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Abstract. We extend a theorem of Ladkani concerning derived equivalences between upper-triangular matrix
rings to ring spectra. Our result also extends an analogous theorem of Maycock for differential graded
algebras. We illustrate the main result with certain canonical equivalences determined by a smooth or proper
ring spectrum.

Résumé. Nous étendons un théorème de Ladkani concernant les équivalences dérivées entre les anneaux
à matrice triangulaire supérieure aux spectres en anneaux. Notre résultat étend également un théorème
analogue de Maycock pour les algèbres différentielles graduées. Nous illustrons le résultat principal par
certaines équivalences canoniques déterminés par un spectre en anneaux lisse ou propre.
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The purpose of this short article is to extend the following theorem of Ladkani [12] from
ordinary rings to ring spectra in the sense of stable homotopy theory; we note that this theorem
was extended to differential graded algebras by Maycock [16]. Recall that to rings R and S and an
S-R-bimodule M one associates the upper-triangular matrix ring(

S M
0 R

)= {( s m
0 r

)∣∣r ∈ R, s ∈ S, m ∈ M
}

with sum and product operations given the corresponding matrix operations. We denote the
(triangulated) derived category of right modules over a ring R by D(Mod(R)) and recall than an
object X ∈ D(Mod(R)) is compact if the functor

HomR (X ,−) : D(Mod(R)) −→ Ab

preserves small coproducts.
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Theorem 1 (Ladkani). Let R and S be rings. Suppose given an S-R bimodule M such that MR is
compact as an object of D(Mod(R)) and an R-module T such that the functor

−
L⊗
E

T : D(Mod(E))
∼−→ D(Mod(R))

is an equivalence of triangulated categories, where E = HomR (T,T ) is the ring of endomorphisms
of T . Suppose, moreover, that Ext>0

R (M ,T ) = 0. Then, there is an equivalence of triangulated
categories

D
(
Mod

(
S M
0 R

))≃ D
(
Mod

(E HomR (M ,T )
0 S

))
.

As Ladkani explains in loc. cit., interesting equivalences of derived categories are obtained
from appropriate choices of R, S, M and T . The main focus of this article is to illustrate how
formal properties of a higher-categorical upper-triangular gluing construction yield a simple and
conceptual proof of (a vast generalisation of) the above theorem.

We use freely the theory of ∞-categories developed by Joyal, Lurie and others; our main
references are [13–15]. Here we only recall that an ∞-category C is stable if it is pointed, admits
finite colimits and the suspension functor Σ : C −→ C , X 7−→ 0 ⨿X 0, is an equivalence [14,
Corollary 1.4.2.27]. The homotopy category of a stable ∞-category is additive (in the usual sense)
and is canonically triangulated in the sense of Verdier [14, Theorem 1.1.2.14]. Working with ∞-
categories rather than with triangulated categories permits us to construct the (homotopy) limit
of a diagram of exact functors between stable ∞-categories, a construction that is not available in
the realm of triangulated categories. We also mention that the gluing construction that we utilise
below is used by Ladkani in [12] to glue (abelian) module categories; notwithstanding, our proof
of the main theorem is different in the case of ordinary rings and of differential graded algebras
in that it does not rely on explicit computations.

Let k be an E∞-ring spectrum, for example the sphere spectrum S or the Eilenberg–Mac Lane
spectrum of an ordinary commutative ring [14, Theorem 7.1.2.13]. The presentable stable ∞-
category D(k) of k-module spectra is a (closed) symmetric monoidal ∞-category [14, Proposi-
tion 7.1.2.7]. Below we work within the symmetric monoidal ∞-category PrStL

k of k-linear pre-
sentable stable ∞-categories and k-linear colimit-preserving functors between them [15, Vari-
ants D.1.5.1 and D.2.3.3]. Thus, an object of PrStL

k is a presentable (stable) ∞-category equipped
with an action of D(k). The ∞-category PrStL

k admits small limits and these are preserved by
the forgetful functor PrStL

k → PrL to the ∞-category of presentable ∞-categories and colimit-
preserving functors between them, see [15, Remark D.1.6.4] and [14, Corollary 4.2.3.3]. Limits of
presentable stable ∞-categories along colimit-preserving functors can be computed using [13,
Proposition 5.5.3.13 and Corollary 3.3.3.2] since the limit of a diagram of stable ∞-categories and
exact functors is itself stable [14, Theorem 1.1.4.4], see also [14, Propositions 1.1.4.1 and 4.8.2.18].

Let C and D be k-linear presentable stable ∞-categories and F : C → D a k-linear colimit-
preserving functor. Define L∗(F ) via the pullback square

L∗(F ) Fun
(
∆1,D

)
C D

⌟
0∗

F

in the ∞-category PrStL
k; an object of the ∞-category L∗(F ) is a pair (c, f : F (c) → d) where c ∈C

and f : F (c) → d is a morphism in D. The above pullback is well defined since the ∞-category
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Fun
(
∆1,D

)
is presentable [13, Proposition 5.5.3.6] and stable [14, 1.1.3.1] and inherits a k-linear

structure from D via the equivalence of ∞-categories

Fun
(
∆1,D

)≃ Fun
(
(∆1)op,Dop)op

≃ LFun
(
Fun

(
∆1,S

)
,Dop)op

≃ RFun
(
Dop,Fun

(
∆1,S

))≃D⊗Fun
(
∆1,S

)
.

Above, S denotes the ∞-category of spaces, LFun(−,−) (resp. RFun(−,−)) denotes the ∞-
category of functors that admit a right adjoint (resp. a left adjoint), and the symbol ⊗ denotes
Lurie’s tensor product of presentable ∞-categories [14, Propositions 4.8.1.15 and 4.8.1.17] (see
also [13, Theorem 5.1.5.6 and Proposition 5.2.6.2]). Similarly, the restriction functor

0∗ : Fun
(
∆1,D

)−→ Fun
(
∆0,D

)≃D

has a canonical k-linear structure. When the right adjoint G : D → C of F , which exists by [13,
Corollary 5.5.2.9], is also colimit-preserving we may also form the pullback square

L ∗(G) Fun
(
∆1,C

)
D C

⌟
1∗

G

in the ∞-category PrStL
k [15, Remark D.1.5.3]. There is a canonical equivalence of k-linear

presentable stable ∞-categories

L∗(F )
∼−→L ∗(G) , (c, f : F (c) → d) 7−→ (d , f : c →G(d)), (1)

stemming from the fact that both ∞-categories L∗(F ) and L ∗(G) are equivalent to the ∞-
category of sections of the biCartesian fibration over ∆1 classified by the adjunction F ⊣ G ,
see [13, Lemma 5.4.7.15]. We also remind the reader of the equivalence of k-linear presentable
stable ∞-categories [5, Lemma 1.3]

L ∗(F )
∼−→L∗(F ) , (d , f : c → F (d)) 7−→ (d ,F (d) → cofib( f )), (2)

induced by the passage from a morphism to its cofibre, that we regard as a very general version
of the Bernšteı̆n–Gel′fand–Ponomarev reflection functors [1]. The gluing operation F 7→L∗(F ) is
an example of a lax limit [6] and is also considered in the setting of differential graded categories,
see for example [11].

For a given k-algebra spectrum R, that is an E1-algebra object of the symmetric monoidal ∞-
category D(k), we denote the k-linear stable ∞-category of (right) R-module spectra by D(R), see
also [14, Remark. 7.1.3.7]. The underlying stable ∞-category of D(R) is compactly generated by
the regular representation of R [15, Corollary D.7.6.3]. We identify the k-linear stable ∞-category
of left R-module spectra with D

(
Rop

)
, where Rop denotes the opposite k-algebra spectrum

of R [14, Remark 4.1.1.7]. If M and N are R-module spectra, we denote by Map
R

(M , N ) the k-
module spectrum of morphisms M → N [15, Example D.7.1.2].

Let R and S be k-algebra spectra. We identify the∞-category of S-R-bimodule spectra with the
∞-category D

(
Sop ⊗k R

)
[14, Proposition 4.6.3.15]. The k-linear variant of the Eilenberg–Watts

Theorem [14, Proposition 7.1.2.4 and p. 738] yields an equivalence of k-linear presentable stable
∞-categories

D
(
Sop ⊗k R

) ∼−→ LFunk (D(S) ,D(R)) , M 7−→−⊗S M ,

where LFunk (D(S) ,D(R)) is the ∞-category of k-linear colimit-preserving functors D(S) →D(R).
Given a bimodule spectrum M ∈D

(
Sop ⊗k R

)
, we denote the right adjoint to the tensor product

functor −⊗S M by Map
R

(M ,−). We also introduce the k-linear presentable stable ∞-category

D
(

S M
0 R

)=L∗(−⊗S M) .
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The notation D
(

S M
0 R

)
is justified by the Recognition Theorem of Schwede and Shipley [15,

Corollary D.7.6.3] (see also [14, Theorem 7.1.2.1]). Indeed, a standard argument using the
recollement

D(R) L∗(−⊗S M) D(S)i p

iL

iR

pL

pR

described in [5, Remark 1.4] shows that the object X = i (R)⊕pL(S) is a compact generator of the
stable ∞-category L∗(−⊗S M) whose k-algebra spectrum of endomorphisms decomposes as the
direct sum of k-module spectra

S ≃ Map
(
pL(S), pL(S)

)
Map

(
i (R), pL(S)

)≃ M

0 ≃ Map
(
pL(S), i (R)

)
Map(i (R), i (R)) ≃ R,

since iR pL(S) ≃ S ⊗S M . Upper-triangular ring spectra are considered for example in [18].
We are ready to state and prove the main result in this article.

Theorem 2. Let R, S and E be k-algebra spectra. Suppose given a bimodule spectrum
M ∈D

(
Sop ⊗k R

)
such that the R-module spectrum MR = S ⊗S M is compact and a bimodule spec-

trum T ∈D
(
E op ⊗k R

)
such that the functor

−⊗E T : D(E)
∼−→D(R)

is an equivalence. Then, there is an equivalence of k-linear presentable stable ∞-categories

D
(

S M
0 R

)≃D
(

E N
0 S

)
,

where N = Map
R

(M ,T ).

Proof. The commutative square

D(E) D(S)

D(R) D(S)

Map
R

(M ,−⊗E T )

−⊗E T
Map

R
(M ,−)

in which the left vertical functor is an equivalence by assumption, induces an equivalence of k-
linear presentable stable ∞-categories

L∗
(
Map

R
(M ,−)

)
≃L∗

(
Map

R
(M ,−⊗E T )

)
. (3)

Since D(S) is generated under filtered colimits by the compact S-modules [14, Definition 7.2.4.1
and Proposition 7.2.4.2], the assumption that the R-module spectrum MR = S⊗S M is compact is
equivalent to the requirement that the (exact) functor

Map
R

(M ,−) : D(R) −→D(S)

preserves small colimits [14, Propositions 1.1.4.1 and 1.4.4.1]. Hence, in view of the Eilenberg–
Watts Theorem, the k-linear colimit-preserving functors

Map
R

(M ,−⊗E T ) : D(E) −→D(S) and −⊗E Map
R

(M ,T ) : D(E) −→D(S)

are equivalent. Consequently, there is an equivalence of k-linear presentable stable ∞-categories

L∗
(
Map

R
(M ,−⊗E T )

)
≃L∗

(
−⊗E Map

R
(M ,T )

)
. (4)
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We conclude the proof by considering the following composite of equivalences of k-linear pre-
sentable stable ∞-categories (recall that N = Map

R
(M ,T )):

D
(

S M
0 R

)=L∗(−⊗S M)
(1)≃L ∗

(
Map

R
(M ,−)

)
(2)≃L∗

(
Map

R
(M ,−)

)
(3)≃L∗

(
Map

R
(M ,−⊗E T )

)
(4)≃L∗

(
−⊗E Map

R
(M ,T )

)
=D

(
E N
0 S

)
. □

Remark 3. When k is the Eilenberg–Mac Lane spectrum of the ordinary ring of integer numbers,
Ladkani’s theorem is recovered from the previous theorem by considering the case where the
underlying spectra of R, S, M and T are discrete, that is their stable homotopy groups vanish
in non-zero degrees. The assumptions in Ladkani’s theorem are sufficient to guarantee that
the upper-triangular ring spectra in the statement in the previous theorem are both discrete.
Ladkani’s theorem then follows from the fact that the ∞-category of module spectra over a
discrete ring spectrum A is equivalent to the derived ∞-category of modules over the ordinary
ring π0(A), see [14, Remark 7.1.1.16]. Maycock’s extension of Ladkani’s theorem to differential
graded algebras corresponds to the case where k is the Eilenberg–Mac Lane spectrum of an
ordinary commutative ring, see [14, Proposition 7.1.4.6].

Example 4. Let R = S = E be arbitrary k-algebra spectra and M = T = R with its canonical R-
bimodule structure. The functors −⊗R R and −⊗R Map

R
(R,R) are both equivalent to the identity

functor of D(R) and the equivalence in the main theorem reduces to the (non-trivial) equivalence
of k-linear presentable stable ∞-categories

D
(

R R
0 R

)≃ Fun
(
∆1,D(R)

) ∼−→ Fun
(
∆1,D(R)

)≃D
(

R R
0 R

)
given by the passage from a morphism in D(R) to its cofibre.

We conclude this article by describing certain canonical equivalences attached to an al-
gebra spectrum (or, more generally, a morphism between such) that satisfies suitable finite-
ness/dualisability conditions. The bimodule spectra that arise play a central role in the study of
right/left Calabi–Yau structures [7,10] and their relative variants [3,19], see [2,4,8,9,20–22]. Given
a k-algebra spectrum A, we write Ae = A ⊗k Aop and recall that A can be viewed either as a right
or as a left Ae -module spectrum [14, Construction 4.6.3.7 and Remark 4.6.3.8]. We also make im-
plicit use of the canonical equivalences between the k-linear ∞-category of A-bimodule spectra
and those of Ae -k-bimodule spectra and of k-Ae -bimodule spectra, see [14, Proposition 4.6.3.15]
and the discussing succeeding it.

(i) Let A be a proper k-algebra spectrum, that is the underlying k-module spectrum of A is
compact; equivalently, A is a right dualisable object of the ∞-category of Ae -k-bimodule
spectra, see [14, Definition 4.6.4.2] and [15, Example D.7.4.2 and Remark D.7.4.3]. We
write

D A = Map
k

(A,k)

for the k-linear dual of A. Setting R = E = k, S = Ae , M = A and T = k, the main theorem
affords an equivalence of k-linear presentable stable ∞-categories

D
(

Ae A
0 k

) ∼−→D
(

k D A
0 Ae

)
between the derived ∞-category of the “one-point extension” of Ae by the diagonal A-
bimodule spectrum and that of the “one-point coextension” of Ae by D A (this terminol-
ogy originates in representation theory of algebras [17]).
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(ii) Let A be a smooth k-algebra spectrum, that is A ∈ D(Ae ) is a compact object [15,
Definition 11.3.2.1]; equivalently, A is a left dualisable object of the ∞-category of Ae -k-
bimodule spectra, see [14, Definition 4.6.4.13] and [15, Remark 11.3.2.2]. The A-bimodule
spectrum

ΩA = Map
Ae

(
A, Ae)

is called the inverse dualising A-bimodule (not to be confused with the based-loops
functor on D(A)). Setting R = E = Ae , S = k, M = A and T = Ae , the main theorem yields
an equivalence of k-linear presentable stable ∞-categories

D
(

k A
0 Ae

) ∼−→D
(

Ae ΩA
0 k

)
.

(iii) Let A be a smooth and proper k-algebra spectrum. In this case there are mutually-inverse
equivalences of k-linear presentable stable ∞-categories

−⊗AΩA : D(A)
∼←→D(A) :−⊗AD A,

see [14, Proposition 4.6.4.20] where D A is called the Serre A-bimodule [14, Defini-
tion 4.6.4.5] andΩA is called the dual Serre A-bimodule [14, Definition 4.6.4.16] (the fact
that D A and ΩA are the right and left duals of A in the ∞-category of Ae -k-bimodule
spectra in the sense of [14, Definition 4.6.2.3] follows from [14, Proposition 4.6.2.1 and
Remark 4.6.2.2]). Setting R = E = S = A, M = A and T = D A or T =ΩA , the main theorem
provides equivalences of k-linear presentable stable ∞-categories

D
(

A A
0 A

) ∼−→D
(

A D A
0 A

)
and D

(
A A
0 A

) ∼−→D
( A ΩA

0 A

)
,

where we use that Map
A

(A,D A) ≃ D A and Map
A

(A,ΩA) ≃ΩA as A-bimodule spectra.
(iv) Let f : B → A be a morphism of k-algebra spectra that is not necessarily unital. By the

Eilenberg–Watts Theorem, the counit of the induced adjunction

−⊗B A ≃ f! : D(B) ←→D(A) :f ∗

can be interpreted as a morphism of A-bimodule spectra

ε : A⊗B A −→ A.

Suppose that A is smooth and that f ∗(A) is compact as a B-module spectrum, so that the
source and target of the morphism ε are compact A-bimodule spectra and, consequently,
so is its cofibre. The A-bimodule spectrum

ΩA,B = Map
Ae

(
cofib(ε), Ae)

is called the relative inverse dualising A-bimodule [22]. Setting R = E = Ae , S = k,
M = cofib(ε) and T = Ae , the main theorem yields an equivalence of k-linear presentable
stable ∞-categories

D
(

k cofib(ε)
0 Ae

) ∼−→D
(

Ae ΩA,B
0 k

)
that specialises to the equivalence in (ii) when B = 0.
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