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Abstract. In this paper, the main aim is to give some characterizations of the boundedness of the maximal
or nonlinear commutator of the p-adic fractional maximal operator M

p
α with the symbols belong to the p-

adic Lipschitz spaces in the context of the p-adic version of variable Lebesgue spaces, by which some new
characterizations of the Lipschitz spaces and nonnegative Lipschitz functions are obtained in the p-adic field
context. Meanwhile, Some equivalent relations between the p-adic Lipschitz norm and the p-adic variable
Lebesgue norm are also given.
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1. Introduction and main results

During the last several decades, the p-adic analysis has attracted extensive attention due to its
important applications in mathematical physics, science and technology, for instance, p-adic
harmonic analysis, p-adic pseudo-differential equations, p-adic wavelet theory, etc.(see [2,19,26,
29]). Moreover, the theory of variable exponent function spaces has been intensely investigated
in the past twenty years since some elementary properties were established by Kováčik and
Rákosník in [21].

It is worthwhile to note that the fractional maximal operator plays an important role in real and
harmonic analysis and applications, such as potential theory and partial differential equations
(PDEs), since it is intimately related to the Riesz potential operator, which is a powerful tool in
the study of the smooth function spaces (see [4, 6, 13]).
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On the other hand, there are two major reasons why the study of the commutators has got
widespread attention. The first one is that the boundedness of commutators can produce some
characterizations of function spaces [18, 24]. The other one is that the theory of commutators is
intimately related to the regularity properties of the solutions of certain PDEs [5, 9, 12, 25].

Let T be the classical singular integral operator. The Coifman–Rochberg–Weiss type commu-
tator [b,T ] generated by T and a suitable function b is defined by

[b,T ] f = bT ( f )−T (b f ). (1)

A well-known result shows that [b,T ] is bounded on Ls (Rn) for 1 < s < ∞ if and only if b ∈
BMO(Rn) (the space of bounded mean oscillation functions). The sufficiency was provided
by [10] and the necessity was obtained by [18]. Furthermore, [18] also established some char-
acterizations of the Lipschitz spaceΛβ(Rn) via commutator (1) and proved that [b,T ] is bounded
from Ls (Rn) to Lq (Rn) for 1 < s < n/β and 1/s −1/q = β/n with 0 < β< 1 if and only if b ∈Λβ(Rn)
(see also [24]).

Denote by N, Z, Q and R the sets of positive integers, integers, rational numbers and real
numbers, respectively. For γ ∈ Z and a prime number p, let Qn

p be a vector space over the p-
adic field Qp , Bγ(x) denote a p-adic ball with center x ∈Qn

p and radius pγ (for the notations and
notions, see Section 2 below).

Let 0 ≤α< n, for a locally integrable function f , the p-adic fractional maximal function of f is
defined by

M
p
α ( f )(x) = sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

| f (y)|dy,

where the supremum is taken over all p-adic balls Bγ(x) ⊂ Qn
p and |E |h represents the Haar

measure of a measurable set E ⊂ Qn
p . When α = 0, we simply write M p instead of M

p
0 , which

is the p-adic Hardy–Littlewood maximal function defined as

M p ( f )(x) = sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|h

∫
Bγ(x)

| f (y)|dy.

The reader can refer to Stein [27] for the definition on the Euclidean case.
Similar to (1), we can define two different kinds of commutator of the fractional maximal

function as follows.

Definition 1. Let 0 ≤α< n and b be a locally integrable function onQn
p .

(1) The maximal commutator of M
p
α with b is given by

M
p
α,b( f )(x) = sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

|b(x)−b(y)|| f (y)|dy,

where the supremum is taken over all p-adic balls Bγ(x) ⊂Qn
p .

(2) The nonlinear commutator [b,M p
α ] generated by M

p
α and b is defined by

[b,M p
α ]( f )(x) = b(x)M p

α ( f )(x)−M
p
α (b f )(x).

When α= 0, we simply denote by [b,M p ] = [b,M p
0 ] and M

p
b =M

p
0,b .

We call [b,M p
α ] the nonlinear commutator because it is not even a sublinear operator, al-

though the commutator [b,T ] is a linear one. It is worth noting that the nonlinear commuta-
tor [b,M p

α ] and the maximal commutator M
p
α,b essentially differ from each other. For example,

M
p
α,b is positive and sublinear, but [b,M p

α ] is neither positive nor sublinear
Denote by M and Mα the classical Hardy–Littlewood maximal function and the fractional

maximal function in Rn respectively. In fact, the nonlinear commutator [b, M ] and [b, Mα] have
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been studied by many authors in the Euclidean spaces, for instance, [1,3,14,23,32,33,35–38] etc.
When the symbol b belongs to BMO(Rn), [3] studied the necessary and sufficient conditions for
the boundedness of [b, M ] in Lq (Rn) for 1 < q < ∞. Zhang and Wu obtained similar results for
the fractional maximal function in [35] and extended the mentioned results to variable exponent
Lebesgue spaces in [36, 37]. When the symbol b belongs to Lipschitz spaces, [34, 38] gave the
necessary and sufficient conditions for the boundedness of [b, Mα] on Orlicz spaces and variable
Lebesgue spaces respectively. And recently, [31] considered some new characterizations of a
variable version of Lipschitz spaces in terms of the boundedness of commutators of fractional
maximal functions or fractional maximal commutators in the context of the variable Lebesgue
spaces.

On the other hand, [15] gave the characterization of p-adic Lipschitz spaces in terms of the
boundedness of commutators of maximal function M p in the context of the p-adic Lebesgue
spaces and Morrey spaces when the symbols b belong to p-adic Lipschitz spacesΛβ(Qn

p ). And [8]
proved the boundedness of the fractional maximal and the fractional integral operator in the p-
adic variable exponent Lebesgue spaces.

Inspired by the above literature, we focus on the case of p-adic fields Qp , in some sense it
can also be pointed out that our work was motivated by the standard harmonic analysis on the
Euclidean space, the purpose of this paper is to study the boundedness of the p-adic fractional
maximal commutator M

p
α,b or the nonlinear commutator [b,M p

α ] generated by p-adic fractional

maximal function M
p
α over p-adic variable exponent Lebesgue spaces, where the symbols b

belong to the p-adic Lipschitz spaces, by which some new characterizations of the p-adic version
of Lipschitz spaces are given.

Let α ≥ 0, for a fixed p-adic ball B∗, the fractional maximal function with respect to B∗ of a
locally integrable function f is given by

M
p
α,B∗ ( f )(x) = sup

γ∈Z
Bγ(x)⊂B∗

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

| f (y)|dy,

where the supremum is taken over all the p-adic ball Bγ(x) with Bγ(x) ⊂ B∗ for a fixed p-adic ball
B∗. When α= 0, we simply write M

p
B∗ instead of M

p
0,B∗ .

Our main results can be stated as follows, which are to study the boundedness of M
p
α,b and

[b,M p
α ] in the context of p-adic variable exponent Lebesgue spaces when the symbol belongs to a

p-adic version of Lipschitz spacesΛβ(Qn
p ) (see Section 2 below). And some new characterizations

of the Lipschitz spaces via such commutators are given.

Theorem 2. Let 0 <β< 1, 0 <α<α+β< n and b be a locally integrable function onQn
p . Then the

following assertions are equivalent:

(A.1) b ∈Λβ(Qn
p ) and b ≥ 0.

(A.2) The commutator [b,M p
α ] is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for all r ( · ), q( · ) ∈

C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n.

(A.3) The commutator [b,M p
α ] is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for some r ( · ), q( · ) ∈

C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n.

(A.4) There exists some r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )−

(α+β)/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

<∞. (2)



180 Jianglong Wu and Yunpeng Chang

(A.5) For all r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n,

such that (2) holds.

For the case of r ( · ) and q( · ) being constants, we have the following result from Theorem 2,
which is new even for this case.

Corollary 3. Let 0 < β < 1, 0 < α < α+β < n and b be a locally integrable function on Qn
p . Then

the following statements are equivalent:

(C.1) b ∈Λβ(Qn
p ) and b ≥ 0.

(C.2) The commutator [b,M p
α ] is bounded from Lr (Qn

p ) to Lq (Qn
p ) for all r, q with 1 < r < n

α+β
and 1/q = 1/r − (α+β)/n.

(C.3) The commutator [b,M p
α ] is bounded from Lr (Qn

p ) to Lq (Qn
p ) for some r, q with 1 < r < n

α+β
and 1/q = 1/r − (α+β)/n.

(C.4) There exists some r, q with 1 < r < n
α+β and 1/q = 1/r − (α+β)/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

(
1

|Bγ(x)|h

∫
Bγ(x)

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣q
dy

)1/q

<∞. (3)

(C.5) For all r, q with 1 < r < n
α+β and 1/q = 1/r − (α+β)/n, such that (3) holds.

Remark 4.

(i) For the case α= 0, the partial results of Corollary 3 were given in [15, Theorem 4].
(ii) Moreover, it was proved in [15, Theorem 4], see also Lemma 22 below, that b ∈ Λβ(Qn

p )
and b ≥ 0 if and only if

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

(
1

|Bγ(x)|h

∫
Bγ(x)

∣∣∣b(y)−M
p
Bγ(x)(b)(y)

∣∣∣q
dy

)1/q

<∞. (4)

Compared with (4), (3) gives a new characterization for nonnegative Lipschitz functions.

In particular, when α= 0, the results are also true come from Theorem 2 and Corollary 3. Now
we only give the case in the context of the p-adic version of variable exponent Lebesgue spaces,
and it is new.

Corollary 5. Let 0 < β < 1 and b be a locally integrable function on Qn
p . Then the following

statements are equivalent:

(C.1) b ∈Λβ(Qn
p ) and b ≥ 0.

(C.2) The commutator [b,M p ] is bounded from Lr ( · )(Qn
p ) to Lq( · )(Qn

p ) for all r ( · ), q( · ) ∈
C log(Qn

p ) with r ( · ) ∈P(Qn
p ), r+ < n

β and 1/q( · ) = 1/r ( · )−β/n.

(C.3) The commutator [b,M p ] is bounded from Lr ( · )(Qn
p ) to Lq( · )(Qn

p ) for some r ( · ), q( · ) ∈
C log(Qn

p ) with r ( · ) ∈P(Qn
p ), r+ < n

β and 1/q( · ) = 1/r ( · )−β/n.

(C.4) There exists some r ( · ), q( · ) ∈ C log(Qn
p ) with r ( · ) ∈ P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−

β/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

∥∥∥(
b −M

p
Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

<∞. (5)

(C.5) For all r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−β/n, such that

(5) holds.
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Theorem 6. Let 0 <β< 1, 0 <α<α+β< n and b be a locally integrable function onQn
p . Then the

following assertions are equivalent:

(B.1) b ∈Λβ(Qn
p ).

(B.2) The commutator M
p
α,b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for all r ( · ), q( · ) ∈C log(Qn

p )
with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n.

(B.3) The commutator M
p
α,b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for some r ( · ), q( · ) ∈

C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n.

(B.4) There exists some r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )−

(α+β)/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

∥∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

<∞. (6)

(B.5) For all r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
α+β and 1/q( · ) = 1/r ( · )− (α+β)/n,

such that (6) holds.

When r ( · ) and q( · ) are constants, we get the following result from Theorem 6.

Corollary 7. Let 0 < β < 1, 0 < α < α+β < n and b be a locally integrable function on Qn
p . Then

the following statements are equivalent:

(C.1) b ∈Λβ(Qn
p ).

(C.2) The commutator M
p
α,b is bounded from Lr (Qn

p ) to Lq (Qn
p ) for all r, q with 1 < r < n

α+β and
1/q = 1/r − (α+β)/n.

(C.3) The commutator M
p
α,b is bounded from Lr (Qn

p ) to Lq (Qn
p ) for some r, q with 1 < r < n

α+β
and 1/q = 1/r − (α+β)/n.

(C.4) There exists some r, q with 1 < r < n
α+β and 1/q = 1/r − (α+β)/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

(
1

|Bγ(x)|h

∫
Bγ(x)

∣∣∣b(y)−bBγ(x)

∣∣∣q
dy

)1/q

<∞. (7)

(C.5) For all r, q with 1 < r < n
α+β and 1/q = 1/r − (α+β)/n, such that (7) holds.

Remark 8.

(i) For the case α= 0, Corollary 7 is also holds, and the equivalence of (C.1), (C.2) and (C.3)
was proved in [15, Theorem 1].

(ii) Moreover, the equivalence of (C.1), (C.4) and (C.5) is contained in Lemma 21 below.

Finally, we give the follows result, which is valid and new, from Theorem 6 with α= 0.

Corollary 9. Let 0 < β < 1 and b be a locally integrable function on Qn
p . Then the following

statements are equivalent:

(C.1) b ∈Λβ(Qn
p ).

(C.2) The commutator M
p
b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for all r ( · ), q( · ) ∈ C log(Qn

p )
with r ( · ) ∈P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−β/n.

(C.3) The commutator M
p
b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for some r ( · ), q( · ) ∈C log(Qn

p )
with r ( · ) ∈P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−β/n.
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(C.4) There exists some r ( · ), q( · ) ∈ C log(Qn
p ) with r ( · ) ∈ P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−

β/n, such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

∥∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

<∞. (8)

(C.5) For all r ( · ), q( · ) ∈C log(Qn
p ) with r ( · ) ∈P(Qn

p ), r+ < n
β and 1/q( · ) = 1/r ( · )−β/n, such that

(8) holds.

Throughout this paper, the letter C always stands for a constant independent of the main
parameters involved and whose value may differ from line to line. In addition, we give some
notations. Here and hereafter |E |h will always denote the Haar measure of a measurable set E on
Qn

p and byχE denotes the characteristic function of a measurable set E ⊂Qn
p .

2. Preliminaries and lemmas

To prove the main results of this paper, we first recall some necessary notions and remarks.

2.1. p-adic fieldQp

Firstly, we introduce some basic and necessary notations for the p-adic field.
Let p ≥ 2 be a fixed prime number in Z and Gp = {0,1, . . . , p −1}. For every non-zero rational

number x, by the unique factorization theorem, there is a unique γ= γ(x) ∈Z, such that x = pγ m
n ,

where m,n ∈Z are not divisible by p (i.e. p is coprime to m, n). Define the mapping | · |p :Q→R+

as follows:

|x|p =
{

p−γ if x ̸= 0,

0 if x = 0.

The p-adic absolute value | · |p is endowed with many properties of the usual real norm | · | with
an additional non-Archimedean property (i.e., {|m|p ,m ∈Z} is bounded)

|x + y |p ≤ max{|x|p , |y |p }.

In addition, | · |p also satisfies the following properties:

(1) (positive definiteness) |x|p ≥ 0. Specially, |x|p = 0 ⇐⇒ x = 0.
(2) (multiplicativity) |x y |p = |x|p |y |p .
(3) (non-Archimedean triangle inequality) |x + y |p ≤ max{|x|p , |y |p }. The equality holds if

and only if |x|p ̸= |y |p .

Denote byQp the p-adic field which is defined as the completion of the field of rational numbers
Qwith respect to the p-adic absolute value | · |p .

From the standard p-adic analysis, any non-zero element x ∈Qp can be uniquely represented
as a canonical series form

x = pγ(a0 +a1p +a2p2 +·· · ) = pγ
∞∑

j=0
a j p j ,

where a j ∈ Gp and a0 ̸= 0, and γ = γ(x) ∈ Z is called as the p-adic valuation of x. The series
converges in the p-adic absolute value since the inequality |a j p j |p ≤ p− j holds for all j ∈N.

Moreover, the n-dimensional p-adic vector space Qn
p = Qp × ·· · ×Qp (n ≥ 1), consists of all

points x = (x1, . . . , xn), where xi ∈Qp (i = 1, . . . ,n), equipped with the following absolute value

|x|p = max
1≤ j≤n

|x j |p .
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For γ ∈Z and a = (a1, a2, . . . , an) ∈Qn
p , we denote by

Bγ(a) = {x ∈Qn
p : |x −a|p ≤ pγ}

the closed ball with the center at a and radius pγ and by

Sγ(a) = {x ∈Qn
p : |x −a|p = pγ} = Bγ(a) \ Bγ−1(a)

the corresponding sphere. For a = 0, we write Bγ(0) = Bγ, and Sγ(0) = Sγ. Note that Bγ(a) =⋃
k≤γ Sk (a) andQn

p \ {0} =⋃
γ∈Z Sγ. It is easy to see that the equalities

a0 +Bγ = Bγ(a0) and a0 +Sγ = Sγ(a0) = Bγ(a0) \ Bγ−1(a0)

hold for all a0 ∈Qn
p and γ ∈Z.

It follows from non-Archimedean triangle inequality that two balls Bγ(x) and Bγ′ (y) either do
not intersect or one of them is contained in the other, which differ from those of the Euclidean
case. And note that in the second case under conditions γ = γ′ these balls are equal. The above
properties can also be found in [20, Lemma 3.1].

Lemma 10. Let γ,γ′ ∈Z, x, y ∈Qn
p . The p-adic balls have the following properties:

(1) If γ≤ γ′, then either Bγ(x)∩Bγ′ (y) =; or Bγ(x) ⊂ Bγ′ (y).
(2) Bγ(x) = Bγ(y) if and only if y ∈ Bγ(x).

Since Qn
p is a locally compact commutative group with respect to addition, there exists a

unique Haar measure dx on Qn
p (up to positive constant multiple) which is translation invariant

(i.e., d(x +a) = dx), such that ∫
B0

dx = |B0|h = 1,

where |E |h denotes the Haar measure of measurable subset E of Qn
p . Furthermore, from this

integral theory, it is easy to obtain that∫
Bγ(a)

dx = |Bγ(a)|h = pnγ (9)

and ∫
Sγ(a)

dx = |Sγ(a)|h = pnγ(1−p−n) = |Bγ(a)|h −|Bγ−1(a)|h
hold for all a ∈Qn

p and γ ∈Z.
For more information about the p-adic field, we refer readers to [28, 30].

2.2. p-adic function spaces

In what follows, we say that a real-valued measurable function f defined on Qn
p is in Lq (Qn

p ),
1 ≤ q ≤∞, if it satisfies

∥ f ∥Lq (Qn
p ) =

(∫
Qn

p

| f (x)|q dx

)1/q

<∞, 1 ≤ q <∞ (10)

and denote by L∞(Qn
p ) the set of all measurable real-valued functions f onQn

p satisfying

∥ f ∥L∞(Qn
p ) = esssup

x∈Qn
p

| f (x)| <∞.

Here, the integral in equation (10) is defined as follows:∫
Qn

p

| f (x)|q dx = lim
γ→∞

∫
Bγ(0)

| f (x)|q dx = lim
γ→∞

∑
−∞<k≤γ

∫
Sk (0)

| f (x)|q dx,

if the limit exists.
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Some often used computational principles are worth noting. In particular, if f ∈ L1(Qn
p ), then∫

Qn
p

f (x)dx =
+∞∑

γ=−∞

∫
Sγ

f (x)dx

and ∫
Qn

p

f (t x)dx = 1

|t |np

∫
Qn

p

f (x)dx,

where t ∈Qp \ {0}, t x = (t x1, . . . , t xn) and d(t x) = |t |np dx.
We now introduce the notion of p-adic variable exponent Lebesgue spaces and give some

properties needed in the sequel (see [7] for the respective proofs).
We say that a measurable function q( · ) is a variable exponent if q( · ) :Qn

p → (0,∞).

Definition 11. Given a measurable function q( · ) defined onQn
p , we denote by

q− := essinf
x∈Qn

p

q(x), q+ := esssup
x∈Qn

p

q(x).

(1) q ′− = essinfx∈Qn
p

q ′(x) = q+
q+−1 , q ′+ = esssupx∈Qn

p
q ′(x) = q−

q−−1 .
(2) Denote by P0(Qn

p ) the set of all measurable functions q( · ) :Qn
p → (0,∞) such that

0 < q− ≤ q(x) ≤ q+ <∞, x ∈Qn
p .

(3) Denote by P1(Qn
p ) the set of all measurable functions q(· ) :Qn

p → [1,∞) such that

1 ≤ q− ≤ q(x) ≤ q+ <∞, x ∈Qn
p .

(4) Denote by P(Qn
p ) the set of all measurable functions q( · ) :Qn

p → (1,∞) such that

1 < q− ≤ q(x) ≤ q+ <∞, x ∈Qn
p .

(5) The set B(Qn
p ) consists of all measurable functions q( · ) ∈P(Qn

p ) satisfying that the Hardy–
Littlewood maximal operator M p is bounded on Lq( · )(Qn

p ).

Definition 12 (p-adic variable exponent Lebesgue spaces). Let q( · ) ∈P(Qn
p ). Define the p-adic

variable exponent Lebesgue spaces Lq( · )(Qn
p ) as follows

Lq( · )(Qn
p ) = {

f is measurable function : Fq ( f /η) <∞ for some constant η> 0
}
,

where Fq ( f ) := ∫
Qn

p
| f (x)|q(x)dx. The Lebesgue space Lq( · )(Qn

p ) is a Banach function space with
respect to the Luxemburg norm

∥ f ∥Lq( · )(Qn
p ) = inf

{
η> 0 : Fq ( f /η) =

∫
Qn

p

( | f (x)|
η

)q(x)

dx ≤ 1

}
.

Definition 13 (log-Hölder continuity [7]). Let measurable function q( · ) ∈P(Qn
p ).

(1) Denote by C
log

0 (Qn
p ) the set of all q(· ) which satisfies

γ
(
q−(Bγ(x))−q+(Bγ(x))

)≤C

for all γ ∈Z and any x ∈Qn
p , where C denotes a universal positive constant.

(2) The set C
log
∞ (Qn

p ) consists of all q( · ) which satisfies

|q(x)−q(y)| ≤ C

logp (p +min{|x|p , |y |p })

for any x, y ∈Qn
p , where C is a positive constant.

(3) Denote by C log(Qn
p ) = C

log
0 (Qn

p ) ∩C
log
∞ (Qn

p ) the set of all global log-Hölder continuous
functions q(· ).
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In what follows, we denote C (Qn
p )∩P(Qn

p ) by P log(Qn
p ). And for a function b defined on Qn

p ,
we denote

b−(x) :=−min{b,0} =
{

0, if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) = |b(x)|−b−(x). Obviously, b(x) = b+(x)−b−(x).

Definition 14 (p-adic Lipschitz space).

(1) Assume that 0 < β< 1. The p-adic version of homogeneous Lipschitz spaces Λβ(Qn
p ) is the

set of all measurable functions f onQn
p with the finite norm

∥ f ∥Λβ(Qn
p ) = sup

x,y∈Qn
p

x ̸=y

| f (x)− f (y)|
|x − y |βp

.

(2) For 1 ≤ q < ∞ and 0 ≤ β < 1, the p-adic version of Lipschitz spaces Lipq
β

(Qn
p ) (or Cam-

panato spaces) is the set of all measurable functions f onQn
p such that

∥ f ∥Lip
q
β

(Qn
p ) = sup

x∈Qn
p

γ∈Z

1

|Bγ(x)|β/n
h

(
1

|Bγ(x)|h

∫
Bγ(x)

| f (y)− fBγ(x)|q dy

)1/q

<∞,

where fBγ(x) denotes the average of f over Bγ(x), i.e., fBγ(x) = |Bγ(x)|−1
h

∫
Bγ(x) f (y)dy. In

particular, when q = 1, we use Lipβ(Qn
p ) as Lip1

β
(Qn

p ).

Remark 15 (see [22]).

(1) When 0 <β< 1,Λβ(Qn
p ) is just the homogeneous Besov–Lipschitz space.

(2) SinceΛβ(Rn) and BMO(Rn) are Campanato space when 0 <β< 1 and β= 0, respectively.
Thus, in this sense, the space BMO(Qn

p ) can be seen as a limit case ofΛβ(Qn
p ) as β→ 0.

2.3. Auxiliary propositions and lemmas

The first part of Lemma 16 may be found in [7, Theorem 5.2]. By elementary calculations, the
second of Lemma 16 can be obtained as well.

Lemma 16. Let q( · ) ∈P(Qn
p ).

(1) If q( · ) ∈C log(Qn
p ), then q( · ) ∈B(Qn

p ).
(2) The following conditions are equivalent:

(i) q( · ) ∈B(Qn
p ),

(ii) q ′( · ) ∈B(Qn
p ),

(iii) q( · )/q0 ∈B(Qn
p ) for some 1 < q0 < q−,

(iv) (q( · )/q0)′ ∈B(Qn
p ) for some 1 < q0 < q−,

where r ′ stand for the conjugate exponent of r , viz., 1 = 1
r ( · ) + 1

r ′( · ) .

Remark 17. If q( · ) ∈ B(Qn
p ) and s > 1, then sq( · ) ∈ B(Qn

p ) (for the Euclidean case see [11,
Remark 2.13] for more details).

We now present the following results related to the Hölder’s inequality. The part (1) is known
as the Hölder’s inequality on Lebesgue spaces over p-adic vector space Qn

p . And similar to the
Euclidean case, the part (2) can be deduced by simple calculations (or see [7, Lemma 3.8]).
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Lemma 18 (Generalized Hölder’s inequality on Qn
p ). Let Qn

p be an n-dimensional p-adic vector
space.

(1) Suppose that 1 ≤ q ≤ ∞ with 1
q + 1

q ′ = 1, and measurable functions f ∈ Lq (Qn
p ) and

g ∈ Lq ′
(Qn

p ). Then there exists a positive constant C such that∫
Qn

p

| f (x)g (x)|dx ≤C∥ f ∥Lq (Qn
p )∥g∥Lq′ (Qn

p ).

(2) Suppose that q1( · ), q2( · ),r ( · ) ∈ P(Qn
p ) and r ( · ) satisfy 1

r ( · ) = 1
q1( · ) + 1

q2( · ) almost every-
where. Then there exists a positive constant C such that the inequality

∥ f g∥Lr ( · )(Qn
p ) ≤C∥ f ∥Lq1( · )(Qn

p )∥g∥Lq2( · )(Qn
p )

holds for all f ∈ Lq1( · )(Qn
p ) and g ∈ Lq2( · )(Qn

p ).
(3) When r ( · ) = 1 in (2) as mentioned above, we have q1( · ), q2( · ) ∈P(Qn

p ) and 1
q1( · ) + 1

q2( · ) = 1
almost everywhere. Then there exists a positive constant C such that the inequality∫

Qn
p

| f (x)g (x)|dx ≤C∥ f ∥Lq1( · )(Qn
p )∥g∥Lq2( · )(Qn

p )

holds for all f ∈ Lq1( · )(Qn
p ) and g ∈ Lq2( · )(Qn

p ).

The following results for the characteristic functionχBγ(x) are required as well. By elementary
calculations, the first part may be obtain from the p-adic integral theory (or refer to (9)). The
second part may be founded in [8, Lemma 7], and the part (4) follows from Lemma 18(2).
Moreover, according to Lemma 16 and Lemma 19(2), the third part can also be deduced by simple
calculations. So, we omit the proofs.

Lemma 19 (Norms of characteristic functions). LetQn
p be an n-dimensional p-adic vector space.

(1) If 1 ≤ q <∞. Then there exist a constant C > 0 such that

∥χBγ(x)∥Lq (Qn
p ) = |Bγ(x)|1/q

h = pnγ/q .

(2) If q( · ) ∈C log(Qn
p ). Then

∥χBγ(x)∥Lq( · )(Qn
p ) ≤C pnγ/q(x,γ),

where

q(x,γ) =
{

q(x) if γ< 0,

q(∞) if γ≥ 0.

(3) If q( · ) ∈C log(Qn
p ) and q( · ) ∈P(Qn

p ). Then there exist a constant C > 0 such that

1

|Bγ(x)|h
∥∥χBγ(x)

∥∥
Lq( · )(Qn

p )

∥∥χBγ(x)

∥∥
Lq′( · )(Qn

p ) <C

holds for all p-adic ball Bγ(x) ⊂Qn
p .

(4) Let 0 <α< n. If q( · ), r ( · ) ∈P(Qn
p ) with r+ < n

α and 1/q( · ) = 1/r ( · )−α/n, then there exists
a constant C > 0 such that

∥χBγ(x)∥Lr ( · )(Qn
p ) ≤C |Bγ(x)|α/n

h ∥χBγ(x)∥Lq( · )(Qn
p )

holds for all p-adic balls Bγ(x) ⊂Qn
p .

Lemma 20 ([17]). Suppose f ∈Λβ(Qn
p ) and 0 <β< 1, then for any x, y ∈Qn

p , one has

| f (x)− f (y)| ≤ |x − y |βp∥ f ∥Λβ(Qn
p ).

The following are some properties of p-adic Lipschitz spaces (see [15] for more details).
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Lemma 21. Let 0 <β< 1 and 1 ≤ q <∞. If f ∈ Lipq
β

(Qn
p ).

(1) Then the norm ∥ f ∥Lip
q
β

(Qn
p ) is equivalent to the norm ∥ f ∥Lipβ(Qn

p ).

(2) Then the homogeneous Lipschitz spaceΛβ(Qn
p ) coincides with the space Lipq

β
(Qn

p ).

From the proof of [15, Theorem 4], we can obtain the following characterization of nonnega-
tive Lipschitz functions.

Lemma 22. Let 0 < β < 1 and b be a locally integrable function on Qn
p . Then the following

assertions are equivalent:

(1) b ∈Λβ(Qn
p ) and b ≥ 0.

(2) For all 1 ≤ s <∞, there exists a positive constant C such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

(
1

|Bγ(x)|h

∫
Bγ(x)

∣∣∣b(y)−M
p
Bγ(x)(b)(y)

∣∣∣s
dy

)1/s

≤C . (11)

(3) (11) holds for some 1 ≤ s <∞.

Proof. Since the implication (2) =⇒ (3) follows readily, and the implication (3) =⇒ (1) was proved
in [15, Theorem 4], we only need to prove (1) =⇒ (2).

If b ∈ Λβ(Qn
p ) and b ≥ 0, then it follows from [15, Theorem 4] that (11) holds for all s with

n/(n−β) < s <∞. Applying Hölder’s inequality, we see that (11) holds for 1 ≤ s ≤ n/(n−β) as well.
Hence, the implication (1) =⇒ (2) is proven. □

Now we recall the Hardy–Littlewood–Sobolev inequality for the fractional maximal function
M

p
α on p-adic vector space. The first part of Lemma 23 can be founded in [15, Lemma 8], and the

second comes from [8, Theorem 4].

Lemma 23. Let 0 <α< n andQn
p be an n-dimensional p-adic vector space.

(1) If 1 < r < n/α such that 1/q = 1/r −α/n, then M
p
α is bounded from Lr (Qn

p ) to Lq (Qn
p ).

(2) If r ( · ), q( · ) ∈ C log(Qn
p ) with r ( · ) ∈ P(Qn

p ), r+ < n/α and 1/q( · ) = 1/r ( · )−α/n, then M
p
α

is bounded from Lr ( · )(Qn
p ) to Lq( · )(Qn

p ).

By Lemma 23(1), if 0 < α < n, 1 < r < n/α and f ∈ Lr (Qn
p ), then M

p
α ( f )(x) < ∞ almost

everywhere. A similar result is also valid in variable Lebesgue spaces. And the method of proof
can refer to [34, Lemma 2.6], so we omit its proof.

Lemma 24. Let 0 <α< n, r ( · ) ∈P(Qn
p ) and 1 < r− ≤ r+ < n/α. If f ∈ Lr ( · )(Qn

p ), then M
p
α ( f )(x) <

∞ for almost everywhere x ∈Qn
p .

Now, we give the following pointwise estimate for [b,M p
α ] when b ∈Λβ(Qn

p ).

Lemma 25. Let 0 ≤α< n, 0 <β< 1, 0 <α+β< n and f be a locally integrable function on Qn
p . If

b ∈Λβ(Qn
p ) and b ≥ 0, then, for any x ∈Qn

p such that M
p
α ( f )(x) <∞, we have

∣∣[b,M p
α ]( f )(x)

∣∣≤ ∥b∥Λβ(Qn
p )M

p
α+β( f )(x).
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Proof. For any fixed x ∈Qn
p such that M

p
α ( f )(x) <∞, if b ∈Λβ(Qn

p ) and b ≥ 0, then∣∣[b,M p
α ]( f )(x)

∣∣= ∣∣b(x)M p
α ( f )(x)−M

p
α (b f )(x)

∣∣
=

∣∣∣∣ sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

b(x)| f (y)|dy − sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

b(y)| f (y)|dy

∣∣∣∣
≤ sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

∣∣b(x)−b(y)
∣∣| f (y)|dy

≤C∥b∥Λβ(Qn
p ) sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−
α+β

n
h

∫
Bγ(x)

| f (y)|dy

≤C∥b∥Λβ(Qn
p )M

p
α+β( f )(x). □

Finally, we also need the following results. Similar to the proof of [35, Lemma 2.3], and referring
to the course of the proof of [16, Theorem 1.4], using Lemma 10 and the properties of p-adic
ball, through elementary calculations and derivations, the following assertions can be obtained.
Hence, we omit the proofs.

Lemma 26. Let b be a locally integrable function andQn
p be an n-dimensional p-adic vector space.

For any fixed p-adic ball Bγ(x) ⊂Qn
p .

(1) If 0 ≤α< n, then for all y ∈ Bγ(x), we have

M
p
α (bχBγ(x))(y) =M

p
α,Bγ(x)(b)(y)

and

M
p
α (χBγ(x))(y) =M

p
α,Bγ(x)(χBγ(x))(y) = |Bγ(x)|α/n

h .

(2) Then for any y ∈ Bγ(x), we have

|bBγ(x)| ≤ |Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y).

(3) Let E = {y ∈ Bγ(x) : b(y) ≤ bBγ(x)} and F = Bγ(x) \ E = {y ∈ Bγ(x) : b(y) > bBγ(x)}. Then the
following equality is trivially true∫

E
|b(y)−bBγ(x)|dy =

∫
F
|b(y)−bBγ(x)|dy.

3. Proofs of the main results

Now we give the proofs of the Theorem 2 and Theorem 6.

3.1. Proof of Theorem 2

To prove Theorem 2, we first prove the following lemma.

Lemma 27. Let 0 <α< n, 0 < β< 1 and b be a locally integrable function on Qn
p . If there exists a

positive constant C such that

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|β/n
h

∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

≤C (12)

for some q( · ) ∈B(Qn
p ), then b ∈Λβ(Qn

p ).
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Proof. Some ideas are taken from [3, 34, 35, 37]. Reasoning as the proof of [37, (4.4)], see also the
proof of [34, Lemma 3.1], for any fixed p-adic ball Bγ(x) ⊂Qn

p , we have (see Lemma 26(2))

|bBγ(x)| ≤ |Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y), ∀ y ∈ Bγ(x).

Let E = {y ∈ Bγ(x) : b(y) ≤ bBγ(x)} and F = Bγ(x) \ E = {y ∈ Bγ(x) : b(y) > bBγ(x)}, then for any
y ∈ E ⊂ Bγ(x), we have b(y) ≤ bBγ(x) ≤ |bBγ(x)| ≤ |Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)(y). It is clear that

|b(y)−bBγ(x)| ≤
∣∣∣b(y)−|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)(y)

∣∣∣, ∀ y ∈ E .

Therefore, by using Lemma 26(3), we get

1

|Bγ(x)|β/n+1
h

∫
Bγ(x)

∣∣b(y)−bBγ(x))
∣∣dy = 1

|Bγ(x)|β/n+1
h

∫
E∪F

∣∣b(y)−bBγ(x))
∣∣dy

≤ 2

|Bγ(x)|β/n+1
h

∫
E

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣dy

≤ 2

|Bγ(x)|β/n+1
h

∫
Bγ(x)

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣dy.

Using Lemma 18(3) (generalized Hölder’s inequality), (12) and Lemma 19(3), we obtain

1

|Bγ(x)|β/n+1
h

∫
Bγ(x)

∣∣b(y)−bBγ(x))
∣∣dy ≤ 2

|Bγ(x)|β/n+1
h

∫
Bγ(x)

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣dy

≤ C

|Bγ(x)|β/n+1
h

∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

×∥χBγ(x)∥Lq′( · )(Qn
p )

≤ C

|Bγ(x)|h
∥χBγ(x)∥Lq( · )(Qn

p )∥χBγ(x)∥Lq′( · )(Qn
p )

≤C .

So, the proof is completed by applying Lemma 21. □

≤ C

|Bγ(x)|β/n+1
h


�
b − |Bγ(x)|−α/n

h Mp
α,Bγ (x)(b)

�
χBγ (x)


Lq(·)(Qn

p )

× ∥χBγ (x)∥Lq′(·)(Qn
p )

≤ C

|Bγ(x)|h
∥χBγ (x)∥Lq(·)(Qn

p )∥χBγ (x)∥Lq′(·)(Qn
p )

≤ C. □

So, the proof is completed by applying Lemma 2.6.
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Figure 3.1: Proof structure of Theorem 1.1
where wij denotes i =⇒ j

Proof of Theorem 1.1 Since the implications (A.2) ==⇒ (A.3) and (A.5) ==⇒ (A.4) follow readily, and
(A.2) ==⇒ (A.5) is similar to (A.3) ==⇒ (A.4), we only need to prove (A.1) ==⇒ (A.2), (A.3) ==⇒ (A.4) and
(A.4) ==⇒ (A.1) (see Figure 3.1 for the proof structure).

(A.1) ==⇒ (A.2): Let b ∈ Λβ(Qn
p ) and b ≥ 0. We need to prove that [b, Mp

α] is bounded from Lr(·)(Qn
p )

to Lq(·)(Qn
p ) for all r(·), q(·) ∈ C log(Qn

p ) with r(·) ∈ P(Qn
p ), r+ < n

α+β and 1/q(·) = 1/r(·) − (α + β)/n.
For such r(·) and any f ∈ Lr(·)(Qn

p ), it follows from Lemma 2.9 that Mp
α(f)(x) < ∞ for almost everywhere

x ∈ Qn
p . By Lemma 2.10, we have

��[b, Mp
α](f)(x)

�� ≤ ∥b∥Λβ(Qn
p )Mp

α+β(f)(x).

Then, statement (A.2) follows from (2) of Lemma 2.8.
(A.3) ==⇒ (A.4): For any fixed p-adic ball Bγ(x) ⊂ Qn

p and any y ∈ Bγ(x), it follows from (1) of
Lemma 2.11 that

Mp
α(bχBγ (x))(y) = Mp

α,Bγ (x)(b)(y) and Mp
α(χBγ (x))(y) = Mp

α,Bγ (x)(χBγ (x))(y) = |Bγ(x)|α/n
h .

Then, for any y ∈ Bγ(x), we have

b(y) − |Bγ(x)|−α/n
h Mp

α,Bγ (x)(b)(y) = |Bγ(x)|−α/n
h

�
b(y)|Bγ(x)|α/n

h − Mp
α,Bγ (x)(b)(y)

�

= |Bγ(x)|−α/n
h

�
b(y)Mp

α(χBγ (x))(y) − Mp
α(bχBγ (x))(y)

�

= |Bγ(x)|−α/n
h [b, Mp

α](χBγ (x))(y).

15

Figure 1. Proof structure of Theorem 2 where wi j denotes i =⇒ j

Proof of Theorem 2. Since the implications (A.2) =⇒ (A.3) and (A.5) =⇒ (A.4) follow readily, and
(A.2) =⇒ (A.5) is similar to (A.3) =⇒ (A.4), we only need to prove (A.1) =⇒ (A.2), (A.3) =⇒ (A.4) and
(A.4) =⇒ (A.1) (see Figure 1 for the proof structure).
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(A.1) =⇒ (A.2). Let b ∈ Λβ(Qn
p ) and b ≥ 0. We need to prove that [b,M p

α ] is bounded from
Lr ( · )(Qn

p ) to Lq( · )(Qn
p ) for all r ( · ), q( · ) ∈ C log(Qn

p ) with r ( · ) ∈ P(Qn
p ), r+ < n

α+β and 1/q( · ) =
1/r ( · )−(α+β)/n. For such r ( · ) and any f ∈ Lr ( · )(Qn

p ), it follows from Lemma 24 that M
p
α ( f )(x) <

∞ for almost everywhere x ∈Qn
p . By Lemma 25, we have∣∣[b,M p

α ]( f )(x)
∣∣≤ ∥b∥Λβ(Qn

p )M
p
α+β( f )(x).

Then, statement (A.2) follows from Lemma 23(2).

(A.3) =⇒ (A.4). For any fixed p-adic ball Bγ(x) ⊂ Qn
p and any y ∈ Bγ(x), it follows from

Lemma 26(1) that

M
p
α (bχBγ(x))(y) =M

p
α,Bγ(x)(b)(y) and M

p
α (χBγ(x))(y) =M

p
α,Bγ(x)(χBγ(x))(y) = |Bγ(x)|α/n

h .

Then, for any y ∈ Bγ(x), we have

b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y) = |Bγ(x)|−α/n

h

(
b(y)|Bγ(x)|α/n

h −M
p
α,Bγ(x)(b)(y)

)
= |Bγ(x)|−α/n

h

(
b(y)M p

α (χBγ(x))(y)−M
p
α (bχBγ(x))(y)

)
= |Bγ(x)|−α/n

h [b,M p
α ](χBγ(x))(y).

Thus, for any y ∈Qn
p , we get(

b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

)
χBγ(x)(y) = |Bγ(x)|−α/n

h [b,M p
α ](χBγ(x))(y)χBγ(x)(y).

By using assertion (A.3) and Lemma 19(4) (norms of characteristic functions), we have∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )
≤ |Bγ(x)|−α/n

h

∥∥[b,M p
α ](χBγ(x))

∥∥
Lq( · )(Qn

p )

≤C |Bγ(x)|−α/n
h

∥∥χBγ(x)

∥∥
Lr ( · )(Qn

p )

≤C |Bγ(x)|β/n
h

∥∥χBγ(x)

∥∥
Lq( · )(Qn

p ),

which gives (2) since Bγ(x) is arbitrary and C is independent of Bγ(x).

(A.4) =⇒ (A.1). By Lemma 22, it suffices to prove

sup
γ∈Z

x∈Qn
p

1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣b(y)−M
p
Bγ(x)(b)(y)

∣∣∣dy <∞. (13)

For any fixed p-adic ball Bγ(x) ⊂Qn
p , we have

1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣b(y)−M
p
Bγ(x)(b)(y)

∣∣∣dy

≤ 1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣dy

+ 1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)−M

p
Bγ(x)(b)(y)

∣∣∣dy

:= I1 + I2. (14)
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For I1, by applying statement (A.4), Lemma 18(3) (generalized Hölder’s inequality) and
Lemma 19(3), we get

I1 = 1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣b(y)−|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)

∣∣∣dy

≤ C

|Bγ(x)|β/n+1
h

∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )
∥χBγ(x)∥Lq′( · )(Qn

p )

≤ C

|Bγ(x)|β/n
h

∥∥∥(
b −|Bγ(x)|−α/n

h M
p
α,Bγ(x)(b)

)
χBγ(x)

∥∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

≤C ,

where the constant C is independent of Bγ(x).
Now we consider I2. For all y ∈ Bγ(x), it follows from Lemma 26 that

M
p
α (χBγ(x))(y) = |Bγ(x)|α/n

h and M
p
α (bχBγ(x))(y) =M

p
α,Bγ(x)(b)(y),

and

M p (χBγ(x))(y) =χBγ(x)(y) = 1 and M p (bχBγ(x))(y) =M
p
Bγ(x)(b)(y).

Then, for any y ∈ Bγ(x), we get∣∣∣|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)−M

p
Bγ(x)(b)(y)

∣∣∣
≤ |Bγ(x)|−α/n

h

∣∣∣M p
α,Bγ(x)(b)(y)−|Bγ(x)|α/n

h |b(y)|
∣∣∣+ ∣∣∣|b(y)|−M

p
Bγ(x)(b)(y)

∣∣∣
≤ |Bγ(x)|−α/n

h

∣∣∣M p
α (bχBγ(x))(y)−|b(y)|M p

α (χBγ(x))(y)
∣∣∣

+
∣∣∣|b(y)|M p (χBγ(x))(y)−M p (bχBγ(x))(y)

∣∣∣
≤ |Bγ(x)|−α/n

h

∣∣∣[|b|,M p
α ](χBγ(x))(y)

∣∣∣+ ∣∣∣[|b|,M p ](χBγ(x))(y)
∣∣∣. (15)

Since q( · ) ∈ B(Qn
p ) follows at once from Lemma 16 and statement (A.4). Then statement

(A.4) along with Lemma 27 gives b ∈ Λβ(Qn
p ), which implies |b| ∈ Λβ(Qn

p ). Thus, we can apply
Lemma 25 to [|b|,M p

α ] and [|b|,M p ] due to |b| ∈Λβ(Qn
p ) and |b| ≥ 0.

By using Lemma 25 and Lemma 26(1), for any y ∈ Bγ(x), we have∣∣∣[|b|,M p
α ](χBγ(x))(y)

∣∣∣≤ ∥b∥Λβ(Qn
p )M

p
α+β(χBγ(x))(y) ≤C∥b∥Λβ(Qn

p )|Bγ(x)|(α+β)/n
h

and ∣∣∣[|b|,M p ](χBγ(x))(y)
∣∣∣≤ ∥b∥Λβ(Qn

p )M
p
β

(χBγ(x))(y) ≤C∥b∥Λβ(Qn
p )|Bγ(x)|β/n

h .

Hence, it follows from (15) that

I2 = 1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣|Bγ(x)|−α/n
h M

p
α,Bγ(x)(b)(y)−M

p
Bγ(x)(b)(y)

∣∣∣dy

≤ C

|Bγ(x)|1+(α+β)/n
h

∫
Bγ(x)

∣∣∣[|b|,M p
α ](χBγ(x))(y)

∣∣∣dy + C

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣∣[|b|,M p ](χBγ(x))(y)
∣∣∣dy

≤C∥b∥Λβ(Qn
p ).

Putting the above estimates for I1 and I2 into (14), we obtain (13).
This completes the proof of Theorem 2. □
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3.2. Proof of Theorem 6

Proof of Theorem 6. Similar to prove Theorem 2, we only need to prove the implications
(B.1) =⇒ (B.2), (B.3) =⇒ (B.4) and (B.4) =⇒ (B.1) (the proof structure is also shown in Figure 1).

(B.1) =⇒ (B.2). If b ∈Λβ(Qn
p ), then for any p-adic ball Bγ(x) ⊂Qn

p , using Lemma 20, we derive

M
p
α,b( f )(x) = sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

|b(x)−b(y)|| f (y)|dy

≤ ∥b∥Λβ(Qn
p ) sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−α/n
h

∫
Bγ(x)

|x − y |βp | f (y)|dy

≤C∥b∥Λβ(Qn
p ) sup

γ∈Z
x∈Qn

p

1

|Bγ(x)|1−
α+β

n
h

∫
Bγ(x)

| f (y)|dy

≤C∥b∥Λβ(Qn
p )M

p
α+β( f )(x).

This, together with Lemma 23(2), shows that M
p
α,b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ).

(B.3) =⇒ (B.4). For any fixed p-adic ball Bγ(x) ⊂ Qn
p . By using Lemma 10, for all y ∈ Bγ(x), we

have

|b(y)−bBγ(x)| ≤ 1

|Bγ(x)|h

∫
Bγ(x)

∣∣b(y)−b(z)
∣∣dz

= 1

|Bγ(x)|h

∫
Bγ(x)

∣∣b(y)−b(z)
∣∣χBγ(x)(z)dz

≤ 1

|Bγ(x)|α/n
h

M
p
α,b(χBγ(x))(y).

Then, for all y ∈Qn
p , we get

∣∣(b(y)−bBγ(x)
)
χBγ(x)(y)

∣∣≤ |Bγ(x)|−α/n
h M

p
α,b(χBγ(x))(y).

Since M
p
α,b is bounded from Lr ( · )(Qn

p ) to Lq( · )(Qn
p ), using Lemma 19(4), we have

∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥
Lq( · )(Qn

p ) ≤ |Bγ(x)|−α/n
h

∥∥M
p
α,b(χBγ(x))

∥∥
Lq( · )(Qn

p )

≤C |Bγ(x)|−α/n
h

∥∥χBγ(x)

∥∥
Lr ( · )(Qn

p )

≤C |Bγ(x)|β/n
h ∥χBγ(x)∥Lq( · )(Qn

p ),

which implies (6) since Bγ(x) is arbitrary and C is independent of Bγ(x).
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(B.4) =⇒ (B.1). For any p-adic ball Bγ(x) ⊂ Qn
p , by using Lemma 18(3) (generalized Hölder’s

inequality), assertion (B.4) and Lemma 19(3), we obtain

1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣b(y)−bBγ(x))
∣∣dy = 1

|Bγ(x)|1+β/n
h

∫
Bγ(x)

∣∣b(y)−bBγ(x))
∣∣χBγ(x)(y)dy

≤ C

|Bγ(x)|1+β/n
h

∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥
Lq( · )(Qn

p )∥χBγ(x)∥Lq′( · )(Qn
p )

= C

|Bγ(x)|β/n
h

∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

× 1

|Bγ(x)|h
∥χBγ(x)∥Lq( · )(Qn

p )∥χBγ(x)∥Lq′( · )(Qn
p )

≤ C

|Bγ(x)|β/n
h

∥∥(
b −bBγ(x)

)
χBγ(x)

∥∥
Lq( · )(Qn

p )

∥χBγ(x)∥Lq( · )(Qn
p )

≤C .

This shows that b ∈Λβ(Qn
p ) by Lemma 21 and Definition 14 since the constant C is indepen-

dent of Bγ(x).
The proof of Theorem 6 is finished. □
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