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Abstract. A pro-p Cappitt group is a pro-p group G such that S̃(G) = 〈L ⩽c G |L ⋪G〉 is a proper subgroup (i.e.
S̃(G) ̸= G). In this paper we prove that non-abelian pro-p Cappitt groups whose torsion subgroup is closed
and it has finite exponent. This result is a natural continuation of main result of the first author [7]. We also
prove that in a pro-p Cappitt group its subgroup commutator is a procyclic central subgroup. Finally we show
that pro-2 Cappitt groups of exponent 4 are pro-2 Dedekind groups. These results are pro-p versions of the
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1. Introduction

Profinite groups are totally disconnected compact Hausdorff topological groups. Such groups
can be seen as projective limits of finite groups (see Ribes–Zalesskii [9] or Wilson [12]).

We recall that a totally disconnected compact Hausdorff group G is called a profinite torsion
group (or periodic) if all of its elements are of finite order.

One motivation for studying these groups is the following open question due Hewitt–Ross (see
Open Question 4.8.5b in [9]): Is a profinite torsion group necessarily of finite exponent?

In celebrated paper [13], Zel′manov proves that a finitely generated pro-p torsion group is
finite. Therefore the question above is open for infinitely generated torsion groups.

In [3] and [4], Herfort proves that a profinite group G whose order is divisible by infinitely many
different primes has a procyclic subgroup with the same property. Otherwise if G is a profinite
torsion group then the order of G is divisible by only finitely many distinct primes.

As main result in this paper we prove that a infinitely generated non-abelian pro-p Cappitt
group has finite exponent. This result is the profinite version of second part of Theorem 1 in [1].
In [7] the first author of this paper proves the first part of the our main result (see Theorem A).
Also we obtained other related results of independent interest (see Theorem B).
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2. Preliminaries

The standard notation is in accordance with [7], [9] and [12].
We recall that an abstract group (finite or infinite) is called a Dedekind group if every subgroup

is normal. As in [1], for any group G , we define S(G) to be the subgroup of G generated by
all the subgroups which are not normal in G , i.e. S(G) = 〈N |N ≤ G and N ̸⊴ G〉. Note that G
is a Dedekind group if and only if S(G) = {1}. Also S(G) is a characteristic subgroup of G and
the quotient group of G by S(G) is a Dedekind group. A group is to be a Cappitt group if it
satisfies S(G) ̸= G , these groups are generalizations of Dedekind groups (see for example Kappe
and Reboli [5] or Cappitt [1]).

In the profinite version, as in [7] and [8], a profinite Dedekind group will be a profinite group
in which every closed subgroup is normal. A profinite non-abelian Dedekind group will be called
a profinite Hamiltonian group.

Remark 1. If each procyclic subgroup of a profinite group G is normal, then G is a profinite
Dedekind group (see Remark 1, p. 90-91 in [8]).

A. Porto and V. Bessa [8] classified these groups as follow

Theorem 2. A profinite group G is Dedekind if, and only if, G is abelian or there exists a finite set
of odd primes J and a natural number e such that

G ∼=Q8 × Ẽ × ∏
p∈J

(
e∏

i=1

( ∏
m(i ,p)

Cp i

))
,

where Q8 is the quaternion group of order 8, Ẽ is an elementary abelian pro-2 group and each
m(i , p) is a cardinal number. In particular, if G is a profinite Hamiltonian group then G has finite
exponent.

Define G ′ as the topological closure in G of the abstract commutator subgroup [G ,G] =
〈[g ,h] |g ,h ∈ G〉, where [g ,h] = g−1h−1g h is the commutator of the elements g ,h ∈ G . The
abelianization of group G will be denoted by Gab = G/G ′ = G/[G ,G]. If G is a profinite group,
Gab is an abelian profinite group.

Definition. A profinite Cappitt group is a profinite group G such that S̃(G) = 〈L ⩽c G | L ⋪G〉 is a
proper subgroup of G.

This profinite version was defined firstly in [7]. For finite groups we have that S̃(G) = S(G).
Using Theorem 2, Porto gave the following characterization of profinite Cappitt groups.

Theorem 3. Let G be a profinite group satisfying {1} ̸= S̃(G) ̸=G . Then G can be expressed as direct
product H̃ × K̃ , where H̃ is a pro-p Cappitt group for some prime p and K̃ is a profinite Dedekind
group that does not contain elements of order p. Such G is nilpotent profinite of class at most 2.

Denote by Zp the p-adic integers. Consider |z| the order of an element z of a group G . For a
group G we denote tor(G) = {x ∈ G | |x| <∞} the subset of the elements of torsion of G . As in the
abstract case (see 16.2.7 in [6]), when G is a nilpotent pro-p group, then tor(G) is a subgroup of G
(not necessarily closed). A main result of this paper is the following

Theorem A. Let G be a non-abelian pro-p Cappitt group. Then G ′ is a procyclic central subgroup.
Moreover, if tor(G)⩽c G then G has finite exponent.

Remark 4. The Theorem A has immediate proof when G is a pro-2 Hamiltonian group since
G ′ = C2 is central because G has nilpotent class 2 (see Corollary 1 in [7]), and also G has finite
exponent by Theorem 2. The condition to be non-abelian is necessary in the Theorem A sinceZp

is an abelian non-periodic group satisfying all hypothesis.
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Now we present some preliminaries results that will are used throughout in the proof of the
main theorem.

Lemma 5. Let G = lim←−−i∈I
{Gi ,φi j } where {Gi ,φi j ,I } is a surjective inverse system of finite groups

(with discrete topology). Then
S̃(G) = lim←−−

i∈I

{S(Gi ),φi j |S(Gi ) },

where {S(Gi ),φi j |S(Gi ) ,I } is the associated surjective inverse system.

Proof. See Proposition 1 in [7]. □

The following facts are direct consequences of the definition of subgroups S(G),S(L), S(G/J )
and the Correspondence Theorem. In the case of abstract groups, these can be found in remark
on page 312 in [1] or Lemma 2.2 in [5].

Remark 6. If G is an abstract group with S(G) ̸=G and J is a normal subgroup of G contained in
S(G), then S(G/J ) ̸=G/J , furthermore if L is a subgroup of G containing elements of G \S(G) then
S(L) ̸= L.

Analogously to the abstract case, similar results can be shown in the category of profinite
groups, as follows.

Remark 7. If G is a profinite Cappitt group (i.e. S̃(G) ̸=G) and J is a closed normal subgroup of
G contained in S̃(G), then S̃(G/J ) ̸= G/J , furthermore if L is a closed subgroup of G containing
elements of G \ S̃(G) then S̃(L) ̸= L.

The following result is similar to Lemma 1 in [7], we will repeat the same argument for the
convenience of the reader.

Lemma 8. Let G be as in the Lemma 5. If G ̸= S̃(G) then Gi ̸= S(Gi ), ∀ i ∈I .

Proof. Suppose that there is a Gi such that S̃(Gi ) = S(Gi ) = Gi . Denote by φi : G ↠ Gi the
continuous canonical projection of the inverse limit described in Lemma 5. By assumption Gi
is generated by all its non-normal subgroups. Let L be one of these subgroups and consider
Li its inverse image by φi , clearly Li is a non-normal closed subgroup of G containing ker(φi ).
Therefore ker(φi ) ⩽ S̃(G) and by Remark 7 have G/ker(φi ) ̸= S̃(G/ker(φi )) = S(G/ker(φi )), so
|S(Gi )| < |Gi | <∞, a contradiction. □

In accordance with the notations of the previous lemmas we obtain the following.

Lemma 9. Let G be a pro-p Cappitt group. Then G ′ is a procyclic central subgroup.

Proof. Since Cappitt groups are nilpotent of class at most 2 (see Corollary 1 in [7]) we have
G ′ = [G ,G] ⩽ Z (G). Consider G = lim←−−i∈I

{Gi ,φi j } where {Gi ,φi j ,I } is a surjective inverse system
of finite p-groups (with discrete topology). From Lemma 8 it follows that Gi ̸= S(Gi ), ∀ i ∈ I .
Now, if any Gi is abelian we have (Gi ) ′ = {1}. On the other side, if Gi is a non-abelian p-group then
from Theorem 1 in [1], we have (Gi )′ is a finite cyclic p-group. Note that φi (G ′) = (Gi ) ′,∀ i ∈ I ,
hence from Corollary 1.1.8 in [9] we have G ′ = lim←−−i∈I

{(Gi )′,φi j } whence it follows that G ′ is
procyclic. □

The preceding result is a generalization of the Corollary on page 314 in Cappitt [1]. Kappe and
Reboli show that the proof given by Cappitt was incorrect and give a new proof for this fact, this
is the content of Theorem 4.2 in Kappe and Reboli [5].

Remark 10. If G is a non-abelian pro-p Cappitt group, then G is nilpotent of class 2 (see Corol-
lary 1 in [7]). In this case G ′ ⩽ Z (G) and therefore [[x, y], z] = 1, ∀ x, y, z ∈G . By Lemma 5.42(i) in
Rotman (see [11]), we have that [xn , y] = [x, yn] = [x, y]n , ∀ n ∈Z.
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Lemma 11. Let G be a non-abelian pro-p Cappitt group. If a ∈G \ S̃(G) has infinite order, then a
is central.

Proof. Let a be an element in G \ S̃(G) of infinite order, hence |a| = p∞ and 〈a〉 ∼= Zp . If a is not
central in G then there is g ∈ G such that [a, g ] ̸= 1, moreover g−1ag ∈ 〈a〉 because 〈a〉◁G . By
Remark 10 we have g−1ag a−1 = [g , a−1] = [g , a]−1 = [a, g ] ∈ 〈a〉. Since Zp is a free pro-p group
on {1}, there is a unique continuous epimorphism ζ :Zp →〈a〉 such that ζ(1) = a, therefore each
element of 〈a〉 can be written as aλ = ζ(λ) for some λ ∈ Zp (see similar notation in Section 4.1
on [9]). Since 〈a〉 is infinite it follows that ζ is an isomorphism (see Proposition 2.7.1 in [9]).
In particular 1 ̸= [a, g ] = aδ for some δ ∈ Zp . Let (ni )i∈N be a sequence of integers converging
to δ on Zp , in other words choose the ni such that limi→∞ ni = δ (note that 〈a〉 = Zp is a
complete metric space and Z = Zp ). Adapting the argument from Lemma 4.1.1 in [9] to Zp we
have limi→∞ [a, g ]ni = [a, g ]δ. By properties of limits of sequences in metric spaces together with
Remark 10 we obtain

[a, g ]δ = lim
i→∞

[ani , g ] = lim
i→∞

(ani )−1 · lim
i→∞

g−1 · lim
i→∞

ani · lim
i→∞

g = [aδ, g ].

As G ′ is central (see Remark 10) we have [a, g ] = aδ ∈ Z (G). So [[a, g ], g ] = [aδ, g ] = [a, g ]δ = 1,
which implies that a2·δ = ζ(2 ·δ) = 1, a contradiction because Ker(ζ) = {0}. Therefore a is central
in G . □

Proposition 12. Let G be a non-abelian pro-p Cappitt group and tor(G) is a closed subgroup of
G. Then G is a periodic group.

Proof. Suppose that G contains elements of infinite order. Since G is nilpotent whose class
is two (see Corollary 1 in [7]), it is generated by these elements, not all of which lie in S̃(G)

otherwise we would have G = 〈
G \ S̃(G)

〉= 〈tor(G)〉 = tor(G), a contradiction. Let a be an element
in G \ S̃(G) of infinite order. From Lemma 11 a is central. Now if w is a non-central element
of G \ S̃(G) then aw, a2w are non-central elements of infinite order, so both lie in S̃(G). Thus
a2w w−1a−1 = a ∈ S̃(G), contradicting the choice of a. Therefore every element of G \ S̃(G) is
central and thus G is abelian since G \ S̃(G) generates G , a contradiction. □

Example. Note that the condition S̃(G) ̸= G in the Proposition 12 is necessary, for instance
G = (∏

r∈N Zr
)×Q8 is a non-abelian pro-2 non-periodic group with tor(G) = Q8 and Zr

∼= Z2,
∀ r ∈ N. We show that S̃(G) = G . Fix n ∈ N, indeed, it is sufficient we consider the following
families of procyclic subgroups of G isomorphic to Z2, that we will denote by

In = 〈(0, . . . ,0,1n ,0, . . . ,0, i )〉,
Jn = 〈(0, . . . ,0,1n ,0, . . . ,0, j )〉,

Kn = 〈(0, . . . ,0,1n ,0, . . . ,0,k)〉,
where 1n := (0, . . . ,0,1n ,0, . . . ,1) is the generator of Zn

∼=Z2. Observe that

(0, . . . ,0,1n ,0, . . . ,0, i ) j = (0, . . . ,0,1n ,0, . . . ,0,−i ) ̸∈ In ,

so inductively In is not a normal subgroup of G . Similarly, it can be shown also that Jn and
Kn are not normal subgroups of G for each n ∈ N. Therefore by the definition of S̃(G) we have
that In , Jn and Kn are contained in S̃(G). Now consider the following elements of S̃(G), xn =
(0, . . . ,0,1n ,0, . . . , i ) and yn = (0, . . . ,0,1n ,0, . . . ,0, j ). Note that xn · y−1

n = (0, . . . ,0,−k) := −k, so k ∈
S̃(G). Similarly i , j ∈ S̃(G) and this implies that Q8 is contained in S̃(G). Since (0, . . . ,0,1n ,0, . . . ,0,k)
and (0, . . . ,0,−k) are in S̃(G) we have 1n := (0, . . . ,1n ,0, . . . ,0,1) belongs to S̃(G), and therefore
S̃(G) =G .
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3. Proof of the Theorem A

We are now ready to prove a main result of this paper.

Proof. The fact that G ′ is a procyclic central subgroup follows from Lemma 9. If G is Dedekind
(i.e. pro-2 Hamiltonian group) the result follows immediately from Theorem 2 and Remark 4.
From now on we will consider that S̃(G) ̸= {1}. Since tor(G) is closed in G , from Proposition 12
follows that G is a pro-p torsion group. If G is finitely generated as pro-p group then from
celebrated Zel′manov Theorem (see Theorem 4.8.5c in [9]) we have that G is a finite p-group
and the result follows. Therefore we can suppose that G is an infinitely generated pro-p and {1} ̸=
S̃(G) ̸=G . Also since G is a torsion group and G ′ is procyclic, it follows from Proposition 2.7.1 [9]
that G ′ =Cpn for some n ∈N fixed.

Suppose by contradiction that G has no finite exponent. So there are p-elements of G , say,
x1, x2, . . . , xk , . . . , (k ∈N), such that |xk |→∞ for k →∞ (elements of unlimited order).

Let Gab =G/[G ,G] be the abelianization of G . It is straightforward prove that Gab is an abelian
pro-p torsion group because G is a torsion group. From Theorem 4.3.8 in [9] we obtain that

Gab = ∏
m(1)

Cp × ∏
m(2)

Cp2 × . . .× ∏
m(e)

Cpe ,

where each m(i ) is a cardinal number, e is some natural number, with at least one m(i ) infinite
because Gab is infinitely generated.

For each g ∈ G we have (gG ′)pe = G ′ since pe is the finite exponent of Gab . Therefore for all
k ∈Nwe have

G ′ = (xkG ′)pe = xpe

k G ′ =⇒ xpe

k ∈G ′ =Cpn .

Thus we obtain
(xk

pe
)pn = xpe+n

k = 1.

Therefore the order of each xk is limited by pe+n , ∀ k ∈ N, a contradiction. We conclude that G
has finite exponent. □

4. Pro-2 Cappitt groups of exponent 4

The following result shows that the only pro-2 Cappitt groups of exponent 4 are pro-2 Dedekind
groups.

Theorem B. If G is a pro-2 group of exponent 4 then either S̃(G) = {1} or S̃(G) =G.

Proof. Suppose that {1} ̸= S̃(G) ̸= G . It is clear that not every procyclic subgroup of G is normal,
otherwise S̃(G) = {1} (see Remark 1). Then consider J = 〈x〉 a non-normal procyclic subgroup of G .
Let H = 〈x, y, z〉⩽c G such that y ̸∈ NG (J ) and z ̸∈ S̃(G). By construction and Remark 6 we have that
H is a 3-generated group of exponent 4 with {1} ̸= S̃(H) ̸= H and 〈z〉⊴c H . Since H has exponent
4, we have that H is a finitely generated pro-2 torsion group, it follows from celebrated Zel′manov
Theorem that H is a finite non-abelian 2-group (see Theorem 4.8.5c in [9]). From Corollary 1 in
Porto [7] and Lemma 9 we have that G and H are nilpotent groups of class 2 with H ′ being cyclic,
so H ′ ∼= C2 or H ′ ∼= C4. Take a minimal set of generators of H chosen to lie outside S̃(H) = S(H),
say, {h1,h2, . . . ,hl }, where l ≥ 2. Note that H ′ = 〈

[hi ,h j ] | i , j ∈ {1,2, . . . , l }, i ̸= j
〉

(see p. 129 in [10]).
Let Hi = 〈hi 〉 for each i ∈ {1,2, . . . , l }. Since hi ̸∈ S(H) we have Hi ⊴ H and so [hi ,h j ] ∈ Hi ∩H j for
each i , j ∈ {1,2, . . . , l }. Note that [hi ,h j ] belongs to Hm for every i , j ,m ∈ {1,2, . . . , l }, so H ′ ⩽ Hm

for each m ∈ {1,2, . . . , l }. If H ′ ∼=C4 we have that H ′ = H1 = H2 = ·· · = Hm , a contradiction since H
is not abelian. Therefore H ′ has order 2. Note that H is a finite 2-group and it is 3-generated with
exponent 4, so it is well-know that its order is at most 64. A GAP computation using [2] shows that
H is either Dedekind or S̃(H) = S(H) = H , a contradiction. □
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For example, a GAP [2] check yields, the SmallGroup(16, 6), SmallGroup(27, 4) and Small-
Group(64, 28) are finite Cappitt groups with commutator subgroup C2, C3 and C4, respectively.

In Corollary 4.4 in [5], Kappe and Reboli prove that if G is a p-group Cappitt, then G ′ is a finite
cyclic p-group. Finally, in view of this result, example above, Lemma 9 and Theorem A, we can
pose the following questions.

5. Open questions about profinite Cappitt groups

(1) Are there non-abelian non-periodic pro-p Cappitt groups? If G is not torsion, is G
virtually p-adic?

(2) If G is a pro-p group satisfying {1} ̸= S̃(G) ̸=G , do we always have that G ′ ∼=Cpn for some
n ∈N?
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