) =
{

0 if ess-supu −ess-infu ≤ 1

+∞ otherwise.
(5)

This lower bound implies that F is finite at most on functions u ∈ L∞(0,1) such that

ess-supu −ess-infu ≤ 1. (6)

Let u ∈ L∞(0,1) satisfy (6), and let u j be a sequence weakly converging to u and such that
F (u j ) < +∞ for all j . Note that for fixed j the function u j can take at most two values almost
everywhere and these values are at distance 1. Indeed by Fubini’s theorem for almost all y ∈ (0,1)
we have u j (x) ∈ {u j (y),u j (y)−1,u j (y)+1} for almost every x ∈ (0,1). Hence, there exists z j such
that u j (x) ∈ {z j , z j −1, z j +1} for almost every x ∈ (0,1). If both values z j −1 and z j +1 were taken
on sets of positive measure, then we would have F (u j ) =+∞, and a contradiction. Hence, we can
suppose that there exist z j such that u j (x) ∈ {z j , z j +1} almost everywhere. We can assume, up to
subsequences, that z j → z, so that

z ≤ ess-infu and ess-supu ≤ z +1, (7)

and that, if we let A j := {x : u j (x) = z +1}, there exists t ∈ [0,1] such that lim
j →+∞

|A j | = t . Hence, we

obtain

lim
j →+∞

F (u j ) = lim
j →+∞

(
|A j |2 +

(
1−|A j |

)2
)
= t 2 + (t −1)2 = 2t 2 −2t +1. (8)

Note that the minimum of t 2 + (1− t )2 is 1
2 so that (8) implies that F (u) ≥ 1

2 for all u.
Since by the convergence of

∫
(0,1) u j d x to

∫
(0,1) u d x we have

t =
∫

(0,1)
u d x − z, (9)
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the limit of F (u j ) can be described in terms of
∫

(0,1) u d x and z only, and is independent of the
particular sequence u j .

Note conversely that if u and z are such that (7) holds, then there exist u j with u j ∈ {z, z +1}
and weakly converging to u, so that the value 2t 2+2t+1 is achieved on this sequence with t given
by (9). By optimizing in z we then have a description of F (u) as

F (u) = min

{(∫
(0,1)

u d x − z

)2

+
(∫

(0,1)
u d x − z −1

)2

: z ≤ ess-infu, ess-supu ≤ z +1

}
= min

{
2

(∫
(0,1)

u d x

)2

−2(2z +1)

(∫
(0,1)

u d x

)
+2z2 +2z +1

: z ≤ ess-infu, ess-supu ≤ z +1
}

.

(10)

We can make this formula more symmetric by the change of variables w = z + 1
2 , so that

F (u) = min

{
2

(∫
(0,1)

u d x

)2

−4w

(∫
(0,1)

u d x

)
+2w2 + 1

2

: ess-supu − 1

2
≤ w ≤ ess-infu + 1

2

}
. (11)

Furthermore, noting that the functionals are invariant if we add a constant to u, replacing u by
u −∫

(0,1) u d x = 0 we also have

F (u) = min

{
2w2 + 1

2
: ess-supu −

∫
(0,1)

u d x − 1

2
≤ w ≤ ess-infu −

∫
(0,1)

u d x + 1

2

}
. (12)

2. Non representability of the lower-semicontinuous envelope

We now prove that there exists no g such that

F (u) =
∫
Ω×Ω

g (u(x)−u(y))d xd y. (13)

Note that g can be assumed to be even, up to replacing g (z) with 1
2 (g (z)+ g (−z)).

We first describe F (u) more precisely in some “extreme” cases. In the first one the minimiza-
tion does not involve constraint (7), so that F (u) = 1

2 . To get this, we note that if

ess-supu −ess-infu ≤ 1

2
(14)

then we can take z = ∫
(0,1) u d x − 1

2 , and by (14) we have

ess-supu ≤ ess-infu + 1

2
≤ z +1 and z ≤ ess-supu − 1

2
≤ ess-infu,

and F (u) = 1
2 by formula (10). As a particular case of a function satisfying (14) we can take u a

constant. In this case (13) would give

g (0) = 1

2
. (15)

The other “extreme” case is when only one z is involved in the minimization in (10); which is
the case when ess-supu − ess-infu = 1, so that z = ess-infu and z +1 = ess-supu. The value of
F (u) is then simply

F (u) =
(∫

(0,1)
u d x −ess-infu

)2

+
(∫

(0,1)
u d x −ess-supu

)2

.
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This can be applied, for fixed t ∈ (0,1), with u given by

u(x) =
{

1 if x ≤ t

0 if x > t ,

for which F (u) = 2t 2 −2t +1. If (13) held true then by (15) we would also have

F (u) = (
2t 2 −2t +1

)
g (0)+2t (1− t )g (1) = 1

2

(
2t 2 −2t +1

)+2t (1− t )g (1),

which would give

g (1) = 2t 2 −2t +1

4t (1− t )
= 1

4

(
t

1− t
+ 1− t

t

)
.

Taking different values for t ∈ (0,1) we get different values for g (1), which is a contradiction.

3. Conclusions and remarks

Formula (10) shows that F (u) is obtained by functions u j weakly converging to u and oscillating
between two values z and z + 1 maximizing the measure of the subset of points (x, y) ∈ Ω×Ω
such that u j (x) = z and u j (y) = z + 1. This operation depends only on z, which satisfies some
constraints due to the convergence of u j to u; minimizing the outcome in z gives the optimal
choice of u j . Minimization in z is unconstrained if ess-supu −ess-infu ≤ 1

2 , while it is limited to
a single z when ess-supu − ess-infu = 1. The dependence on the quantity ess-supu − ess-infu
highlights the nonlocality of the recovery sequences. An example of this fact is obtained by
considering constants u = c, for which we have minimizing sequences oscillating between c − 1

2
and c + 1

2 , while this is not true for piecewise-constant functions: if u takes only two values at
distance 1 then a recovery sequence is u itself, without oscillations.

We remark that from this example we also obtain examples with finite integrand. Indeed, if fn

is a sequence of functions increasingly converging to f given by (2) and

Fn(u) :=
∫
Ω×Ω

fn(u(x)−u(y))d xd y, (16)

then the lower-semicontinuous envelopes F n converge to F . If there existed (convex) functions
gn such that

F n(u) :=
∫
Ω×Ω

gn(u(x)−u(y))d xd y, (17)

then this would hold also for F .
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