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Abstract. Let p be an odd prime and let G = AB be a finite p-group that is the product of a cyclic subgroup A
and a non-cyclic subgroup B . Suppose in addition that the nilpotency class of B is less than

p
2 . We denote by

Ω

i (B) the subgroup of B generated by the pi -th powers of elements of B , that is

Ω

i (B) = 〈bpi | b ∈ B〉. In this
article we show that, for all values of i , the set A

Ω
i (B) is a subgroup of G . We also present some applications

of this result.

Résumé. Soient p un nombre premier impair et G = AB un p-groupe fini qui est le produit des sous-groupes
A et B , tels que A soit un sous-groupe cyclique et B soit un sous-groupe non cyclique. Supposons également
que la classe de nilpotence de B soit inférieure à

p
2 . On note

Ω

i (B) le sous-groupe de B engendré par les

puissances pi des éléments de B , alors

Ω

i (B) = 〈bpi | b ∈ B〉. Dans cet article nous montrons que, pour
chaque valeur du nombre i , l’ensemble A

Ω

i (B) est sous-groupe du groupe G . Nous présentons également
quelques applications de ce résultat.
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1. Introduction

We say that the group G is the product of the subgroups A and B if G is equal to the set product
of A and B , that is G = {ab | a ∈ A,b ∈ B}. Such groups are also referred to as factorised groups.
For a factorised group G = AB , is seems natural to ask whether we can identify subgroups of
the “factors” A and B whose set product with each other forms a subgroup of G . By a result
from elementary Group Theory (see, for instance, [4, I 2.12 Hilfssatz]), this is equivalent to
determining subgroups A1 ⩽ A and B1 ⩽ B such that their set products satisfy A1B1 = B1 A1.
Despite an extensive literature on factorised groups, as documented in Amberg, Franciosi and
de Giovanni [1] and Ballester-Bolinches, Esteban-Romero and Assad [2], results in this direction
remain scarce, even when both factors are abelian. The most notable result goes back to that of
Huppert (see [3, Satz 3] or [2, Corollary 3.1.9]), which states that if the finite p-group G = AB is
the product of two cyclic subgroups A and B , then G is the totally permutable product of A and
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B , that is A1B1 ⩽ G for each A1 ⩽ A and B1 ⩽ B . Since A and B are cyclic p-groups, this can be
restated as Ωs (A)Ωt (B) ⩽ G for all values of s and t , where the characteristic subgroup Ωi (W )
of the finite p-group W is defined by Ωi (W ) = 〈w ∈ W | w p i = 1〉. In general, we cannot expect
that G = AB will be a totally permutable product if either of the subgroups A or B is non-cyclic.
However, if the prime p is odd, then in the case where A ∩B = 1, A is cyclic and the nilpotency
class c(B) of B satisfies c(B) < p

2 , it has been shown in [5, Theorem 2.6(i)] that AΩi (B) ⩽ G for
all values of i . Since A is cyclic, it is then straightforward to deduce that Ωs (A)Ωt (B) ⩽G , for all
values of s and t . This can be viewed as a partial analogue to Huppert’s result for products of
cyclic subgroups. It is notable that Example 2.8 of [5] further shows that AΩi (B) is not always a
subgroup of G when A∩B ̸= 1. This places a limit on the extent to which Huppert’s result can be
directly generalised.

In this paper we present some results that can be considered as dual to those contained in [5].
Our main result is Theorem 9, which states that if G = AB is a finite p-group for subgroups A
and B such that A is cyclic and c(B) < p

2 then, for all i , A

Ω

i (B) ⩽ G . Here

Ω

i (B) denotes the

characteristic subgroup of B generated by the p i -th powers of elements of B , that is

Ω

i (B) = 〈bp i |
b ∈ B〉. We apply Theorem 9 in Theorem 10 to provide results that are dual to [5, Theorems 2.6 and
2.9]. This leads to a new derivation of established results concerning the structure of products
of cyclic and non-cyclic finite p-groups (see [5, Theorems 2.9 and 4.1]). Namely we show in
Corollary 11 that if p is an odd prime and G = AB is a finite p-group, where A is a cyclic subgroup
and B is a subgroup such that c(B) < p

2 and exp(B) = pk , thenΩk (A)B P G and d(G) ≤ 1+k+d(B).
We denote the nth term of the derived series of a group G by G (n). Thus G (0) =G , G (1) =G

′
and

G (n+1) = [G (n),G (n)] for n ≥ 1. We denote the derived length of a soluble group G by d(G). The i th

term of the lower (or descending) central series of G will be denoted by Ki (G), that is K1(G) =G ,
K2(G) =G

′
and Ki+1(G) = [Ki (G),G] for i ≥ 2. If G is nilpotent then c(G) will denote the class of G .

We note in particular that if c(G) < s, then Ks (G) = 1. The normal closure of the subgroup U in G is
denoted by UG , so that UG = 〈U g | g ∈G〉. We remark that if N P G , then (U N /N )G/N =UG N /N .
We finally denote the cyclic group of order pn by Cpn .

2. Results and Proofs

We begin with some elementary lemmas that will find application in the proofs of Theorems 9
and 10.

Lemma 1. Let G be a finite p-group and let N P G. Let U be a subgroup of G. Then

Ω

i (U N /N ) =

Ω

i (U )N /N .

Proof. By definition we have

Ω

i (U N /N ) = 〈(uN )p i | u ∈U 〉N /N = 〈up i
N | u ∈U 〉N /N = 〈up i | u ∈U 〉N /N .

It then follows that

Ω

i (U N /N ) = Ω

i (U )N /N . □

Lemma 2. Let G be a group such that G = AB, where A and B are subgroups of G. Suppose that
B1 P B is such that AB1 ⩽G. Then BG

1 = B AB1
1 = A1B1, where A1 = A∩BG

1 .

Proof. Since B1 P B , we see that

BG
1 = 〈B g

1 | g ∈G〉 = 〈B ba
1 | b ∈ B , a ∈ A〉 = 〈B a

1 | a ∈ A〉⩽B AB1
1 ⩽ AB1.

But B1 ⩽B AB1
1 ⩽BG

1 , so we have

BG
1 = B AB1

1 = (A∩BG
1 )B1 = A1B1,

where A1 = A∩BG
1 . □
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Lemma 3. Let G be a group and let N P G. Suppose that H and K are subgroups of G with
N ⩽ H ∩ K such that (H/N )(K /N ) ⩽ G/N . Then HK ⩽ G. Moreover, if (H/N )(K /N ) P G/N ,
then HK P G.

Proof. We let h ∈ H and k ∈ K . Since (H/N )(K /N )⩽G/N , we have (H/N )(K /N ) = (K /N )(H/N ).
Hence there exist h1 ∈ H and k1 ∈ K such that (hN )(kN ) = (k1N )(h1N ). Equivalently, we see that
hkN = k1h1N . Thus there exists x ∈ N such that hk = k1h1x. But N ⩽ H ∩K , so h1x ∈ H . It
follows that

hk = k1(h1x) ∈ K H .

Hence HK ⊆ K H . Since (K /N )(H/N ) = (H/N )(K /N ), we similarly see that K H ⊆ HK . We
conclude that HK = K H , so HK ⩽G .

We now make the additional assumption that (H/N )(K /N ) P G/N . We let h ∈ H and k ∈ K .
If g ∈ G then, by normality, we have ((hN )(kN ))g N = (hkN )g N = (hk)g N ∈ (H/N )(K /N ). Hence
there exist h1 ∈ H and k1 ∈ K such that (hk)g N = (h1N )(k1N ) = h1k1N . It follows that there exists
x ∈ N ⩽ H ∩K such that (hk)g = h1k1x. Since x ∈ K , we have k1x ∈ K , so (hk)g = h1(k1x) ∈ HK .
We thus conclude that HK P G . □

Our next lemma is a consequence of the Hall-Petrescu identity (see [4, III 9.4 Satz]).

Lemma 4. Let p be a prime and let G be a finite p-group such that c(G) < p. Suppose, in addition,
that exp(G

′
) ≤ p. Then for g1, g2 ∈G, we have (g1g2)p = g p

1 g p
2 .

Proof. Since c(G) < p, we have Kp (G) = 1. We further have Ki (G) ⩽ G
′

for i ≥ 2. Hence
exp(Ki (G)) ≤ p for i ≥ 2. By the Hall-Petrescu identity, there exist c2, . . . ,cp , with cs ∈ Ks (G) for
s = 2, . . . , p, such that

(g1g2)p = g p
1 g p

2 c
(p

2

)
2 · · ·c

( p
p−1

)
p−1 cp .

We note that cp ∈ Kp (G) = 1. Since exp(Ks (G)) ≤ p for s ≥ 2, we further see that cp
s = 1 for s ≥ 2.

But p is a divisor of
(p

s

)
for s = 2, . . . , p − 1. Hence c

(p
s

)
s = 1 for s = 2, . . . , p − 1. It follows that

(g1g2)p = g p
1 g p

2 . □

Corollary 5. Let p be an odd prime and let G be a finite p-group such that c(G) < p and
exp(G) = p2. Let y ∈ G be such that o(y) = p2 and suppose that there exists W ⩽ G such that
|G : W | = p and exp(W ) = p. Then

Ω

1(G) = 〈y p〉.
Proof. By definition, we have 〈y p〉 ⩽ Ω

1(G). Since exp(W ) = p, we see that y ∉ W . Now
|G : W | = p so, by comparison of orders, we have G = W 〈y〉. In addition, we have W P G and
G/W ∼= Cp . Hence G

′
⩽ W , so exp(G

′
) ≤ p. We let g ∈ G . Then there exist a suitable value α and

an element w ∈W such that g = w yα. By Lemma 4, we have g p = (w yα)p = w p (yα)p = w p (y p )α.
But exp(W ) = p, so w p = 1. Hence g p = (y p )α ∈ 〈y p〉, so

Ω

1(G)⩽ 〈y p〉. □

The following theorem is a restatement of results of Philip Hall concerning regular p-groups
(see [4, III 10.2 Satz and 10.5 Hauptsatz]).

Theorem 6. Let p be an odd prime and let G be a finite p-group such that c(G) < p. Then, for all i ,

(i) Ωi (G) = {g ∈G | g p i = 1}. In particular exp(Ωi (G)) ≤ p i ;
(ii)

Ω

i (G) = {g p i |g ∈G}.

We next prove a consequence of Theorem 6.

Corollary 7. Let p be an odd prime and let G be a finite p-group such that c(G) < p. Then, for
all i , we have

Ω

i+1(G) = Ω

1(

Ω

i (G)).

Proof. By Theorem 6(ii), we see that

Ω

i+1(G) = {g p i+1 | g ∈ G} = {(g p i
)p | g ∈ G} = {up | u ∈ {g p i |

g ∈G}} = {up | u ∈ Ω

i (G)} = Ω

1(

Ω

i (G)). □
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We make extensive use of the next result, which deals with p-groups that are the product of
a cyclic subgroup and a subgroup that has exponent p and class less than p

2 . The first part is a
restatement of [5, Lemma 2.2].

Lemma 8. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B such
that A is cyclic, exp(B) = p and c(B) < p

2 . Then:

(i) Ω1(A)B P G;
(ii) exp(BG ) = p.

Proof. We note that the proof of (i) is given in [5, Lemma 2.2]. For (ii), we see that the result
is trivial if B P G . Letting A = 〈x〉, we can thus assume that B x ̸= B . In particular A is non-
trivial, so Ω1(A) ∼= Cp . By (i), we have Ω1(A)B P G . Hence, by comparison of orders, we have
BG =Ω1(A)B = BB x . We further see that |BG : B | = |BG : B x | = |Ω1(A)| = p. In particular, B and B x

are normal in BG . It follows that c(BG ) ≤ c(B)+c(B x ) < p
2 +

p
2 = p. Now BG = BB x , so BG =Ω1(BG ).

By Theorem 6, we then have exp(BG ) ≤ p. But exp(B) = p, so we conclude that exp(BG ) = p. □

We now proceed to our main result.

Theorem 9. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B such
that A is cyclic and c(B) < p

2 . Then, for all i , we have A

Ω

i (B)⩽G.

Proof. The bulk of our proof is devoted to showing that A

Ω

1(B) ⩽G . For this, we use induction
on |G|. If G = A, then the result is trivial. Hence we can assume that A is a proper subgroup of
G . We can further assume that B ̸P G , as otherwise

Ω

1(B) P G and we trivially have A

Ω

1(B) ⩽G .
Since |G : B | ≤ p is then excluded, we have |A| ≥ p2. In particular, we see that Ω1(A) is a proper
subgroup of A withΩ1(A) ∼=Cp .

By a result of Morigi (see [6, Lemma 1] or [2, Lemma 3.3.8]), there exists a non-trivial normal
subgroup W P G such that either W ⩽ A or W ⩽ B . Since G is a finite p-group, we then have
either A∩Z (G) ̸= 1 or B∩Z (G) ̸= 1. We assume first that A∩Z (G) ̸= 1. By minimality, it follows that
Ω1(A) ⩽ Z (G). By induction, we see that (A/Ω1(A))

Ω

1(BΩ1(A)/Ω1(A)) ⩽G/Ω1(A). By Lemma 1,
we further have

Ω

1(BΩ1(A)/Ω1(A)) = Ω

1(B)Ω1(A)/Ω1(A). Hence

A/Ω1(A)(

Ω

1(B)Ω1(A)/Ω1(A))⩽G/Ω1(A).

We now apply Lemma 3 to see that A

Ω

1(B)Ω1(A)⩽G . SinceΩ1(A)⩽ Z (G), we have

A

Ω

1(B)Ω1(A) = AΩ1(A)

Ω

1(B) = A

Ω

1(B),

so A

Ω

1(B)⩽G . We can therefore assume that A∩Z (G) = 1 and thus B ∩Z (G) ̸= 1.
We let z ∈ B ∩ Z (G) be such that 〈z〉 ∼= Cp . By induction, we have (A〈z〉/〈z〉)(

Ω

1(B/〈z〉) ⩽
G/〈z〉. By Lemma 1, we see that

Ω

1(B/〈z〉) = Ω

1(B〈z〉/〈z〉) = Ω

1(B)〈z〉/〈z〉. Thus
(A〈z〉/〈z〉)(

Ω

1(B)〈z〉/〈z〉) ⩽ G/〈z〉. By Lemma 3, we then have A〈z〉 Ω

1(B)〈z〉 ⩽ G . But
A〈z〉 Ω

1(B)〈z〉 = A

Ω

1(B)〈z〉. Hence
A

Ω

1(B)〈z〉⩽G .

Since A is a proper subgroup of G , we let M be a maximal subgroup of G such that A ⩽ M . Then
M = A(B ∩M). We let B1 = B ∩M , so that M = AB1. Since A ⩽ M , we have A ∩B = A ∩B ∩M =
A∩B1. Hence

|G| = |A||B |
|A∩B | = p|M | = p

|A||B1|
|A∩B1|

= p
|A||B1|
|A∩B | .

It follows that

|B : B1| = |B |
|B1|

= p.

We consider the case where

Ω

1(B1) ̸= 1. By induction, we have A

Ω

1(B1) ⩽ AB1 ⩽ G . Now

Ω

1(B1) is characteristic in B1 and |B : B1| = p, so B1 P B . Hence

Ω

1(B1) P B . Applying Lemma 2,
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we have

Ω

1(B1)G = (A∩ Ω

1(B1)G )

Ω

1(B1). We let N = Ω

1(B1)G . Since

Ω

1(B1) ̸= 1, we see that N is a
non-trivial normal subgroup of G . By our induction hypothesis and Lemma 1, we then have

(AN /N )

Ω

1(B N /N ) = (AN /N )(

Ω

1(B)N /N )⩽G/N .

Hence, by Lemma 3, we have AN

Ω

1(B)N = AN

Ω

1(B) ⩽ G . But N = Ω

1(B1)G = (A ∩

Ω

1(B1)G )

Ω

1(B1), so

AN

Ω

1(B) = A(A∩ Ω

1(B1)G )

Ω

1(B1)

Ω

1(B) = A

Ω

1(B).

Thus, in the case where

Ω

1(B1) ̸= 1, we conclude that A

Ω

1(B)⩽G .
We now assume that

Ω

1(B1) = 1. Thus exp(B1) ≤ p. Since |B : B1| = p, it follows that exp(B) ≤
p2. If exp(B) = p, then

Ω

1(B) = 1 and the result is trivial. Hence we can assume that there exists
y ∈ B such that o(y) = p2. But |B : B1| = p and c(B) < p

2 < p, so we can apply Corollary 5 to see that

Ω

1(B) = 〈y p〉 ∼=Cp . In particular, we have

Ω

1(B)⩽ Z (B). From the above, there exists z ∈ B ∩Z (G)
with 〈z〉 ∼= Cp such that A

Ω

1(B)〈z〉⩽ G . But

Ω

1(B) ⩽ Z (B), so

Ω

1(B)〈z〉⩽ Z (B). Hence we can
apply Lemma 2 to see that (

Ω

1(B)〈z〉)G = (

Ω

1(B)〈z〉)A

Ω

1(B)〈z〉. Since

Ω

1(B) ∼= 〈z〉 ∼=Cp , we see that

Ω

1(B)〈z〉 is elementary abelian. In particular, we have exp(

Ω

1(B)〈z〉) = p and c(

Ω

1(B)〈z〉) = 1 < p
2 .

We can thus apply Lemma 8(i) to see thatΩ1(A)

Ω

1(B)〈z〉P A

Ω

1(B)〈z〉. Hence

(

Ω

1(B)〈z〉)G = (

Ω

1(B)〈z〉)A

Ω

1(B)〈z〉 ⩽Ω1(A)

Ω

1(B)〈z〉.
We can assume that B is a proper subgroup of G , since otherwise

Ω

1(B) P G and it trivially
follows that A

Ω

1(B) ⩽ G . We let M1 be a maximal subgroup of G such that B ⩽ M1. Then
|G : M1| = p and M1 = (A∩M1)B . We let A1 = A∩M1. As above, we have |A : A1| = p. Since |A| ≥ p2,
we see thatΩ1(A)⩽ A1. HenceΩ1(A) =Ω1(A1) ∼=Cp . By induction, we have A1

Ω

1(B)⩽ A1B ⩽G .
We can thus apply Lemma 2 and Lemma 8(i) to see that

Ω
1(B)A1B = Ω

1(B)A1
Ω

1(B) ⩽Ω1(A)
Ω

1(B) P A1
Ω

1(B).

Bearing in mind that Ω1(A) ∼= Cp , we see by comparison of orders that either

Ω

1(B)A1B =
Ω1(A)

Ω

1(B) or

Ω

1(B)A1B = Ω

1(B).
If

Ω

1(B)A1B = Ω1(A)

Ω

1(B), then Ω1(A)

Ω

1(B) P A1B . In particular Ω1(A)

Ω

1(B)B = Ω1(A)B ⩽
A1B , soΩ1(A)B is a subgroup of G . We can then apply Lemma 2 to see that

Ω1(A)G =Ω1(A)Ω1(A)B ⩽Ω1(A)

Ω

1(B) P A1B.

But

Ω

1(B) ∼= Cp , so either Ω1(A)G = Ω1(A) or Ω1(A)G = Ω1(A)

Ω

1(B). In the former case, we
have Ω1(A) P G . But Ω1(A) ∼= Cp , so 1 ̸= Ω1(A) ⩽ A ∩ Z (G), which has been excluded. If
Ω1(A)G = Ω1(A)

Ω

1(B) then Ω1(A)

Ω

1(B) P G , so A

Ω

1(B) = AΩ1(A)

Ω

1(B) ⩽ G , and we are done.
We can thus assume that

Ω

1(B)A1B = Ω

1(B) P A1B.

Since

Ω

1(B) ∼= Cp , it follows that

Ω

1(B) ⩽ Z (A1B). But A1B = M1 P G , so we further have

Ω

1(B)G ⩽ Z (A1B) P G . Now, for z as above, we have 〈z〉 ⩽ B ∩ Z (G) ⩽ Z (A1B). We therefore
see that

(

Ω

1(B)〈z〉)G = Ω

1(B)G 〈z〉⩽ Z (A1B).

We recall from the above that (

Ω

1(B)〈z〉)G ⩽Ω1(A)

Ω

1(B)〈z〉. SinceΩ1(A) ∼=Cp , we have either
Ω1(A) ⩽ (

Ω

1(B)〈z〉)G ⩽ Z (A1B) or Ω1(A) ∩ (

Ω

1(B)〈z〉)G = 1. In the former case we see that B
centralises Ω1(A). But then G = AB ⩽ CG (Ω1(A)), so Ω1(A) ⩽ Z (G). Since this is excluded, we
haveΩ1(A)∩ (

Ω

1(B)〈z〉)G = 1. By comparison of orders, it follows that

(

Ω

1(B)〈z〉)G = Ω

1(B)〈z〉P G .

We let N1 = Ω

1(B)〈z〉 and have N1 ⩽ B . Hence G/N1 = (AN1/N1)(B/N1). If A ∩ N1 ̸= 1 then,
by minimality, we have Ω1(A) ⩽ N1 = (

Ω

1(B)〈z〉)G . But this has been excluded, so A ∩ N1 = 1.
HenceΩ1(AN1/N1) =Ω1(A)N1/N1

∼=Ω1(A) ∼=Cp . We further note that c(B/N1) ≤ c(B) < p
2 . Since
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exp(B) = p2 and

Ω

1(B) ⩽ N1, we also see that exp(B/N1) = p. We can thus apply Lemma 8(i) to
see that

Ω1(AN1/N1)(B/N1) = (Ω1(A)N1/N1)(B/N1) P G/N1.

By Lemma 3, we then haveΩ1(A)N1B =Ω1(A)B P G .
We let A = 〈x〉. We can assume that B x ̸= B as otherwise B P G , which has been excluded. Since

Ω1(A) ∼= Cp , we then have Ω1(A)∩B = 1 and see that |Ω1(A)B : B | = |Ω1(A)B : B x | = |Ω1(A)| = p.
Thus both B and B x are normal in Ω1(A)B . By comparison of orders, we further see that
Ω1(A)B = BB x . Since c(B x ) = c(B) < p

2 , it follows that

c(Ω1(A)B) = c(BB x ) ≤ c(B)+c(B x ) < p

2
+ p

2
= p.

From the above there exists B1 ⩽ B , with |B : B1| = p and exp(B1) = p, such that AB1 ⩽ G .
SinceΩ1(A)∩B = 1, we see by minimality that A∩B = 1. In particular, we have A∩B1 = 1. Since
A is non-trivial, it follows that B1 is a proper subgroup of AB1. Hence B1 is a proper subgroup
of NAB1 (B1). But NAB1 (B1) = (A ∩ NAB1 (B1))B1, so A ∩ NAB1 (B1) is non-trivial. It follows that
Ω1(A) ⩽ A ∩ NAB1 (B1). In particular, we see that Ω1(A)B1 ⩽ G . Since |B : B1| = p, we further
see that

|Ω1(A)B :Ω1(A)B1| = |B : B1| = p.

Now exp(B1) = p and Ω1(A) ∼= Cp , so Ω1(A)B1 is generated by elements of order p. Thus
Ω1(A)B1 = Ω1(Ω1(A)B1). But c(Ω1(A)B1) ≤ c(Ω1(A)B) < p. Hence we can apply Theorem 6 to
see that

exp(Ω1(A)B1) = p.

As shown above, there exists y ∈ B such that o(y) = p2 and

Ω

1(B) = 〈y p〉. It follows, in
particular, that exp(Ω1(A)B) ≥ p2. But |Ω1(A)B :Ω1(A)B1| = p, so Ω1(A)B/Ω1(A)B1

∼= Cp . Since
exp(Ω1(A)B1) = p, we further see that exp(Ω1(A)B) ≤ p2. Hence

exp(Ω1(A)B) = p2.

We can therefore apply Corollary 5 to see that

Ω

1(Ω1(A)B) = 〈y p〉 = Ω

1(B).

SinceΩ1(A)B P G , we then have

Ω

1(B) P G . We thus conclude that A

Ω

1(B)⩽G .
Having established that A

Ω

1(B) ⩽G , we use induction on i to show that A

Ω

i (B) ⩽G for all i .
We assume that the result holds for i = s, where s ≥ 1. Since c(B) < p

2 < p, we see, by Corollary 7,
that

Ω

s+1(B) = Ω

1(

Ω

s (B)). By induction, we can assume that A

Ω

s (B) ⩽ G . Applying the result
we have proven for i = 1, we then have A

Ω

1(

Ω

s (B)) ⩽ A

Ω

s (B) ⩽G . Since

Ω

1(

Ω

s (B)) = Ω

s+1(B), it
follows that A

Ω

s+1(B)⩽G . □

We use Theorem 9 to prove the following result, which can be considered as an analogue to [5,
Theorem 2.6].

Theorem 10. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B
such that A is cyclic, c(B) < p

2 and exp(B) = pk , where k ≥ 1. Then, for all i such that 1 ≤ i ≤ k, we
have:

(i) A

Ω

k−i (B)⩽G;
(ii)

Ω

k−i (B)G ⩽Ωi (A)

Ω

k−i (B)⩽G;
(iii) exp(

Ω

k−i (B)G ) = p i .

Proof. We see that (i) holds by Theorem 9. For (ii) and (iii), we first deal with the case where i = 1.
Since c(B) < p

2 < p, we see by Theorem 6 that

Ω

k−1(B) = {bpk−1 | b ∈ B}. Since exp(B) = pk , it
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follows that exp(

Ω

k−1(B)) = p. By (i ), we have A

Ω

k−1(B) ⩽ G . Hence we can apply Lemma 2 to
see that

Ω

k−1(B)G = Ω

k−1(B)A

Ω

k−1(B).

Now c(

Ω

k−1(B)) ≤ c(B) < p
2 . Hence, by Lemma 8(i), we haveΩ1(A)

Ω

k−1(B) P A

Ω

k−1(B). It follows
that

Ω

k−1(B)G = Ω

k−1(B)A

Ω

k−1(B) ⩽Ω1(A)

Ω

k−1(B).

Thus (ii) holds for i = 1. By Lemma 8(ii), we further see that exp(

Ω

k−1(B)G ) =
exp(

Ω

k−1(B)A

Ω

k−1(B)) = p, so (iii) also holds for i = 1.
We now assume that k ≥ 2 and further assume that (ii) and (iii) hold for i = s, where 1 ≤ s < k.

Thus

Ω

k−s (B)G ⩽ Ωs (A)

Ω

k−s (B) and exp(

Ω

k−s (B)G ) = p s . By Lemma 2, we have

Ω

k−s (B)G =

Ω

k−s (B)A

Ω

k−s (B) = A1

Ω

k−s (B), where A1 = A ∩ Ω

k−s (B)G . Since exp(A1) ≤ exp((

Ω

k−s (B))G ) = p s ,
we see that A1 =Ωt (A) for some t ≤ s.

We let N = Ω

k−s (B)G . Then A ∩ N = Ωt (A) ⩽ Ωs (A). If Ωs (A) = A, then Ωs+1(A) = A and
Ω1(AN /N ) ⩽ AN /N = Ωs+1(A)N /N . If Ωs (A) is a proper subgroup of A, then Ωs+1(A) ∼= Cp s+1 .
Since exp(N ) = p s , we see that Ωs+1(A) ̸⩽ N . By minimality, we then have Ω1(AN /N ) ⩽
Ωs+1(A)N /N . Thus, in every case, we have

Ω1(AN /N )⩽Ωs+1(A)N /N .

By Lemma 1, we have

Ω

k−s−1(B N /N ) = Ω

k−s−1(B)N /N . Since c(B) ≤ p
2 < p we see, by

Corollary 7, that

Ω

1(

Ω

k−s−1(B)) = Ω

k−s (B) ⩽ N . Hence exp(

Ω

k−s−1(B)N /N ) ≤ p. But, by our
inductive assumption, we have exp(N ) = exp(

Ω

k−s (B)G ) = p s . In addition, exp(B) = pk , so

Ω

k−s−1(B) contains elements of order p s+1. Hence exp(

Ω

k−s−1(B)N /N ) = p. Since A

Ω

k−s−1(B)⩽
G and N =Ωt (A)

Ω

k−s (B)⩽ A

Ω

k−s−1(B), we see that

(AN /N )(
Ω

k−s−1(B)N /N ) = A
Ω

k−s−1(B)/N ⩽G/N .

But exp(

Ω

k−s−1(B)N /N ) = p and c(

Ω

k−s−1(B)N /N ) ≤ c(B) < p
2 . Hence, we can apply Lemma 8(i)

to see that

Ω1(AN /N )(

Ω

k−s−1(B)N /N ) P A

Ω

k−s−1(B)/N .

By Lemma 8(ii), we further have exp((

Ω

k−s−1(B)N /N )A

Ω

k−s−1(B)/N ) = p. We note that
(

Ω

k−s−1(B)N /N )A

Ω

k−s−1(B)/N = Ω

k−s−1(B)A

Ω

k−s−1(B)N /N . In addition, we see by Lemma 2 that

Ω

k−s−1(B)A

Ω

k−s−1(B) = Ω

k−s−1(B)G . It then follows that

exp(

Ω

k−s−1(B)G N /N ) = exp((

Ω

k−s−1(B)N /N )A

Ω

k−s−1(B)/N ) = p.

We let W /N = Ω1(AN /N ). Then N ⩽ W ⩽ AN , so W = (A ∩W )N . From the above, we
have W ⩽ Ωs+1(A)N . Since A is cyclic, we see that if A ∩ W ̸⩽ Ωs+1(A) then Ωs+1(A) is a
proper subgroup of A ∩W . It follows that Ωs+2(A) ⩽ A ∩W , where Ωs+2(A) ∼= Cp s+2 . Hence
Ωs+2(A) ⩽ W ⩽ Ωs+1(A)N , so Ωs+2(A) = Ωs+1(A)(Ωs+2(A) ∩ N ). But, for t as above, we have
Ωs+2(A)∩N ⩽ A∩N ⩽Ωt (A). Since t ≤ s, the contradictionΩs+2(A)⩽Ωs+1(A)Ωt (A) =Ωs+1(A) ∼=
Cp s+1 then arises. We can thus assume that A ∩W =Ωm(A) for some m such that t ≤ m ≤ s +1.
Hence

Ω1(AN /N )(

Ω

k−s−1(B)N /N ) = (Ωm(A)N /N )(

Ω

k−s−1(B)N /N ) P A

Ω

k−s−1(B)/N .

By Lemma 3, it follows that Ωm(A)N

Ω

k−s−1(B)N P A

Ω

k−s−1(B). But N = Ωt (A)

Ω

k−s (B) and
Ωm(A)N

Ω

k−s−1(B)N =Ωm(A)N

Ω

k−s−1(B). Hence

Ωm(A)Ωt (A)

Ω

k−s (B)

Ω

k−s−1(B) =Ωm(A)

Ω

k−s−1(B) P A

Ω

k−s−1(B).

We can now apply Lemma 2 to see that

Ω

k−s−1(B)G = Ω

k−s−1(B)A

Ω

k−s−1(B) ⩽Ωm(A)

Ω

k−s−1(B).
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Since A is cyclic and A

Ω

k−s−1(B)⩽G , we see thatΩ j (A)

Ω

k−s−1(B)⩽G for all j . Now m ≤ s+1, so

Ω

k−s−1(B)G ⩽Ωm(A)

Ω

k−s−1(B)⩽Ωs+1(A)

Ω

k−s−1(B)⩽G .

We thus conclude that (ii) holds for i = s +1.
From the above, we have exp(

Ω

k−s−1(B)G N /N )) = p. But N = Ω

k−s (B)G and, by our inductive
assumption, we have exp(

Ω

k−s (B)G ) = p s . Hence exp(

Ω

k−s−1(B)G ) ≤ p s+1. Now exp(B) = pk

so there exists b ∈ B such that o(b) = pk . Since s + 1 ≤ k, we see that o(bpk−s−1
) = p s+1. Thus

bpk−s−1
is an element of order p s+1 in

Ω

k−s−1(B). Hence exp(

Ω

k−s−1(B)G ) ≥ p s+1.We conclude
that exp(

Ω

k−s−1(B)G ) = p s+1, so (iii) also holds for i = s +1. □

In our final result we use Theorem 10 to provide an alternative derivation of two results
concerning the structure of products of cyclic p-groups with p-groups of class less than p

2 (see [5,
Theorems 2.9 and 4.1]).

Corollary 11. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B
such that A is cyclic, c(B) < p

2 and exp(B) = pk , where k ≥ 1. Then:

(i) Ωk (A)B P G;
(ii) d(G) ≤ 1+k +d(B).

Proof. We let i = k in Theorem 10(iii) and see that exp(BG ) = pk . Now B ⩽BG , so BG = (A∩BG )B .
We have A ∩BG = Ωt (A), for a suitable t . Since exp(BG ) = pk , we can assume that t ≤ k. Now
G/BG = G/Ωt (A)B is isomorphic to a subgroup of A, so G/BG is cyclic. Since BG = Ωt (A)B ⩽
Ωk (A)B , we then see thatΩk (A)B/BG P G . It follows thatΩk (A)B P G , so (i) is established.

For (ii), we note that G/Ωk (A)B is isomorphic to a factor group of the cyclic group A. Hence
G

′
⩽ Ωk (A)B . Since A is cyclic, we see that Ω1(A)B ⩽ · · · ⩽ Ωk (A)B ⩽ G . For i = 1, . . . ,k, we

have |Ωi (A)B : Ωi−1(A)B | ≤ |Ωi (A) : Ωi−1(A)| ≤ p, so Ωi−1(A)B P Ωi (A)B . We further see that
Ωi (A)B/Ωi−1(A)B is isomorphic to a factor group of the cyclic group Ωi (A)/Ωi−1(A). Hence
(Ωi (A)B)

′
⩽ Ωi−1(A)B for i = 1, . . . ,k, so G (1+k) ⩽ B . It then follows that G (1+k+d(B)) = 1, in

accordance with (ii). □
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