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Abstract. The variety of minimal rational tangents associated to Hecke curves was used by J.-M. Hwang (8]
to prove the simplicity of the tangent bundle on the moduli of vector bundles over a curve. In this paper,
we use the tangent maps of the symplectic and orthogonal Hecke curves to prove an analogous result for
symplectic and orthogonal bundles. In particular, we show the nondegeneracy of the associated variety
of minimal rational tangents, which implies the simplicity of the tangent bundle on the moduli spaces of
symplectic and orthogonal bundles over a curve. We also show that for large enough genus, the tangent map
is an embedding for a general symplectic or orthogonal bundle.

Résumé. La variété des tangentes des courbes minimales rationnelles associés aux courbes de Hecke, a été
utilisée par J.-M. Hwang [8] pour prouver la simplicité du fibré tangent a 1'espace de modules des fibrés
vectoriels sur une courbe. Nous utilisons les applications tangentes des courbes de Hecke symplectiques
et orthogonales pour démontrer un résultat analogue pour les fibrés symplectiques et orthogonaux. En
particulier, nous prouvons que la variété des tangentes aux courbes rationnelles minimales associée est non
dégénérée ; ce qui implique la simplicité des fibrés tangents aux espaces de modules des fibrés symplectiques
et orthogonaux sur une courbe. Nous montrons d’ailleurs, pour genre suffisamment grand, que I'application
tangente est un plongement pour un fibré symplectique ou orthogonal générique.
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1. Introduction

Let C be a smooth projective curve of genus g = 2 over the complex numbers. Let .4 :=
LU c(n,d) be the moduli space of semistable vector bundles over C of rank n with fixed
determinant of degree d. Note that ./ is a Fano variety of Picard number 1 and moreover smooth
if n and d are coprime.

It was shown in [8, Corollary 1] that for g = 4, the tangent bundle of the smooth part 4° c .«
is simple. The strategy was to exploit certain minimal rational curves called Hecke curves and
the associated variety of minimal rational tangents. More precisely, it is shown that the variety of
minimal rational tangents 6y at a generic point W € .4 is non-degenerate in P(Ty .4 ) and this
implies the simplicity of the tangent bundle (cf. Proposition 6 below).

The goal of this paper is to prove the analogous result for the moduli spaces .# Sc¢(n,L)
of symplectic bundles and .# O¢(n, L) of orthogonal bundles. The symplectic and orthogonal
versions of Hecke curves were constructed in [3]. In the same paper, these curves were shown to
be the minimal rational curves in the ambient varieties. Based on this, we establish the following
results in this paper:

¢ The smoothness of the symplectic and orthogonal Hecke curves (§ 3),

* The nondegeneracy of the tangent map on the variety of minimal rational tangents of
these Hecke curves (§ 4),

¢ The very-ampleness of the associated complete linear system (§ 5).

In particular, as a corollary of the nondegeneracy in § 4, we show that the tangent bundles of
M Sc(n, L) and 4 Oc(n, L) are simple, under a certain genus bound (Theorem 13).

We would like to add a word of warning for the arguments that will follow. Inside the moduli
space .#% c(n,d) of vector bundles, the locus of symplectic/orthogonal bundles form a closed
subvariety, and a symplectic/orthogonal Hecke curve can be thought of as either a special kind
of Hecke curve on #% ¢(n,d) or its variation. So one might expect that the results for Hecke
curves in [8, 9] or [13] directly imply the same results for the symplectic or orthogonal setting.
But in most discussions of a Hecke curve on .#% ¢ (n,d), one assumes that it passes through a
generic point, such as a (1,1)-stable bundle [12, Definition 5.1]. And it is unclear if a generic
point of # Sc(n,L) and/or 4 Oc(n,L) is (1,1)-stable as a vector bundle. By simple dimension
comparison, it is still possible that the subvarieties .4 Sc(n,L) and/or .4 O¢(n,L) are entirely
contained in the non-(1,1)-stable locus. For this reason, we cannot tell from the outset if the
symplectic and orthogonal Hecke curves share the same properties as the Hecke curves passing
through (1,1)-stable locus. This is why we later devise arguments based on §-stability (cf. [3,
§4.1)) on 4 Sc(n,L) and 4 O¢(n,L).

2. Preliminary results
In this section, we gather the notations and preliminary results relevant to our discussion. Let C
be a smooth projective curve of genus g = 2.
Notation 1. Given a subspace A c V* of a dual vector space, A+ c V denotes the kernel:

At={veV:Av)=0 forallAeA}.
Also for a subspace U c V, Ut < V* denotes the annihilator:

Ut={peV*:¢pw=0 forallueU}.
When V is equipped with a bilinear form w: V ® V — C, we define
ker(@):={vo eV : w(vg,v) =0 forallveV}
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2.1. Hecke modification

Let W be a vector bundle over C. Choose a subspace A ¢ W, for some x € C. The Hecke
modification W™ of W along A is given by the kernel of the composition map W — W, — W,/A*.
There is an exact sequence of sheaves:

0— WAL w— (Wy/At)®6, —0

whose restriction to the fiber at x is given by
0 — Ker (¢y: WS — W) — WS — Wy — Wy /At — 0.

Then the locally free sheaf wh corresponds to a vector bundle with det( W = det(W)®Gc(—kx),
where k is the dimension of A in W

2.2. Hecke curves on #% c(n,d)

The main reference for this subsection is [8].
Let W be a vector bundle over C. For a subspace 6 ¢ W;* of dimension one, let W9 denote the
Hecke modification of W along 8. Then we have

0— W’ —W— (W,/6+) 26, — 0.

For a subspace ¢ c Wf? of dimension one, the Hecke modification Vlof V= (We)* along ¢
fits into the exact sequence

0V Lv—(vet)eo, —o0. 1)
In particular for ¢, := Ker(Wf — Wy), we have (Viy* ~w.
For any two-dimensional subspace U with ¢y c U < Wf , the subspace U~ has codimension
two in Vy, and is contained in Z(J)-. Hence the family

(V) wrepan}

parameterized by P(U) = P(V,/UL) = P!, is a deformation of W. If we choose a generic W €
FLU c(n,d), then this family gives a smooth rational curve through W called a Hecke curve. It
was shown in [13] that the Hecke curves have minimal degree among the rational curves passing
through a generic W € % ¢ (n,d).

Note that the parameter space of Hecke curves passing through W € #% ¢(n, d) is given by a
double fibration

P(1;)—-P(W*) 5 C,

where T is the vertical tangent bundle of 7n: P(W*) — C. In the previous notation, this corre-

sponds to the composition map
(UreocWiieo)—~ (0 wy)—x.

In particular for n = 2, this double fibration boils down to the ruled surface P(W*).

2.3. Kodaira-Spencer map

The main references of this subsection are [11] and [12]. Consider the above family wl.[0e
P(U)} as a deformation of V/° = W*. Since the map By: Vf % — V, surjects onto éé, we have the
induced pull-back map

Br: Hom (€5 /U™, V") — Hom V{2, V')

for any vector space V'.
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Proposition 2. The Kodaira-Spencer map of the family {V’ : [¢] e P(U)} is given by

Hom (£3 /U™, Vil 6) 25 Hom Vi, Vit 6) & HY(C, End (V%))
where 6 is induced from the sequence (1).

Later we will also need to consider a slight generalization of the above family, where the Hecke
modification is taken for subspaces of dimension two. For a subspace ® c W, of dimension 2,
the Hecke modification W® of W along © can be put into the following exact sequence:

0—W®—W— (W, /04)® 0, — 0.

Let o denote the kernel of W® — W,. The following is a straightforward generalization of
Proposition 2.

Proposition 3. Let U be a subspace of dimension 4 with po < U ¢ W?; that is, U+ gaoi c
(WP)* =: Vy. Then the family {V® : [p] € Gr(2,V,/Ub)} is a deformation of W* = V#°, and its
Kodaira—Spencer map

T, (G7 (2, Vi /U*)) = Hom (py /U, Vi /gy ) — H' (C,End (V¥?))

is given by the composition
Hom (pg /U, Velpd) & Hom V", Vi/gg | > H' (C,End (V¥)),

where ,B; and b are induced from

0— v Ly (ot @0, — 0.

2.4. Symplectic Hecke curves on # Sc(n, L)

In this subsection, we recall the construction of symplectic Hecke curves, following [3], to which
we refer the reader for the details.

For a line bundle L on C, an L-valued symplectic bundle of rank # is a vector bundle W of
(even) rank n equipped with an L-valued symplectic form w: W ® W — L. Let .4 Sc(n,L) be
the moduli space of L-valued symplectic bundles of rank n. By the morphism forgetting the
symplectic forms, the moduli space .4 Sc(n, L) can be thought of as a subvariety of % ¢ (n, % nf),
where ¢ = deg(L).

The construction of symplectic Hecke curves on .# Sc(n, L) closely follows the previous con-
struction of Hecke curves on #% ¢ (n, d), keeping track of the deformation of symplectic forms.
For a subspace § c W;* of dimension one, let W? be the Hecke modification of W along 6, fitting
into the sequence

0— W’ —W— (W,/6+) 26, — 0.
Noting that every 1-dimensional subspace 0 is isotropic, we get an induced L* (x)-valued skew-
symmetric form on V := (We) e

o (W) —Wle L),
Then ker 0% has codimension two in V, = (W?)%.
For a subspace ¢ ¢ W? of dimension one, we have the sequence
0— V=V (V/tt) o0, —0.

Then the bundle V¢ has a skew-symmetric form induced from ®?, and it is an L*-valued
nondegenerate (symplectic) form if and only if ker v’ < ¢*. Now the family

{Vé : kerwg cttc Vx}
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of L-valued symplectic bundles are parameterized by P(V,/ker wg) =~ P!, In particular, if £, is in
the kernel of Wf — Wy, then V% = w*,

Under the assumption that g =3 and W € .4 Sc(n, L) is a generic point, by [3, Lemma 4.5] the
dual family

{(V[)* :leP (Vx/kerwg)}

gives a rational curve on .4 Sc(n, L) passing through W, called a symplectic Hecke curve. Also it
was shown in [3, Theorem 5.2] that these curves have minimal degree among the rational curves
passing through a generic point W € 4 Sc(n, L).

Later we need the following fact.

Proposition 4. Assume g = 3. For a generic point W € # Sc(n, L), every symplectic Hecke curve
passing through W is contained in the smooth locus of # Sc(n, L).

Proof. By [3, Lemma 4.5], any symplectic Hecke curve passing through a generic point W stays
inside the locus of stable symplectic bundles. To see that it is contained in the smooth locus, it
suffices to show that it does not touch the locus of non-regularly stable symplectic bundles which
are of the form W; L W, for some stable symplectic subbundles W; and Wa.

This can be checked by dimension count: The locus of non-regularly stable bundles is
contained in a finite union of the images of .# Sc(n1, L) x 4 Sc(ny, L), where n; + ny = n. Since
symplectic Hecke curves passing through a point W; in this subvariety are parameterized by
P(W;), it suffices to check the inequality:

dimP (Wy') + dim.# Sc(ny, L) + dim 4 S¢(np, L) < dim.# Sc(n, L)

for any even integers n, n, with n; + ny = n. This boils down to n < nyn2(g — 1), which holds for
g=3. g

2.5. Orthogonal Hecke curves on 4 Oc(n, L)

Again, the main reference in this subsection for a construction of orthogonal Hecke curves will
be [3].

For aline bundle L on C, an L-valued orthogonal bundle of rank r is a vector bundle W of rank
n equipped with an L-valued orthogonal form b: WeW — L. Let 4 O¢(n, L) be the moduli space
of L-valued orthogonal bundles of rank n. The moduli space .# O¢(2r, L) has several irreducible
components, due to the invariants det(W) and the ond Stiefel-Whitney class w, (W) (see [2, § 2]).
By the morphism forgetting the orthogonal forms, each irreducible component of the moduli
space .# Oc(n, L) is sent to a subvariety of #% ¢(n, %n!), where ¢ = deg(L).

Asin [3], we assume n = 5 throughout this paper. The reason behind this convention is that the
moduli space .# O¢(n, L) has Picard number one for n = 5, while .# O¢ (4, L) has Picard number
two. Accordingly, the minimality of the orthogonal Hecke curves was discussed in [3] for n = 5.
We remark that there is a standard construction of orthogonal bundles of low rank from vector
bundles, described in [5].

The construction of orthogonal Hecke curves on .# Sc(n, L) is a little bit different from that of
Hecke curves on %% ¢ (n, d): the dimension of the involved subspaces are doubled.

For an isotropic subspace ® c W} of dimension two, let W® be the Hecke modification:

0—W°—W— (W,/0) @@, — 0.
Then there is an L* (x)-valued symmetric form
bo: (WO = WweeL*(x)

on V:= (W®)* such that ker b? has codimension four in V, = (We);.
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For an isotropic subspace < W® of dimension two with g1 c V,, we have the Hecke
modification
0= VP -V~ (Vi/p)80,—0.
Then V# is equipped with a symmetric form induced from b®, and it is an L*-valued nonde-
generate (orthogonal) form if and only if ker b9 < p*. In particular when gy is in the kernel of
Wf) — Wy, we have V%0 = W*,
Note that the space of two-dimensional isotropic subspaces g ¢ W such that

kerbg cpltcv = (WQ):
is the isotropic Grassmannian of 2-dimensional subspaces of V,/ker b© = C*, which is a disjoint
union of two projective lines. Let IG(2, Vy/ker b?) be the line containing the point gy /ker b9.
Then the family

{V®: pelG(2, Vy/kerb?)}
of L*-valued orthogonal bundles gives a deformation of W*.

Under the assumption that g = 5,n = 5 and that W € .#O¢(n, L) is a generic point, by [3,
Lemma 4.7] the dual family {(V¥)*} gives a rational curve on .# O¢(n, L) passing through W,
called an orthogonal Hecke curve. Also it was shown in [3, Theorem 5.3] that these curves have
minimal degree among the rational curves passing through a generic point W € .4 O¢(n, L).

Again, we show the following.

Proposition 5. Assume g =5 and n = 5. For a generic point W € ./ Oc(n, L), every orthogonal
Hecke curve passing through W is contained in the smooth locus of 4 O¢(n,L).

Proof. By [3, Lemma 4.7], any orthogonal Hecke curve passing through a generic point W stays
inside the locus of stable orthogonal bundles. To see that it is contained in the smooth locus, it
suffices to show that it does not touch the locus of non-regularly stable orthogonal bundles which
are of the form W; L W, for some stable orthogonal subbundles W; and Ws.

This can be checked by dimension count: The locus of non-regularly stable bundles is
contained in a finite union of the images of # O¢(n;, L) x 4 O¢c(ny, L), where n; + ny = n. Since
orthogonal Hecke curves passing through a point [W;] in this subvariety are parameterized by
1G(2, WO*), it suffices to check the inequality:

dimIG (2, Wy') + dim.# O¢(n, L) + dim 4 O¢(ny, L) < dim.# O¢(n, L)

for any integers n;,n, with ny + n, = n. Since dimIG(2, WO*) = 2n — 6, this boils down to
2n—-6< nynp(g—1), which holds for g, n = 5. O

2.6. Minimal rational curves

Let M be a projective variety. Let £ be an irreducible component of the Hilbert scheme of
complete curves on M such that generic members of £ cover an open subset of the smooth
locus M° of M. For a generic point x € M, denote by .#5 the subscheme of .%Z" consisting of
members of £ passing through x. Assume that for a generic point x € M, every member of £ is
an irreducible smooth rational curve contained in M° and £ is an irreducible complete variety.
In this case, we call £ a minimal rational component of M.

A covering family of rational curves having minimal degree gives a minimal rational compo-
nent. More precisely, an irreducible component .£ is a minimal rational component of M if it
satisfies the following conditions:

(i) For a generic x € M, every member of £ is an irreducible smooth rational curve
contained in M°.
(ii) The locus swept out by the curves in %" is dense in M.
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(iii) For a fixed ample line bundle ¢ on M, the degree of members of £ with respect to ¢ is
minimal among the curves in an irreducible family satisfying (i) and (ii).

Let x € M be a generic point. Define the tangent map 7, : A& --» P(Tx(M)) by
Tx([R]) = [TxR] € P(Tx(M)),

where R is a smooth rational curve in M° passing through x. The closure ¥, of the image
Tx(Ay) < P(Tx(M)) is called the variety of minimal rational tangents (VMRT for short) at x
associated with £

The following is [8, Theorem 2], which connects the theory of VMRT and the simplicity of the
tangent bundle.

Proposition 6. Let M be a Fano variety which has a minimal rational component % . If the VMRT
€6y at a generic point x € M is non-degenerate in P T,y M, then the tangent bundle T (M°) is simple.

For the moduli space of vector bundles .# = .#% ¢ (n,d), it is proven in [8] that for g = 4, the
irreducible component £ of the Hilbert scheme of .# containing Hecke curves is a minimal
rational component of .4 . In this case, given a generic point W € .4, %y is given by

Hw= | P(Wlie) =p(1y)
0] eP(W*)
where T is the vertical tangent bundle of 7: P(W*) — C. In particular for n = 2, we have
Hy =P(W*).

Moreover it is shown in [9, Theorem 3.1, Theorem 3.7] that the tangent map at a generic point
W e . is biregular to the image for g = 5 and birational for g = 4.

Finally we discuss the case of 4 Sc(n, L) and .4 O¢(n, L). By the result [3, Theorem 5.2] on the
minimality of degree, we can see that there is a minimal rational component % of .# S¢(n, L)
containing symplectic Hecke curves such that Zy for a generic element W is given by

Hw =P (W*).
Similarly by [3, Theorem 5.3], there is a minimal rational component £ of .# O¢(n, L) con-

taining orthogonal Hecke curves such that £}y for a generic element [W] is given by

Hw =1G(2,W*).

3. Smoothness of Hecke curves

In this section, we show the smoothness of the symplectic and orthogonal Hecke curves. To dis-
cuss deformations of symplectic and orthogonal bundles, we should first establish the structure
of the tangent spaces of the moduli spaces .# Sc(n,L) and .4 O¢(n,L). The tangent space of
S c(n,d) at astable bundle W is given by H 1(C,Endy(W)), where Endy (W) is the vector bundle
of traceless endomorphisms of W. By a similar argument as [1, Lemma 2.2], the tangent spaces
of #Sc(n,L) and 4 Oc(n, L) at aregularly stable bundle W are given by H!(C,ad W), where

Sym?W ® L* if W is symplectic;

2 ¥ ipTar s )
A“W e L* if W is orthogonal.

adw = {
Proposition 7. Assume g = 4 and n = 4. Then any symplectic Hecke curve passing through a
generic point W € .4 Sc(n, L) is smooth.
Proof. From the construction, the family

{Vé :kerwf </t Vx} 3)
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gives a deformation of V¢ along a subspace U := (kerw?)* = C2. By Proposition 2.3, the Kodaira—
Spencer map

Ty (P (Ve/ U*)) = Hom (¢ 1U*, Vs ¢4) — H' (C,End (V) 4)
associated to this family is given by the composition
Hom (¢4/U*, Ve £4) 2 Hom VY, Ver4) & 1Y (¢, End (V) (5)

where [/3; and 6 are induced from
0—v! L v (vet)eo, —o0. ©)

Note that this can be geometrically understood as the composition map
T, (P (VerU)) 22 Ty Quot(v) -2 1! (c.ad(V*)) = TyyeteSc (n, 1),
where the tangent space Tjz Quot(V) of the Quot scheme of V is given by
T Quot(V) = H° (C,Hom (V*, (Ve/¢*) © 6x)) = Hom VY, Vs £*).

Hence to show that the map
oy PWU) =P - 4Sc(n,L)

which gives the symplectic Hecke curve (3) is an immersion, we need to show that the map (4) is
injective.

Since By is injective by definition of Quot schemes, we need to check that § is injective. The
map ¢ fits into the long exact sequence associated to (6) tensored by (V[ )*:

0— H(C,End (V)] — H°(C,(V!) @ V) — Hom VY, (Ves ) & H' (C,End (V)
Hence 6 is injective everywhere if we know:
o dim H°(C,End(V?)) =1 for all ¢ and
o dimH°(C,(VY)* ® V) =1 for all ¢.
The first condition holds if V* is regularly stable. By [3, Lemma 4.2], the second condition holds
if every point V is a generic point and g = 3.

Now it remains to show that the map ¢y is injective. It was shown in [3, Lemma 4.5] that ¢ is
generically injective if g = 3 and n = 4. Its proof can be slightly modified to show the injectiveness
(under a stronger bound on g and n). The point of the proof was to choose W = (Veo)* asa “l-
stable” symplectic bundle (see [3, § 4.1]). By the same argument, if we choose W to be 2-stable,

then every bundle V¢ can be shown to be 1-stable, and hence V¢! = V2 implies ¢, = ¢». By [3,
Lemma 4.1] a generic point of .# Sc(n, L) is 2-stable for g = 4, n = 4 and we are done. O

Proposition 8. Assume g =5 and n = 5. Then any orthogonal Hecke curve passing through a
generic point W € 4 Oc(n, L) is smooth.

Proof. From the construction of orthogonal Hecke curves, the family
{V® :KeroQ cptc v} 7

gives a deformation of V¥ along a subspace U := (Kerw?9)* = C*. By Proposition 3, the Kodaira—
Spencer map
TpGr (2, Vy/U*) =Hom (p* /U*, Vi /pt) — H' (C,End (V¥)) 8)

associated to this family is given by the composition

Hom (@ /UL, Verpt) & Hom V¥, Vi/p*) % H' (C,End (v¥)), 9)
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where B} and ¢ are induced from

o—ve Ll V— (Vylpt)® 0y — 0. (10)

Note that this can be geometrically understood as the composition map

T,Gr(2, Vel UL) L= TipQuot(V) 2y (C,ad(V®)) = Tye).4O¢(n, L),
where the tangent space TjgQuot(V) of the Quot scheme of V is given by
TipQuot(V) = H° (C,Hom (V¥, (Vi/pt) 8 0)) = Hom VY, Vi/p* ).

Hence to show the immersedness of the orthogonal Hecke curve (7), it suffices to show that the
map (8) is injective.

Since B} is injective by definition of Quot schemes, we need to check that é is injective. The
map & fits into the long exact sequence associated to (10) tensored by (V#)*:

0— H°(C,End (V¥)) — H°(C,(V®)" ® V) — Hom (V?, (Vi /™)) > H' (C,End (V?))
Hence 6 is injective everywhere if we know:
o dim H°(C,End(V®)) = 1 for all p and
o dim H(C,(V®)* ® V) =1 for all p.
The first condition holds if V¥ is regularly stable. The second condition holds if V is general and
g=3by[3, Lemma4.2].
Now to show the injectiveness, as in the symplectic case, it suffices to choose W to be 3-stable

in order that every bundle V¥ is 2-stable. By [3, Lemma 4.1] a generic point of .# Oc¢(n, L) is
3-stable for g = 5,n =5 and we are done. O

4. Nondegeneracy of the tangent map

In this section, we discuss the tangent map of the variety of minimal rational tangents for
the moduli spaces .#Sc(2r,L) and .#Oc(n,L). In particular, we study the complete linear
system which defines the tangent map. This confirms that the image of the tangent map is
nondegenerate, and as a consequence we get the simpleness of the tangent bundle of the moduli
space. Basically we follow the computations in [7] of the Kodaira—Spencer map of the Hecke
curves on the moduli space % ¢(2,d).

4.1. Symplectic bundles

Proposition 9. Assume g =4 and n =4 as in Proposition 7. Let X be the minimal rational com-
ponent consisting of symplectic Hecke curves on 4 Sc(2r,L). Then for a generic W € 4 Sc(2r,L),
the tangent map

Tw: Kw =PW* —PTy.4Sc(n, L) =PH' (C,Sym*W* ® L)
is the composition @y o1, where @y is given by the complete linear system |0(1) ® n* K¢|. Also,
10) =0® (w0, ) for0 € W}, and the image of L(0) inP(H' (C,Sym>W* ® L)) is given by the linear
functional H°(C,Sym?W ® L* ® K¢) — (K¢) taking the trace of endomorphisms of Wy.

Ky =PW* —————P(Endo(W)) — - — ¢ — — = PH'(C,EndyW)

P(Sym*W* e L) ————PH' (C,Sym*W* ¢ L)

w
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Remark 10. The upper arrow Wy is the natural mapping of the ruled variety P(Endg (W)), which
is not necessarily defined everywhere at this stage, but it will turn out in §5 to be a morphism and
furthermore an embedding under certain genus assumption. On the other hand, the lower arrow
®yy is a morphism by Proposition 7.

Proof. Recall that kerw? is a subspace of V; of codimension two, and after we put U L= kerwz c

Vy, the family {V? : [¢] € P(V,,/U"Y)} is a deformation of W* = V. Applying Proposition 2 to the
kernel of w?, we get that the Kodaira-Spencer map

Ty, (P (Vi/ UF)) = Hom (€5 /U™, Vi/ 3) — H' (C,End (V7))

for the family {V : [¢] € P(V,/Ub)}, is given by the composition

Hom (¢4 /U, v, 104) 2 Hom V{°, Vi/£3) > H' (C,End (v*)),

where B} and ¢ are induced from
0—vho Ly (vt)eo,—o.

Furthermore, as in the case of the moduli space of vector bundles discussed in [7], the ele-
ment §(Bx(v)) in Hl(C,End(V[‘J)) for v € Hom(lé/Ul,Vxllol), is represented by the cocycle
{@ on % NU; } Here, {%y,%,...,%N} is a coordinate covering of C such that

« all the involved vector bundles are trivial on % and % for1 < j < N,

e x€%and x¢%;jfor1< j< N sothat on each %}, we identify V% and V via V¥ E» Vv,

e zisacoordinate on % centered at x,

e {e1,e2,...,ey} and {f1, f, ..., fn} are frames of VFOI% and Vlg,, respectively such that

e1x €0V =W, foxe LU c VUt = WO*/U+ and
e fBsends ey, e, ...,eptozf1, fo, ..., fn-

Thus 6(ﬁx(v)) corresponds to the image of 1(6) = 6 ® w (0, -) via the duality H!(C,Endy(W)) =
H'(C, Kc ® Endo(W))* induced by the residue pairing. 0

4.2. Orthogonal bundles

Proposition 11. Assume g =5 and n =5 as in Proposition 8. Let £ be the minimal rational com-
ponent consisting of orthogonal Hecke curves on .4 Oc(n,L). Then for a generic W € .4 O¢(n, L),
the tangent map Ty

Tw: Kw =I1G(2,W*) = PTyw.#Oc(n, L) =PH" (C,A>W* 8 L)
is the composition @y o1, where Oy, is given by the complete linear system |0 (1) ® n* K¢|. Also,
(w1 Av2) = b(vy, ) ® s — b(v2, -) ® 11 for [v1 A V2] € IGR, W) and the image of L(v1 A v2) in
P(H'(C,A>W* ® L)) is given by the linear functional H°(C,A\>W* ® L* ® K¢) — (Kc) taking the
trace of endomorphisms of Wy.

HAw=1G2,W*) ———— = P(Endg(W)) — — — — — > PH'(C,EndoW)

P(A2W*®L) ™ o,  PH'(C,A’W*eL)

Remark 12. As before, the upper arrow Wy is not necessarily defined everywhere at this stage,
but it will turn out in §5 to be a morphism and furthermore an embedding under certain genus
assumption. On the other hand, the lower arrow @y, is a morphism by Proposition 8.
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Proof. Recall that the kernel of b® is a subspace of codimension 4, and if we put Ut = Ker b9
Vy = (WO)*, then the family {V¥ : [p] € IG(2, V;,/U™Y)} is a deformation of W* = V#°, As in the
proof of Proposition 8, we apply Proposition 3 to the kernel of b® and we get that the Kodaira-
Spencer map

Tp, (Gr (2, Vx/U*)) =Hom (py /U*, Vi/py) — H' (C,End (V¥?))
for the family {V¥ : [p] € Gr(2, Vy/U1)} is given by the composition
Hom (pL /U, Vi/pi) B Hom V", Vi/gg | > H' (C,End (V¥)),
where B; and 4 are induced from
0=V L v (v/pt) o0, —0.

Choose a coordinate covering {%, %1, ..., %N} of C such that

« all the involved vector bundles are trivial on % and % for1 < j < N,
e x€%pand x¢%; for 1< j < N sothaton each %}, we identify Vo = W* and V = (WO)*

by V%o ﬁ v,
e zis acoordinate on % centered at x,
e {e1,e2,...,e,} and {f1, f>, ..., fu} are frames of VK’OI%0 and Vly, respectively such that

e e €0V =W, fsy, fax € /UL c VUL = (WE)* /UL and
o Bsendse;,ep, e3,e4t0 21,212, f3, fa-
Then the tangent space Ty, (IG(2, Vi /U 1)) is generated by

Lyrrl 1
V:f;x®fix_f2x®fix€HDnﬂpo/U J&/@oy
Furthermore, vo f maps ej x, €2,x, €3,x, €4,x 100, 0, fi x, f2,x up to a constant multiple. Thus @(v)

can be extended to U with U(e;) = 0 and v(e2) =0 and v(e3) = f1 and U(e4) = fo. Then 6(B«(v)) is
defined by the cocycle

-1
0 = (Blanay,) o7 € HO (2 n%;,End V),

where ﬁl%n% :vh oy n; = Vo is the isomorphism. Therefore, 6 (Bx(v)) is represented by
e;®e1—e;®ep

- on %N %j}, where {e], €3, ..., ey} is the dual frame.

the cocycle {

Thus 6(Bx(v)) corresponds to the image of t(v; A v2) = b(vy, -) ® V2 — b(v2, -) ® vy via the duality
H'(C,Endy(W)) = H°(C, K¢ ® Endy(W))* induced by the residue pairing. O

4.3. Simplicity of the tangent bundles

The simplicity of the tangent bundle of .#U¢(n, d) has been proven in [8], based on the non-
degeneracy of VMRT as stated in Proposition 6. Now we show the parallel results for symplectic
and orthogonal bundes. In the following, we assume that the rank is at least 5 in the orthogonal
case to guarantee the minimality of the orthogonal Hecke curves (see § 2.5).

Theorem 13. Let .4° be the smooth locus of the moduli space 4 Sc(2r,L) (4 Oc(n, L), respec-
tively) of L-valued symplectic (orthogonal, respectively) bundles on C of genus g. Assume that
g = 4 for symplectic case, and g = 5,n = 5 for orthogonal case. Then the tangent bundle T (°) is
simple.

Proof. Symplectic bundles of rank n = 2 are nothing but the rank two vector bundles and so
MSc(2,L) = FLUc(2,L). In this case, the simplicity of the tangent bundle has been proven
in [8, Corollary 1] under the assumption g = 4. (Moreover, the stability of the tangent bundle
of L Uc(2,1) was shown in [7, Theorem 1] for g =2.)
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Now we assume g = 4,n = 4 for symplectic case (and g = 5,n = 5 for orthogonal case). By
Proposition 9 and Proposition 11, the tangent maps of symplectic and orthogonal Hecke curves
are given by the corresponding complete linear systems. Hence for each case, the VMRT at a
generic point is non-degenerate, and the wanted result follows from Proposition 6. U

Remark 14. Inthe above theorem, we made the assumptions on the genus and rank to guarantee
the smoothness of the symplectic and orthogonal Hecke curves, which is necessary to get a
tangent morphism 7y,. As can be seen from the proofs of Propositions 7 and 8, technically we
need these genus assumptions to guarantee that a generic point of .4 Sc(n, L) (resp. 4 O¢(n, L))
is 2-stable (resp. 3-stable). This corresponds to the assumption g = 4 in [8, Proposition 1 and
Corollary 1] to guarantee the (1,1)-stability of a generic vector bundle. Still, it is an interesting
question if the simplicity of the tangent bundle still holds in the low genus cases and for
orthogonal bundles of rank three and four.

5. Biregularity of the tangent map

Let W be an L-valued symplectic or orthogonal bundle over C. Throughout this section, we will
assume that an orthogonal bundle of even rank, say 2r, admits an isotropic subbundle of rank
r. As shown in [2, Lemma 2.5], this is equivalent to that det(W) = L". Accordingly, .4 O¢(2r, L)
denotes one of the moduli components which parameterizes L-valued orthogonal bundles of
rank 2r with determinant L". On the other hand, every orthogonal bundle of odd rank, say 2r +1,
admits an isotropic subbundle of rank r by [2, Lemma 2.7]. Hence .# O¢c(2r + 1, L) denotes any
moduli component which parameterizes L-valued orthogonal bundles of rank 2r + 1.

As in (2), we write
Sym?W ® L* if W is symplectic;
AW ® L* if W is orthogonal.

In either case, ad W is a self-dual subbundle of EndyW.
Let n: P(ad W) — C be the associated projective bundle of ad W. We consider the natural map

@y : Pl@adW) --» PH (C,Kc @ ad W)*,

adW:{

given by the complete linear system |Opaqw) (1) ® 7% Kc|. Our goal will be to prove that ®yy is an
embedding. In fact, we show a stronger statement:

Theorem 15. Let ¢ :=deg(L) € {0,1}. The map
Yy : P(EndgW) --» PH® (C,Kc ® EndgW)*

given by the complete linear system |Opgnd,w) (1) ® 7* Kc| is an embedding for:

(1) agenericW € #Sc@r,L)ifr=2andg=5+2/¢,
(2) agenericW € #Oc(2r, L) ifeither (r=3,g=8)or(r=4,g=7),
(3) agenericW e #Oc2r+1,L) ifeither (r =2, g=14)or (r=3, g=9).

Corollary 16. Let .4 be one of the moduli spaces in the above theorem. Let
Tw: Ay — P(Tw M)

be the tangent map of the minimal rational component % associated to the symplectic or orthog-
onal Hecke curves. Then Ty is an embedding of the corresponding VMRT under the same assump-
tion as in Theorem 15.

Proof. This follows from the fact that ¥y, hence @y, is an embedding, together with the pictures
of Proposition 9 and Proposition 11. d
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The remaining parts of this section are devoted to proving Theorem 15. Following [9, Proof of
Theorem 3.1], we shall use the fact that ¥y is an embedding if and only if

h° (@¢(D) @ EndgW) =0 forall De C?, (11)

where C? parameterizes the effective divisors of degree two.
We first show the following:

Lemma 17. Let& — B x C be a family of vector bundles over C. Then the subset
{beB:h’ (@c(D)® &) =0 forall De C?}
is open in B, where &, = &|jpyxc-
Proof. The complement of the locus in question is
{be B: h®(@c(D)®&p) = 1 for some De C?},
This is the image in B of the closed set
{(,D)eBxC?:h* (@c(D) @&y =1}

by the projection from B x C?. As C? is projective and in particular complete, this projection is
closed. The statement follows. 0

Applying Lemma 17 to a suitable étale cover of each of the moduli spaces in question, we see
that it suffices to exhibit a single bundle V with property (11). We now assemble some vanishing
results which we shall use to this end.

Lemma 18. Let E; and E, be vector bundles such that for all D € C® we have
(i) h°(@c(D)®EndoE;) =0

(ii) h°(@c(D)® EndyE,) =0

(iii) h°(Hom(E;,E2(D))) =0

(iv) h®(Hom(E,, E1(D))) =0
LetTl < H' (Hom(E,, E;)) bea subspace of dimension at least 2-1k(E1) -tk(E>) +3. Thenif 0 — E; —
W — E, — 0 is an extension whose class § is a general element of 1, we have h® (G¢ (D) ®Endy W) =
0 forallDe C®.

Proof. Let W be an extension whose class is a general element of I1. Let D be an element of C @,
and suppose that a: W — W(D) is a nonzero map. We shall show that under the hypotheses
above, a = Idy ®s for some s € H(G(D)). This will suffice to prove the statement.

By (iii), the restriction a|g, factorizes via E; (D). Therefore, we have a diagram

0 E w—' . E 0
| ]
0 E,(D) W (D) —~ E,(D) — 0.

By (i), then, a|g, = Idg, ®s for some s € HO(@’C(D)). (If C is nonhyperelliptic then (s) = D.)
Therefore, a —Idy ® s is a map W — W(D) vanishing on E;. Hence

a—-Idy®s = Bog (12)

for some f € H°(Hom(E,, W(D))).
If B # 0 then by (iv) we see that g’ o § is a nonzero map E, — E»(D). By (ii), we have

q'of = Idg, ®sp
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for some D' € |D| and s;y € H?(G¢ (D)) satisfying (spr) = D'. (If C is nonhyperelliptic then D' = D.)
In particular, the map Idg, ® sp': E» — E» (D" lifts to W (D). This means that

5(W) € ker(Idg, ® spy: H'(Hom(Ex(D), E1 (D)) — H' (Hom(Ez(D - D'), E1(D)))).
In view of the exact sequence
0 — E;®E — E;®E (D) — E; ®E(D)Ipy — 0,
this kernel has dimension at most 2 -rk(E>) - rk(E;). The union
U ker((Idg, ®sp)")
D'eCc®

is therefore of dimension at most 2 - rk(E») - rk(E;) + 2 < dimI1. But since § (W) was assumed to be
general in I1, we may assume that the map Idg, ® sy does not lift to W. Therefore, we must have

B=0.

By (12), we obtain a = Idy ®s, as desired. O

Lemma 19. Suppose t and s are integers with s =0 and t +2s < g. Let N be a generic line bundle
in Pic’(C). Then h®(N(D)) = 0 for all D € C'9), where C'® parameterizes the effective divisors of
degree s.

Proof. If # + s < 0 then this is clear. Otherwise: If h°(C, N(D)) # 0 for some D € C¥, then N is of
the form O¢(D; — D) for some D; € CU*9 and D e C¥. Hence the locus of such N is of dimension
at most ¢+ 25 in Pic/(C). (We take C'¥) = {@c}.) By hypothesis, this locus is not dense in Pic/(C).
The statement follows. g

Lemma 20. Letr,s,t be integers withr 22, s=0and t+rs < (r—1)(g—1). Let G be a generic
stable bundle of rank r and degree t. Then h°(G(D)) =0 forall D € C'.

Proof. A nonzero section of G(D) gives a sheaf injection O¢(—D) — G. This implies that the first
Segre invariant of G is bounded by

$1(F) < deg(G) —1k(G) -deg(Cc(—D)) = t+rs.
But as G is generic, by [10, Satz 2.2] we have
51(G) =z (r—-D(g-1.

Hence we have an inequality (r —1)(g — 1) < ¢+ rs, which contradicts the assumption. Thus
h°(C,G(D)) = 0 for all D. O

Lemma 21. Let E be a generic stable bundle over C of rank r = 1 and degree e.
(1) Ife=0,s=1and2e+2s< g, then h°(C,E® E(D)) =0 forallDe C9.
2) Ife<0,s=1and2s<g, then h°(C,E® E(D)) =0 forall D€ C¥.

Proof. By Lemma 17, the locus of points E which satisfy the desired vanishing property is open.
Thus it suffices to exhibit a single E with the desired property. (Note that even if such an E is
unstable, we can continuously deform it to get a generic stable one with the same vanishing
property.)

We first assume e = 0 and proceed by induction on r. For r = 1, this holds by Lemma 19.
Suppose now that r = 2. By induction hypothesis, there is a stable vector bundle F of rank r — 1
and degree e with the desired vanishing property, which can be assumed to be generic in the
moduli. Fix a generic line bundle Ly € Pic’(C) and put E = Ly @ F. Then E ® E(D) has four direct
summands, and it suffices to show all of them have no sections.

By induction we may assume that h°(C,F ® F(D)) = 0 for all D € C®. Also we note that
h°(C, (Lp)?(D)) = 0 for all D € C® by Lemma 19. Finally we show that h°(C, F ® Ly(D)) = 0 for all
D. If F is a line bundle, the condition for the vanishing is e + 2s < g by Lemma 19, and this holds
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by assumption. If rk(F) = r—1 = 2, then the condition for the vanishingis e+ (r—1)s < (r-2)(g—1)
by Lemma 20. Also this holds by assumption, noting that s= 1 and r =rk(F) +1 = 3.

It follows that for a generic extension E given above, we have Kho(C,E® E(D)) =0forall De CY9,

To finish, we need to find a bundle of degree e < 0 with the vanishing property. By the part (1),
we may choose a stable bundle E of rank r and degree 0 satisfying hY(E®E(D)) =0forall De C9,
Let E be obtained by an elementary transformation 0 — E — E — 7 — 0, where deg(r) = e. Then
E®E(D) is a subsheaf of E® E(D), and by the vanishing result for E, we obtain h°(C, E® E(D)) = 0.
This completes the proof. d

Also we record the following cohomology vanishing result [9, Proposition 3.2], which will be
used later:

Proposition 22. For a general stable vector bundle F of arbitrary rank and degree, H°(C,
(Endg F)(D)) = 0 for any effective divisor D of degree d whenever g = %d +2.

Now we apply these results to show the desired vanishing property for a generic symplectic
and orthogonal bundle of even rank. Consider an extension

0-E—-W-—>E"®L—0. (%)

for E € #%c(r,e) which is a generic stable bundle. Recall that, by [6, Criterion 2.1], we get
a symplectic bundle W if we choose () in H'(Sym?E ® L*), and an orthogonal bundle if we
choose (%) in HY(A2E® L*). Also in both cases, E — W is an isotropic subbundle. (From now
on whenever we discuss orthogonal bundles of even rank, we consider those bundles with an
isotropic subbundle of the half rank only.)

Once we find a symplectic/orthogonal bundle W in this extension which has the desired
vanishing property (11), by deformation this will show that the vanishing property holds for
a general stable symplectic/orthogonal bundle with the same topological invariants. The only
topological invariants of a symplectic bundle are rank and degree, while we need to additionally
consider the 29 Stiefel-Whitney class for an orthogonal bundle. Note that we may assume L = G¢
when deg(L) is even and L = G¢(x) for some x € C when deg(L) is odd.

If L = O¢ so that deg(W) = 0, the moduli space .# O¢c(2r,0¢) has two components classified
by the 2"¢ Stiefel-Whitney class w, (W) such that the degree of any rank r isotropic subbundle of
W has the same parity as w,(W). On the other hand, if L = G¢(x) so that deg(W) = r, then by [2,
§ 2] every orthogonal bundle W € .# O¢(2r,0¢(x)) has rank r isotropic subbundles both of even
degree and of odd degree.

Hence it suffices to show that a bundle W obtained by a generic extension () has the vanishing
property (11) in each of the following cases:

o For symplectic bundles: e =degE =0 and L = O¢ or C¢(x).
¢ For orthogonal bundles: (L =0¢ and e =—1,0) or (L = O¢c(x) and e = 0).

Proposition 23. Let ¢ =deg(L) € {0, 1}.

(1) Forr =2, suppose g =5+ 2¢. If (*) is a symplectic extension defined by a generic class in
H! (Sym2E® L*) wheree:=degE =0, then ho(@C(D) ®EndgW) =0 forall D€ Cc?,

(2) Suppose either (r =3, g=8)or (r =4, g =7). If (%) is an orthogonal extension defined by
a generic class in H'(A’E® L*) where e := degE € {—1,0}, then h°(@¢ (D) ® EndgW) =0 for
allDe C®@,

Proof. For the vanishing, let us apply Lemma 18 with E; = E* and E; = E® L. As E is general in
moduli and g = 5, conditions (i) and (ii) follow from Proposition 22.

Conditions (iii) and (iv) read h°(E® E® L(D)) = 0 and h°(E* ® E* ® L* (D)) = 0 for any D € C®?,
respectively. These vanishing conditions are checked by Lemma 21 under the assumption g =
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5+ 2¢ in each case for L = G¢ or L = O¢(x). To get a conclusion from Lemma 18, it will suffice to
check that Al (Sysz ® L*) and h! (A2E® L*) are bigger than 2r2+2, respectively.
In the symplectic case, by Riemann—Roch the desired inequality would follow from

1
2r?+3 < Er(r+1)(g—1+deg(L)).
This reads
g-1+¢ 2r’+3
2 T+’

which holds forr =2 and g=5-¢.
In the orthogonal case, the desired inequality would follow from

2r’+3 < —(r- 1)e+%r(r— 1)(g —1+deg(L)).

This reads
g-1+¢ 2r’+3+(r-1e
2 - r(r-1) ’
which holds if either (r =3, g=8) or (r =4, g=7). O

Now we discuss the case of orthogonal bundles of odd rank. In this case, we require some
more vanishing results. To get a better genus bound, we assume here e = degE € {—2,—1} instead
of {—1,0}.

Lemma24. Supposeg = 8. Supposer =2, and let E be a generic stable bundle of rank r and degree
e, whereee {-2,—1}. Let 0 — E — F — O¢c — 0 be a generic extension. Then 10 (Gc(D)®EndyF) =0
forallDe C®.

Proof. Let us apply Lemma 18 with E; = E and E» = G¢. Condition (i) follows as above from [9,
Proposition 3.2] since E is general and g = 5. Condition (ii) is trivial. Conditions (iii) and (iv)
follow from Lemma 20 under the assumption g = 8.

It remains to check that dim H! (Hom(G¢,E)) > 2r +3. As E is stable of negative degree,
h°(E) = 0. By Riemann-Roch, h!(E) = —e+r(g—1) = r(g—1) + 1. Using the inequalities r > 2
and g = 5, one checks that this exceeds 2r + 3. The statement now follows from Lemma 18. U

Lemma 25. Let E and F be as in Lemma 24, and suppose g = 8. Then for all D € C'® we have
h°(E* ® F*(D)) = 0 and h®(F ® E(D)) = 0.

Proof. By construction of F, for each D € C?) we have exact sequences

HY(E® E(D)) — H(F® E(D)) — HY(E(D)) — ---
and
H(E* (D)) — H°(E*® F*(D)) — H°(E*® E*(D)) — -

By Lemma 21, we have h’(E ® E(D)) = 0 = h®(E* ® E*(D)) for all D € C®. The vanishing
hO(E* (D)) = 0 = h°(E(D)) is a consequence of Lemma 20. The statement follows. 0

By [2, Lemma 2.4], for any L-valued orthogonal bundle W of odd rank, there is a line bundle N
such that W ® N is an O¢-valued orthogonal bundle of trivial determinant. So we may work only
for the moduli component of G¢-valued orthogonal bundles of trivial determinant. As in the even
rank case, the moduli space .# O¢c(2r +1,0¢) has two components classified by the 2nd Gijefel-
Whitney class w,(W). By [4, Theorem 3.1], the degree of any rank #n isotropic subbundle of W
has the same parity as w, (W). To construct such orthogonal bundles of rank 2r +1 as extensions,

we use some results from [4, § 3]. Let0 — E Lp- O¢ — 0 be an extension as above, and let
I1; be the subspace of HY(F ® E) as defined in [4, § 3], which contains H!(C, A2E) as a subspace



Insong Choe, George H. Hitching and Jaehyun Hong 509

of codimension 1. By [4, Lemma 3.2], an extension 0 — E — W — F* — 0 defined by a class
contained in IT; \ HY(C,A%E)is an orthogonal bundle.

Proposition 26. Suppose either (r =2, g=14)or (r=3, g=9). Let 0~ E—- W — F* — 0 be
a stable orthogonal bundle of rank 2r + 1 as above, whose extension class is general in11;. Then
h°(@c(D) ® EndgW) =0 forall D € C®.
Proof. Again, we use Lemma 18; this time with E; = E of rank r, degree e and E» = F* of rank r+1,
degree —e where e € {—2,—1}. Condition (i) follows from Proposition 22 as before. Condition (ii)
follows from Lemma 24. Conditions (iii) and (iv) follow from Lemma 25.

Lastly, we must show that dim(IT;) = 2-rk(E) - tk(F*) + 3 = 2r(r + 1) + 3. By Riemann-Roch,
r(r-1)

dim(I;) = ' (A*E)+1 = —(r— e+ (g-D+1.

Hence it suffices to have
r(r—1)

—(r-1De+ (g-D+1=2r(r+1)+3.

Simplifying this by using e < —1, we get the wanted inequality if
r(r—1)

2
This holds for (r =2,g=14) or (r=3,g=9). O

(g-D=2r+r+3. (13)

Proof of Theorem 15. By Lemma 17, it suffices to exhibit a single element W; of each of the
moduli spaces satisfying the vanishing property (11). This follows from Propositions 23 and 26.
O

Remark 27.

(1) The genus bound in Theorem 15 is not optimal, and can be improved simply by comput-
ing inequalities above more accurately. For instance, the above inequality (13) for orthog-

onal bundles reads g = % + 1, which becomes g = 6 in the limit r — co. But there
seems to be some obstruction to apply our method to the curves of lower genus. This
can be compared with [9, Theorem 3.1, Theorem 3.7] which shows in the vector bundle
case that the tangent map of the VMRT at a generic point of #Uc(n, d) is a morphism for
g =5 and birational for g = 4.

(2) We did not consider orthogonal bundles of rank < 4 according to the convention in § 2.5.
But all the arguments in § 5 are valid for arbitrary rank, hence we can apply the same
argument to get a very ampleness result for orthogonal bundles of rank < 4. For example,
we could state Proposition 23 (2) for r = 2, in which case the genus assumption would be
g = 12. Hence the map ¥y is an embedding for a generic W € #O¢(4,L) if g = 12.

(3) Theorem 15 shows that the VMRT of .# Sc(n, L) and .4 Oc(n, L) at a generic point W is
biregular to P(W*) and IG(2, W) respectively, under the assumption on the genus. As
remarked in [3, Remark 6.2], this improves the involved genus bound in [3, § 6].
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