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Abstract. We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a
convection term of the form A E(x)∇u +div(u E(x)), with A > 0 and E in (Lr (Ω))N . The result is obtained
using a nonlinear function of u as test function, in order to “cancel” this term.

Résumé. Nous prouvons l’existence de solutions d’énergie finie pour un problème de Dirichlet linéaire avec
un terme de la forme A E(x)∇u + div(u E(x)), où A > 0 et E est dans (Lr (Ω))N . Le résultat est obtenu en
utilisant une fonction non linéaire de u comme fonction test, afin d’“annuler” ce terme.
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1. Introduction

In [8] and [9] is studied the Dirichlet problem

u ∈W 1,2
0 (Ω) : −∆u +E(x) ·∇u +div(u E(x)) = f (x),

where
Ω is a bounded domain of RN , and the drift E belongs to (L2(Ω))N ,

and
f (x) ∈ L

2N
N+2 (Ω).

Remark that if u belongs to W 1,2
0 (Ω), then the terms E(x) ·∇u and div(u E(x)) just belong to L1(Ω)

and W −1, N
N−1 (Ω) (or W −1,p (Ω), ∀ p < 2 if N = 2) respectively. The key point for the existence of

finite energy solutions is that the map

P : u → E(x) ·∇u +div(u E(x))
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is skew-symmetric and thus, it satisfies the “cancellation” property

〈Pu,u〉 = 0, (1)

in the sense of distributions, if u is smooth enough.
The present paper deals with a more general framework, given by

u ∈W 1,q
0 (Ω) : −div(M(x)∇u)+ A E(x) ·∇u +div(u E(x)) = f (x), (2)

with
A > 0, (3)

M :Ω→RN 2
a measurable matrix such that there exist α, β> 0, satisfying

α|ξ|2 ≤ M(x)ξ ·ξ, |M(x)| ≤β, a.e. inΩ, ∀ ξ ∈RN , (4)

E ∈ (Lr (Ω))N :


r = 2 if A ≥ 1,

r = N (A+1)
A(N−1)+1 if 0 < A < 1, N ≥ 3,

2 < r < 1+ 1
A if 0 < A < 1, N = 2,

(5)

and

f ∈ Lm(Ω), m > 1 if N = 2, m = N (A+1)

N +2A
if N ≥ 3. (6)

Note that r ≥ 2, so that r ′ ≤ 2; and also r ′ > 1.
We are going to prove the existence of a distributional solution u of (2) in the Sobolev space

W 1,r ′
0 (Ω), with r ′ = r

r−1 , the Hölder conjugate exponent of r . In particular, u is in W 1,2
0 (Ω) if A ≥ 1.

The proof of the result is based on the use of a nonlinear function of u as test function in (2),
in such way that a cancellation property similar to (1) still holds.

We complete this introduction with some references about the existence of solutions for linear
elliptic equations with a first order term whose coefficients have poor summability.

For a measurable matrix function M :Ω→RN 2
, which satisfies (4),

E ,F ∈
{

(LN (Ω))N if N > 2,

(Lp (Ω))N , p > 2 if N = 2,
a ∈

{
L

N
2 (Ω) if N > 2,

Lq (Ω), q > 1 if N = 2,
(7)

such that
−div(E(x))+a(x) ≥ 0 inΩ, (8)

it has been proved in [11, 12] that the weak maximum principle holds for the equation

L u = f in Ω,

with
L u =−div

(
M(x)∇u −u E(x))+F (x) ·∇u +a(x)u. (9)

Thus, the corresponding Dirichlet problem has at most one solution in W 1,2
0 (Ω), for every f ∈

W −1,2(Ω). By the Fredholm theory, for every f ∈ W −1,2(Ω) there exists a unique solution u for
problems

u ∈W 1,2
0 (Ω), L (u) = f in Ω, u ∈W 1,2

0 (Ω), L ∗(u) = f in Ω, (10)

where
L ∗(u) =−div

(
M(x)t∇u +u F (x))−E(x) ·∇u +a(x)u,

is the adjoint operator of L . We emphasize that these problems are not coercive.
If E or F do not satisfy (7), the operators u 7→ −div(u E(x)) or u 7→ F (x)·∇u do not apply W 1,2

0 (Ω)
into W −1,2(Ω), but some existence results have still been proved.

In [3] and [4], are considered the cases F = 0 and E = 0 respectively, and a Stampacchia–
Caldéron–Zygmund theory for finite or infinite energy solutions (depending on the summability
of f (x)) is proved. For example, if E ∈ (L2(Ω))N , F = 0, f ∈ L1(Ω), it is proved the existence of a
solution for the problem

L u = f in Ω, u = 0 on ∂Ω, (11)
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in a very weak sense: the solution u is such that log(1+|u|) belongs to W 1,2
0 (Ω) and is an “entropy

solution” of the equation (for the theory of entropy, or renormalized, solutions, see e.g. [1], [7],
[10]) in the sense that:∫

Ω

[
M(x)∇u ·∇Tk (u −ϕ)−u E(x) ·∇Tk (u −ϕ)

]
≤

∫
f (x)Tk (u −ϕ),

for every ϕ in W 1,2
0 (Ω)∩L∞(Ω), and for every k > 0. Here

Tk (s) =


−k if s <−k,

s if −k ≤ s ≤ k,

k if s > k,

(12)

is the usual truncation function at levels ±k. In [6], adding a zero order term greater than
a positive constant, it has been proved that the above function u is also in L1(Ω). A duality
argument then shows that problem (11) has a solution in W 1,2

0 (Ω)∩L∞(Ω) if E = 0, F is in (L2(Ω))N

and a is greater than a positive constant.

2. Proof of the main result

We devote this section to the proof of an existence result for problem (2). It will be based on the
introduction of an approximate problem and then the use of a nonlinear test function, which will
provide the estimates needed to pass to the limit.

Theorem 1. Assume that M :Ω→RN 2
is a measurable matrix which satisfies (4), that A > 0, and

that E belongs to (Lr (Ω))N , with r defined by (5). Then, for every f ∈ Lm(Ω), with m given by (6),
there exists a distributional solution u of (2) in W 1,r ′

0 (Ω). Moreover, u satisfies

|u| A−1
2 u ∈W 1,2

0 (Ω), u ∈
{

L
N (A+1)

N−2 (Ω) if N ≥ 3,

Lp (Ω), ∀ p ∈ [1,∞) if N = 2.
(13)

Remark 2. We point out a regularizing effect of the problem: for A ≥ 1, u belongs to W 1,2
0 (Ω),

even if the term A E(x) ·∇u only belongs to L1(Ω).

Remark 3. Defining for µ,λ > 0, Ê(x) = λE(x) and A = µλ, we deduce from Theorem 1 the
existence of a distributional solution for problem

u ∈W 1,r ′
0 (Ω) : −div(M(x)∇u)+λE(x) ·∇u +µdiv(u E(x)) = f (x).

Proof of Theorem 1. Let n in N: the starting point is the nonlinear Dirichlet problem: un ∈
W 1,2

0 (Ω) :∫
Ω

M(x)∇un ·∇v −
∫
Ω

un

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇v

+ A
∫
Ω

1

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇un v =
∫
Ω

fn(x) v, ∀ v ∈W 1,2
0 (Ω), (14)

where

En(x) = E(x)

1+ 1
n |E(x)| , fn(x) = f (x)

1+ 1
n | f (x)| .

The existence of un is a consequence of the use of the Schauder fixed point theorem (see also [2]),
since all the terms are bounded. Note that un is the solution of the Dirichlet problem

un ∈W 1,2
0 (Ω) : −div(M(x)∇un) =−div(Gn(x))+ gn(x) ,
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where

Gn(x) = un

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

, gn(x) = fn(x)− A
En(x)

1+ 1
n |un |

· ∇un

1+ 1
n |∇un |

.

Since
|Gn(x)| ≤ n2 , |gn(x)| ≤ n2 ,

from Lax–Milgram theorem and from a result by Stampacchia (see [12], Théorème 4.1), it follows
that there exists C > 0 such that

∥un∥
W 1,2

0 (Ω)
+∥un∥

L∞(Ω)
≤C n2.

Since every un is a bounded function, it is possible to use a nonlinear composition of un as test
function in (14).

In the following, we recall that the Sobolev exponent 2∗ is 2N /(N −2), if N > 2. For N = 2, we
define 2∗ as a positive number bigger than 2 to be chosen later.

Step 1. In this step, we assume A ≥ 1 and we will prove the existence of finite energy solutions.
We use |un |A−1un as test function in (14), and we have

A
∫
Ω

M(x)∇un ·∇un |un |A−1 − A
∫
Ω

un

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇un |un |A−1

+ A
∫
Ω

un

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇un |un |A−1 =
∫
Ω

fn(x) |un |A−1un . (15)

Thus, after cancellation of equal terms, we have that

A
∫
Ω

M(x)∇un ·∇un |un |A−1 =
∫
Ω

fn(x) |un |A−1un ,

which, by (4) and Sobolev’s inequality, implies that

4Aα

(A+1)2

[∫
Ω
|un |

2∗
2 (A+1)

] 2
2∗ ≤S Aα

∫
Ω
|∇un |2|un |A−1 ≤S ∥ f ∥

Lm (Ω)

[∫
Ω
|un |A m′

] 1
m′

. (16)

If N > 3, the condition 2∗
2 (A + 1) = A m′ holds if m = N (A+1)

N+2A (which is our assumption); thus,
from (16) we obtain that

4Aα

(A+1)2 ∥un∥
L

2∗
2 (A+1)(Ω)

≤S ∥ f ∥
Lm (Ω)

. (17)

If N = 2, taking into account that 2∗ can be chosen arbitrarily large, we deduce that m can be
chosen any number bigger than one in order to have again (17).

Thus, we proved that

the sequence {un} is bounded in L
2∗
2 (A+1)(Ω). (18)

Using this result in (16) yields that

the sequence {|un |
A−1

2 un} is bounded in W 1,2
0 (Ω). (19)

We now use T1(un) as test function in (14) and we have (thanks to Young’s inequality)

α

∫
Ω
|∇T1(un)|2

≤
∫
Ω
|un ||E(x)||∇T1(un)|+ A

∫
Ω
|E(x)||∇un |+

∫
Ω
| f (x)|

≤ (A+1)
∫
Ω
|E(x)||∇T1(un)|+ A

∫
Ω
|E(x)||∇T1(un)|+ 2A

A+1

∫
Ω
|E(x)||∇(|un |

A−1
2 un)|+

∫
Ω
| f (x)|

≤ α

2

∫
Ω
|∇T1(un)|2 +

∫
Ω
| f (x)|+C

(∫
Ω
|E(x)|2 +

∫
Ω

∣∣∇(|un |
A−1

2 un)
∣∣2

)
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which proves that the sequence {T1(un)} is bounded in W 1,2
0 (Ω). Combined with (19), we get that

the sequence {un} is bounded in W 1,2
0 (Ω). (20)

The reflexivity of W 1,2
0 (Ω) and Rellich theorem then imply the existence of a subsequence {un j }

and a function u in W 1,2
0 (Ω), with |u| A−1

2 u in W 1,2
0 (Ω), such that

un j * u in W 1,2
0 (Ω)

|un j |
A−1

2 un j * |u| A−1
2 u in W 1,2

0 (Ω),

un j → u in Lρ(Ω), 1 ≤ ρ < 2∗

2
(A+1).

(21)

Note that the boundedness of {un} in W 1,2
0 (Ω) implies that ∥ 1

n ∇un∥
(L2(Ω))N → 0 which implies

(up to a subsequence) that 1
n ∇un(x) → 0 a.e. in Ω. Thus we can pass to the limit in (14) to prove

that u is a weak solution of (2); that is u belongs to W 1,2
0 (Ω) and is such that∫

Ω
M(x)∇u ·∇v −

∫
Ω

u [E(x) ·∇v]+ A
∫
Ω

[E(x) ·∇u] v =
∫
Ω

f v, ∀ v ∈C 1
0 (Ω). (22)

Step 2. In this step, we assume 0 < A < 1 and we will prove the existence of infinite energy
solutions.

Since 0 < A < 1, we need to modify our test function, and use [(h +|un |)A −h A]sign(un), with
h > 0. Then we have

A
∫
Ω

M(x)∇un ·∇un (h +|un |)A−1 − A
∫
Ω

un

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇un(h +|un |)A−1

+ A
∫
Ω

1

1+ 1
n |un |

En(x)

1+ 1
n |∇un |

·∇un [(h +|un |)A −h A]sign(un) ≤
∫
Ω
| f |(h +|un |)A .

Since

(h +|un |)Asign(un) = (h +|un |)A−1(h sign(un)+un
)
,

the above identity implies that

A
∫
Ω

M(x)∇un ·∇un (h +|un |)A−1 + A
∫
Ω

1

1+ 1
n |un |

En

1+ 1
n |∇un |

·∇un [(h +|un |)A−1h −h A]sign(un)

≤
∫
Ω
| f (x)|(h +|un |)A .

Since 0 < A < 1, one has that

(h +|un |)A−1h ≤ h A ,

so that we can use Lebesgue theorem to pass to the limit as h tends to zero in the second term.
Using also the monotone convergence theorem in the first one and the Lebesgue theorem in the
third one, we get

A
∫
Ω

M(x)∇un ·∇un

|un |1−A
≤

∫
Ω
| f (x)||un |A . (23)

Thus, the inequalities in (16) still hold. As above, this proves (18) and (19). For 1 ≤ r ′ < 2, Hölder’s
inequality also gives∫

Ω
|∇un |r

′ =
∫
Ω

|∇un |r ′

|un |
r ′(1−A)

2

|un |
r ′(1−A)

2 ≤
(∫
Ω

|∇un |2
|un |1−A

) r ′
2

(∫
Ω
|un |

r ′(1−A)
2−r ′

)2− r ′
2

.
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Since r ′(1−A)
2−r ′ = 2∗

2 (1+A), in the case N ≥ 3, from (18) and (19), it follows that the sequence {un}

is bounded in W 1,r ′
0 (Ω). The same result is true in the case N = 2 if we define 2∗ > 2 (recall that

1+ A < r ′ < 2 by (5)) by

2∗ = 2
r ′(1− A)

(2− r ′)(1+ A)
.

Thus it is possible to pass to the limit as in the first step to get that u is a solution of (2). □

We now prove that, under the assumption that f (x) ≥ 0, the solution u is not only positive, but
cannot be zero in a set of positive measure.

Proposition 4. If f (x) ≥ 0, then u(x) ≥ 0. Moreover, if f (x) is not identically zero, then u(x) can be
zero at most in a set of zero measure.

Proof. We give the proof in the case A ≥ 1; the case 0 < A < 1 can be proved modifying the test
function, as in Step 2 of the proof of Theorem 1. Choosing v = |un |A−1u−

n as test function in (14)
we obtain identity (15) with u−

n instead of un . Thus, one can cancel two equal terms to obtain
that

−A
∫
Ω

M(x)|un |A−1∇u−
n ·∇u−

n = A
∫
Ω

M(x)|un |A−1∇un ·∇u−
n =

∫
Ω

fn(x)u−
n |un |A−1.

Since the right hand side is positive, and the left hand side is negative, one has that u−
n = 0, so that

un ≥ 0. Recalling that u is the limit of the sequence {un}, we have proved that u(x) ≥ 0.
The second statement can be proved exactly as in [5, Theorem 3.1 and Theorem 4.1]. □
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