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1. Introduction

Let Ω be a bounded pseudoconvex domain in Cn ,n ≥ 1. According to Hörmander’s L2 theory,
given a ∂-closed (0,1) form f ∈ L2(Ω), there exists a unique L2 function that is perpendicular to
ker(∂) and solves

∂u = f in Ω.

This solution is called the canonical solution (of the ∂ equation). The L2-Sobolev regularity of
the canonical solutions has been investigated through Kohn’s ∂-Neumann approach for domains
with nice regularity and geometry, such as convexity and/or finite type conditions.

The goal of the note is to give the Lp -Sobolev estimate of the canonical solutions on product
domains. Here a product domainΩ in Cn is a Cartesian product D1 ×·· ·×Dn of bounded planar
domains D j , j = 1, . . . ,n. In particular, D j need not be simply-connected. Then Ω is (weakly)
pseudoconvex with at most Lipschitz boundary. The Lp regularity of the canonical solutions
on product domains was already thoroughly understood through works of [5–7, 12, 15, 22, 25]
and the references therein. In the Sobolev category, combined efforts in [2, 11, 18, 23] have
given the existence of a bounded solution operator of ∂ sending W k+n−2,p (Ω) into W k,p (Ω),
k ∈ Z+,1 < p < ∞. Here W k,p (Ω) is the Sobolev space consisting of functions whose weak
derivatives onΩ up to order k exist and belong to Lp (Ω). The main theorem is stated as follows.

Theorem 1. Let Ω := D1 × ·· · ×Dn ⊂ Cn ,n ≥ 2, where each D j is a bounded domain in C with
smooth boundary, j = 1, . . . ,n. Given a ∂-closed (0,1) form f ∈ W k,p (Ω), k ∈ Z+,1 < p < ∞, the
canonical solution T f of ∂u = f onΩ is in W k,p (Ω). Moreover, there exists a constant C dependent
only onΩ,k and p such that

∥T f ∥W k,p (Ω) ≤C∥ f ∥W k,p (Ω).
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The proof of Theorem 1 is essentially an observation on a representation formula of the
canonical solutions by Chakrabarti–Shaw [2] for p = 2 and Li [15] for 1 < p ≤ ∞, according to
which it boils down to the Sobolev estimates of the Bergman projection and canonical solution
operators on planar domains. The Lp boundedness of the Bergman projection has been widely
studied in several complex variables. See [14, 16, 17, 20, 24], etc. on some types of domains with
sufficient smoothness and nice geometry. It is worth pointing out that the Bergman projection
may fail to be Lp bounded over the full range (1,∞) of p on certain domains, such as those with
rather rough boundaries like the Hartogs triangle ([3, 4], etc.). With an application of Spencer’s
formula on planar domains, the Sobolev estimates of the Bergman projection and canonical
solution operators are simply a consequence of a result of Jerison and Kenig in [10]. In Example 7,
a datum f on the bidisc is constructed, such that f ∈W k,q for all 1 < q < p, yet ∂u = f has no W k,p

solutions. This example indicates that the ∂ problem does not gain Sobolev regularity on product
domains in general, and thus the estimate in Theorem 1 is sharp.
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2. Bergman projection and canonical solutions on planar domains

Let D be a bounded domain in C whose boundary bD is smooth, and g be the Green’s function
on D . In other words, at a fixed pole w ∈ D ,

g (z, w) :=− 1

2π
sup

{
u(z) : u ∈ SH−(D) and limsup

ζ→w
(u(ζ)− log |ζ−w |) <∞

}
, z ∈ D,

where SH−(D) is the collection of negative subharmonic functions on D . It is known ([9] etc.)
that g is symmetric on the two variables z and w . Moreover, there exists a harmonic function hw

on D with hw = 1
2π ln | ·−w | on bD such that

g ( · , w) =− 1

2π
ln| ·−w |+hw in D. (1)

In particular, hw ∈C∞(D) and

g (z, w) = g (w, z) = 0, z ∈ bD. (2)

Given f ∈ Lp (D),1 < p <∞, define

G f :=−4
∫

D
g ( · , w) f (w)dνw in D. (3)

Here dν is the Lebesgue measure on C. Then G f is the solution to the Dirichlet problem{
∆u = 4 f , in D ;

u = 0, on bD.
(4)

Denote by Lp
α(D),α ∈ R the (fractional) Sobolev space following the notation in [10, p. 162] of

Jerison and Kenig. By [10, Theorem 0.3], G is a bounded operator sending Lp
α−2(D) into Lp

α(D),
1 < p <∞, α> 1

p . In particular, if f ∈W k−1,p (D), k ∈Z+∪ {0}, 1 < p <∞, then

∥G f ∥W k+1,p (D) ≲ ∥ f ∥W k−1,p (D). (5)

Here and throughout the rest of the paper, we say two quantities a and b to satisfy a ≲ b if there
exists a constant C dependent only possibly on the underlying domain, k and p such that a ≤C b.
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The Bergman projection operator P on a domain Ω is the orthogonal projection of L2(Ω)
onto the Bergman space A2(Ω), the space of L2 holomorphic functions on Ω. Since A2(Ω) is a
reproducing kernel Hilbert space, there exists a function k :Ω×Ω→C, called the Bergman kernel,
such that for all f ∈ L2(Ω),

P f =
∫
Ω

k( · , w) f (w)dνw in Ω.

On a smooth planar domain D , the Bergman kernel k is related to the Green’s function g by

k(z, w) =−4∂z∂w g (z, w), z ̸= w ∈ D. (6)

See [1, p. 180]. Clearly, k( · , w) ∈C∞(D) by (1).
If D is simply-connected, the Sobolev boundedness of the Bergman projection P can be

obtained by applying the known Sobolev regularity on the unit disc and the Riemann mapping
theorem. On general smooth planar domains, Lanzani and Stein suggested an approach to
estimate P briefly in [13]. For completeness and convenience of the reader, the detail of their
approach to the Sobolev regularity of P is provided below.

Theorem 2. Let D ⊂ C be a bounded domain with C∞ boundary. Then the Bergman projection
P is (or, extends as) a bounded operator on W k,p (D), k ∈ Z+ ∪ {0}, 1 < p < ∞. Namely, for any
f ∈W k,p (D),

∥P f ∥W k,p (D) ≲ ∥ f ∥W k,p (D).

Proof. We shall need the following Spencer’s formula: for any f ∈C∞(D),

P f +∂G∂ f = f in D, (7)

where G is defined in (3), and for simplification with an abuse of notation, the ∂ and ∂ operators
here and in the rest of the section represent the corresponding complex vector fields. The proof
of (7) can be found, for instance, in [1, p. 73–75]. Employing a standard density argument and the
estimate (5) for G , we can extend P = I −∂G∂ as a continuous operator on W k,p (D), k ∈ Z+∪ {0},
1 < p <∞.

By (5) the (extended) operator P satisfies for all f ∈W k,p (D),∥∥P f
∥∥

W k,p (D) ≲∥ f ∥W k,p (D) +
∥∥G∂ f

∥∥
W k+1,p (D) ≲ ∥ f ∥W k,p (D) +

∥∥∂ f
∥∥

W k−1,p (D) ≲ ∥ f ∥W k,p (D).

This completes the proof of the theorem. □

Given f ∈ Lp (D),1 < p <∞, define

T f := ∂G f

(
=−4∂

∫
D

g ( · , w) f (w)dνw

)
in D. (8)

We shall show below that T is the canonical solution operator of ∂ on D and improves the Sobolev
regularity by order one.

Theorem 3. Let D be a bounded domain in C with smooth boundary. For each k ∈ Z+ ∪ {0},
1 < p <∞, T defined in (8) is the canonical solution operator of ∂ on D, and is a bounded operator
sending W k,p (D) into W k+1,p (D). Namely, for any f ∈W k,p (D),

∥T f ∥W k+1,p (D) ≲ ∥ f ∥W k,p (D).

Proof. First for f ∈ L2(D), T f ∈ L2(D) following (5). Moreover, by (4) one has ∂T f = ∂∂G f = f on
D . Furthermore, for any h ∈ A2(D),

〈T f ,h〉 = 〈T∂T f ,h〉 = 〈T f −PT f ,h〉 = 〈T f −PT f ,Ph〉 = 〈PT f −PT f ,h〉 = 0,

implying T f ⊥ A2(Ω). Here in the first equality we used the fact that ∂T f = f on D ; in the second
equality we used (7) with f replaced by T f ; in the third equality we used the fact that Ph = h when
h ∈ A2(D); in the fourth equality we used the projection properties of P , i.e., P∗ = P = P 2. Thus
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T is the canonical solution operator of ∂ on D . The Sobolev regularity of T follows immediately
from (5) and (8). □

Remark 4.

(a) We can further make use of Theorem 3 and the Sobolev embedding theorem to conclude
that the canonical solution operator T sends W k,∞(D) into C k,α(D) for all 0 <α< 1 with

∥T f ∥C k,α(D) ≤C∥ f ∥W k,∞(D),

(b) Another well-known solution operator T̃ of ∂ on D is given in terms of the universal
Cauchy kernel as follows.

T̃ f :=− 1

π

∫
D

f (w)

w −· dνw in D.

It was proved by Prats in [21] that T̃ enjoys a similar Sobolev regularity as T (see also [19]
for a much simpler proof using Caldrón–Zygmund’s classical singular integral theory):

∥T̃ f ∥W k+1,p (D) ≲ ∥ f ∥W k,p (D).

3. Canonical solutions on product domains

Let Ω := D1 × ·· · × Dn ⊂ Cn , n ≥ 2, where each D j is a bounded planar domain with smooth
boundary. Denote by P j the Bergman projection operator of D j , j = 1, . . . ,n. Then the Bergman
projection P ofΩ satisfies

P = P1 · · ·Pn . (9)

Let T j be the canonical solution operator on D j defined in (8), with D replaced by D j ,
j = 1, . . . ,n. Given a ∂-closed (0,1) form f = ∑n

j=1 f j dz j ∈ Lp (Ω), it was shown in [2, Lemma 4.4]

and [15, Theorem 2.5] (or, through a repeated application of (7) together with the ∂-closedness of
f ) that

T f = T1 f1 +T2P1 f2 +·· ·+TnP1 · · ·Pn−1 fn (10)

is the canonical solution to ∂u = f on Ω. Note that when j ̸= k, the two operators P j and Tk

(or Pk ) commute on Lp (Ω) due to Fubini’s theorem. The following proposition gives the Sobolev
boundedness of T j and P j onΩ.

Proposition 5. LetΩ := D1×·· ·×Dn ⊂Cn , where each D j is a bounded domain in Cwith smooth
boundary, j = 1, . . .n. Then T j and P j are bounded operators in W k,p (Ω), k ∈Z+∪ {0}, 1 < p <∞.
Namely, for all f ∈W k,p (Ω),

∥T j f ∥W k,p (Ω) ≲ ∥ f ∥W k,p (Ω); ∥P j f ∥W k,p (Ω) ≲ ∥ f ∥W k,p (Ω).

Proof. For simplicity yet without loss of generality, assume j = 1 and n = 2. Denote by ∇ j

the gradient in the z j variable. Since ∂1T1 = i d and ∂1P1 = 0, we only need to prove for all
k1,k2 ∈Z+∪ {0}, k1 +k2 = k,

∥∂k1
1 T1∇k2

2 f ∥Lp (Ω) ≲ ∥ f ∥W k,p (Ω); ∥∂k1
1 P1∇k2

2 f ∥Lp (Ω) ≲ ∥ f ∥W k,p (Ω).

In fact, making use of Theorem 3 and Fubini’s theorem,

∥∂k1
1 T1∇k2

2 f ∥p
Lp (Ω) =

∫
D2

∥∥∥∂k1
1 T1

(
∇k2

2 f
)

( · , w2)
∥∥∥p

Lp (D1)
dνw2

≲
k1∑

m1=0

∫
D2

∥∥∥∇m1
1 ∇k2

2 f ( · , w2)
∥∥∥p

Lp (D1)
dνw2 ≲ ∥ f ∥p

W k,p (Ω)
.

The estimate for P1 is done similarly with an application of Theorem 2. □
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In particular, the proposition states that T j does not lose Sobolev regularity. This estimate of
T j is also the best that one can expect when n ≥ 2. This is because T j only improves the regularity
in the z j direction and has no smoothing effect on the rest of the variables.

Proof of Theorem 1. It is a direct consequence of Proposition 5 and (10). □

Proposition 5 and (9) also immediately give the following Sobolev regularity of the Bergman
projection operator P on general product domains. We mention that the Sobolev regularity of P
on the polydisc was due to [8, 11].

Theorem 6. Let Ω := D1 × ·· · ×Dn ⊂ Cn ,n ≥ 1, where each D j is a bounded domain in C with
smooth boundary, j = 1, . . . ,n. The Bergman projection P is (or, extends as) a bounded operator in
W k,p (Ω), k ∈Z+∪ {0}, 1 < p <∞. Namely, for any f ∈W k,p (Ω),

∥P f ∥W k,p (Ω) ≲ ∥ f ∥W k,p (Ω).

Denote by △2 the bidisc in C2. The following Kerzman-type example demonstrates that the ∂
problem in general does not improve the Sobolev regularity. In this sense the Sobolev estimate of
the canonical solution operator in Theorem 1 is sharp.

Example 7. For each k ∈ Z+ ∪ {0} and 1 < p < ∞, consider f = (z2 − 1)k− 2
p dz1 on △2 if p ̸= 2,

or f = (z2 −1)k−1 log(z2 −1)dz1 on △2 if p = 2, 1
2π < arg(z2 −1) < 3

2π. Then f ∈ W k,q (△2) for all
1 < q < p, and is ∂-closed on △2. However, there does not exist a solution u ∈W k,p (△2) to ∂u = f
on △2.

Proof. One can directly verify that f ∈W k,q (△2) for all 1 < q < p and is ∂-closed on △2. Suppose

there exists some u ∈ W k,p (△2) satisfying ∂u = f on △2. Then u = (z2 −1)k− 2
p z1 +h ∈ W k,p (△2)

for some holomorphic function h on △2. For each (r, z2) ∈U := (0,1)×△⊂R3, consider

v(r, z2) :=
∫
|z1|=r

u(z1, z2)dz1.

By Fubini’s theorem and Hölder’s inequality,

∥∂k
2 v∥p

Lp (U ) =
∫

U

∣∣∣∣∫|z1|=r
∂k

2 u(z1, z2)dz1

∣∣∣∣p

dνz2 dr =
∫
|z2|<1

∫ 1

0

∣∣∣∣r ∫ 2π

0
|∂k

2 u(r e iθ, z2)|dθ
∣∣∣∣p

dr dνz2

≲
∫
|z2|<1

∫ 1

0

∫ 2π

0
|∂k

2 u(r e iθ , z2)|p dθr dr dνz2 ≤ ∥u∥p

W k,p (△2)
<∞.

Thus ∂k
2 v ∈ Lp (U ).

On the other hand, by Cauchy’s theorem, for each (r, z2) ∈U ,

∂k
2 v(r, z2) =Ck,p

∫
|z1|=r

(z2 −1)−
2
p z1dz1 =Ck,p (z2 −1)−

2
p

∫
|z1|=r

r 2

z1
dz1 = 2πCk,p r 2i (z2 −1)−

2
p

for some non-zero constant Ck,p depending only on k and p. However, r 2(z2−1)−
2
p ∉ Lp (U ). This

is a contradiction! □
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