

ACADÉMIE DES SCIENCES

Comptes Rendus

Mathématique

Brendan McCann
On the factorised subgroups of products of cyclic and non-cyclic finite \boldsymbol{p}-groups
Volume 362 (2024), p. 293-300
Online since: 2 May 2024
https://doi.org/10.5802/crmath. 565
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE

On the factorised subgroups of products of cyclic and non-cyclic finite p-groups

Sur les sous-groupes factorisés des produits de p-groupes finis cycliques et non cycliques

Brendan McCann ${ }^{a}$
${ }^{a}$ Department of Computing and Mathematics, South-East Technological University Waterford, Cork Road, Waterford, Ireland
E-mail: brendan.mccann@setu.ie

Abstract

Let p be an odd prime and let $G=A B$ be a finite p-group that is the product of a cyclic subgroup A and a non-cyclic subgroup B. Suppose in addition that the nilpotency class of B is less than $\frac{p}{2}$. We denote by $\mho_{i}(B)$ the subgroup of B generated by the p^{i}-th powers of elements of B, that is $\mho_{i}(B)=\left\langle b^{p^{i}} \mid b \in B\right\rangle$. In this article we show that, for all values of i, the set $A \mho_{i}(B)$ is a subgroup of G. We also present some applications of this result. Résumé. Soient p un nombre premier impair et $G=A B$ un p-groupe fini qui est le produit des sous-groupes A et B, tels que A soit un sous-groupe cyclique et B soit un sous-groupe non cyclique. Supposons également que la classe de nilpotence de B soit inférieure à $\frac{p}{2}$. On note $\mho_{i}(B)$ le sous-groupe de B engendré par les puissances p^{i} des éléments de B, alors $\mho_{i}(B)=\left\langle b^{p^{i}} \mid b \in B\right\rangle$. Dans cet article nous montrons que, pour chaque valeur du nombre i, l'ensemble $A \mho_{i}(B)$ est sous-groupe du groupe G. Nous présentons également quelques applications de ce résultat.

Keywords. factorised groups, products of groups, finite p-groups.
Mots-clés. groupes factorisés, produit de groupes, p-groupes finis.
2020 Mathematics Subject Classification. 20D40, 20D15.
Manuscript received 22 June 2023, revised 4 September 2023, accepted 5 September 2023.

1. Introduction

We say that the group G is the product of the subgroups A and B if G is equal to the set product of A and B, that is $G=\{a b \mid a \in A, b \in B\}$. Such groups are also referred to as factorised groups. For a factorised group $G=A B$, is seems natural to ask whether we can identify subgroups of the "factors" A and B whose set product with each other forms a subgroup of G. By a result from elementary Group Theory (see, for instance, [4, I 2.12 Hilfssatz]), this is equivalent to determining subgroups $A_{1} \leqslant A$ and $B_{1} \leqslant B$ such that their set products satisfy $A_{1} B_{1}=B_{1} A_{1}$. Despite an extensive literature on factorised groups, as documented in Amberg, Franciosi and de Giovanni [1] and Ballester-Bolinches, Esteban-Romero and Assad [2], results in this direction remain scarce, even when both factors are abelian. The most notable result goes back to that of Huppert (see [3, Satz 3] or [2, Corollary 3.1.9]), which states that if the finite p-group $G=A B$ is the product of two cyclic subgroups A and B, then G is the totally permutable product of A and
B, that is $A_{1} B_{1} \leqslant G$ for each $A_{1} \leqslant A$ and $B_{1} \leqslant B$. Since A and B are cyclic p-groups, this can be restated as $\Omega_{s}(A) \Omega_{t}(B) \leqslant G$ for all values of s and t, where the characteristic subgroup $\Omega_{i}(W)$ of the finite p-group W is defined by $\Omega_{i}(W)=\left\langle w \in W \mid w^{p^{i}}=1\right\rangle$. In general, we cannot expect that $G=A B$ will be a totally permutable product if either of the subgroups A or B is non-cyclic. However, if the prime p is odd, then in the case where $A \cap B=1, A$ is cyclic and the nilpotency class $\mathrm{c}(B)$ of B satisfies $\mathrm{c}(B)<\frac{p}{2}$, it has been shown in [5, Theorem 2.6(i)] that $A \Omega_{i}(B) \leqslant G$ for all values of i. Since A is cyclic, it is then straightforward to deduce that $\Omega_{s}(A) \Omega_{t}(B) \leqslant G$, for all values of s and t. This can be viewed as a partial analogue to Huppert's result for products of cyclic subgroups. It is notable that Example 2.8 of [5] further shows that $A \Omega_{i}(B)$ is not always a subgroup of G when $A \cap B \neq 1$. This places a limit on the extent to which Huppert's result can be directly generalised.

In this paper we present some results that can be considered as dual to those contained in [5]. Our main result is Theorem 9, which states that if $G=A B$ is a finite p-group for subgroups A and B such that A is cyclic and $\mathrm{c}(B)<\frac{p}{2}$ then, for all $i, A \mho_{i}(B) \leqslant G$. Here $\mho_{i}(B)$ denotes the characteristic subgroup of B generated by the p^{i}-th powers of elements of B, that is $\mho_{i}(B)=\left\langle b^{p^{i}}\right|$ $b \in B\rangle$. We apply Theorem 9 in Theorem 10 to provide results that are dual to [5, Theorems 2.6 and 2.9]. This leads to a new derivation of established results concerning the structure of products of cyclic and non-cyclic finite p-groups (see [5, Theorems 2.9 and 4.1]). Namely we show in Corollary 11 that if p is an odd prime and $G=A B$ is a finite p-group, where A is a cyclic subgroup and B is a subgroup such that $\mathrm{c}(B)<\frac{p}{2}$ and $\exp (B)=p^{k}$, then $\Omega_{k}(A) B \preccurlyeq G$ and $\mathrm{d}(G) \leq 1+k+\mathrm{d}(B)$.

We denote the $n^{\text {th }}$ term of the derived series of a group G by $G^{(n)}$. Thus $G^{(0)}=G, G^{(1)}=G^{\prime}$ and $G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right]$ for $n \geq 1$. We denote the derived length of a soluble group G by $\mathrm{d}(G)$. The $i^{\text {th }}$ term of the lower (or descending) central series of G will be denoted by $K_{i}(G)$, that is $K_{1}(G)=G$, $K_{2}(G)=G^{\prime}$ and $K_{i+1}(G)=\left[K_{i}(G), G\right]$ for $i \geq 2$. If G is nilpotent then $\mathrm{c}(G)$ will denote the class of G. We note in particular that if $\mathrm{c}(G)<s$, then $K_{s}(G)=1$. The normal closure of the subgroup U in G is denoted by U^{G}, so that $U^{G}=\left\langle U^{g} \mid g \in G\right\rangle$. We remark that if $N \leqslant G$, then $(U N / N)^{G / N}=U^{G} N / N$. We finally denote the cyclic group of order p^{n} by $C_{p^{n}}$.

2. Results and Proofs

We begin with some elementary lemmas that will find application in the proofs of Theorems 9 and 10.

Lemma 1. Let G be a finite p-group and let $N \geqq G$. Let U be a subgroup of G. Then $\mho_{i}(U N / N)=$ $\mho_{i}(U) N / N$.

Proof. By definition we have

$$
\mho_{i}(U N / N)=\left\langle(u N)^{p^{i}} \mid u \in U\right\rangle N / N=\left\langle u^{p^{i}} N \mid u \in U\right\rangle N / N=\left\langle u^{p^{i}} \mid u \in U\right\rangle N / N
$$

It then follows that $\mho_{i}(U N / N)=\mho_{i}(U) N / N$.
Lemma 2. Let G be a group such that $G=A B$, where A and B are subgroups of G. Suppose that $B_{1} \leqslant B$ is such that $A B_{1} \leqslant G$. Then $B_{1}^{G}=B_{1}^{A B_{1}}=A_{1} B_{1}$, where $A_{1}=A \cap B_{1}^{G}$.
Proof. Since $B_{1} \Downarrow B$, we see that

$$
B_{1}^{G}=\left\langle B_{1}^{g} \mid g \in G\right\rangle=\left\langle B_{1}^{b a} \mid b \in B, a \in A\right\rangle=\left\langle B_{1}^{a} \mid a \in A\right\rangle \leqslant B_{1}^{A B_{1}} \leqslant A B_{1}
$$

But $B_{1} \leqslant B_{1}^{A B_{1}} \leqslant B_{1}^{G}$, so we have

$$
B_{1}^{G}=B_{1}^{A B_{1}}=\left(A \cap B_{1}^{G}\right) B_{1}=A_{1} B_{1}
$$

where $A_{1}=A \cap B_{1}^{G}$.

Lemma 3. Let G be a group and let $N \geqq G$. Suppose that H and K are subgroups of G with $N \leqslant H \cap K$ such that $(H / N)(K / N) \leqslant G / N$. Then $H K \leqslant G$. Moreover, if $(H / N)(K / N) \leqslant G / N$, then $H K \preccurlyeq G$.
Proof. We let $h \in H$ and $k \in K$. Since $(H / N)(K / N) \leqslant G / N$, we have $(H / N)(K / N)=(K / N)(H / N)$. Hence there exist $h_{1} \in H$ and $k_{1} \in K$ such that $(h N)(k N)=\left(k_{1} N\right)\left(h_{1} N\right)$. Equivalently, we see that $h k N=k_{1} h_{1} N$. Thus there exists $x \in N$ such that $h k=k_{1} h_{1} x$. But $N \leqslant H \cap K$, so $h_{1} x \in H$. It follows that

$$
h k=k_{1}\left(h_{1} x\right) \in K H .
$$

Hence $H K \subseteq K H$. Since $(K / N)(H / N)=(H / N)(K / N)$, we similarly see that $K H \subseteq H K$. We conclude that $H K=K H$, so $H K \leqslant G$.

We now make the additional assumption that $(H / N)(K / N) 太 G / N$. We let $h \in H$ and $k \in K$. If $g \in G$ then, by normality, we have $((h N)(k N))^{g N}=(h k N)^{g N}=(h k)^{g} N \in(H / N)(K / N)$. Hence there exist $h_{1} \in H$ and $k_{1} \in K$ such that $(h k)^{g} N=\left(h_{1} N\right)\left(k_{1} N\right)=h_{1} k_{1} N$. It follows that there exists $x \in N \leqslant H \cap K$ such that $(h k)^{g}=h_{1} k_{1} x$. Since $x \in K$, we have $k_{1} x \in K$, so $(h k)^{g}=h_{1}\left(k_{1} x\right) \in H K$. We thus conclude that $H K \geqq G$.

Our next lemma is a consequence of the Hall-Petrescu identity (see [4, III 9.4 Satz]).
Lemma 4. Let p be a prime and let G be a finite p-group such that $\mathrm{c}(G)<p$. Suppose, in addition, that $\exp \left(G^{\prime}\right) \leq p$. Then for $g_{1}, g_{2} \in G$, we have $\left(g_{1} g_{2}\right)^{p}=g_{1}^{p} g_{2}^{p}$.
Proof. Since $\mathrm{c}(G)<p$, we have $K_{p}(G)=1$. We further have $K_{i}(G) \leqslant G^{\prime}$ for $i \geq 2$. Hence $\exp \left(K_{i}(G)\right) \leq p$ for $i \geq 2$. By the Hall-Petrescu identity, there exist c_{2}, \ldots, c_{p}, with $c_{s} \in K_{s}(G)$ for $s=2, \ldots, p$, such that

$$
\left(g_{1} g_{2}\right)^{p}=g_{1}^{p} g_{2}^{p} c_{2}^{\left(\frac{p}{2}\right)} \cdots c_{p-1}^{(p-1}{ }^{p} c_{p} .
$$

We note that $c_{p} \in K_{p}(G)=1$. Since $\exp \left(K_{s}(G)\right) \leq p$ for $s \geq 2$, we further see that $c_{s}^{p}=1$ for $s \geq 2$. But p is a divisor of $\binom{p}{s}$ for $s=2, \ldots, p-1$. Hence $c_{s}^{(p)}=1$ for $s=2, \ldots, p-1$. It follows that $\left(g_{1} g_{2}\right)^{p}=g_{1}^{p} g_{2}^{p}$.
Corollary 5. Let p be an odd prime and let G be a finite p-group such that $\mathrm{c}(G)<p$ and $\exp (G)=p^{2}$. Let $y \in G$ be such that $\mathrm{o}(y)=p^{2}$ and suppose that there exists $W \leqslant G$ such that $|G: W|=p$ and $\exp (W)=p$. Then $\mho_{1}(G)=\left\langle y^{p}\right\rangle$.
Proof. By definition, we have $\left\langle y^{p}\right\rangle \leqslant \mho_{1}(G)$. Since $\exp (W)=p$, we see that $y \notin W$. Now $|G: W|=p$ so, by comparison of orders, we have $G=W\langle y\rangle$. In addition, we have $W \preccurlyeq G$ and $G / W \cong C_{p}$. Hence $G^{\prime} \leqslant W$, so $\exp \left(G^{\prime}\right) \leq p$. We let $g \in G$. Then there exist a suitable value α and an element $w \in W$ such that $g=w y^{\alpha}$. By Lemma 4, we have $g^{p}=\left(w y^{\alpha}\right)^{p}=w^{p}\left(y^{\alpha}\right)^{p}=w^{p}\left(y^{p}\right)^{\alpha}$. But $\exp (W)=p$, so $w^{p}=1$. Hence $g^{p}=\left(y^{p}\right)^{\alpha} \in\left\langle y^{p}\right\rangle$, so $\mho_{1}(G) \leqslant\left\langle y^{p}\right\rangle$.

The following theorem is a restatement of results of Philip Hall concerning regular p-groups (see [4, III 10.2 Satz and 10.5 Hauptsatz]).
Theorem 6. Let p be an odd prime and let G be a finite p-group such that $\mathrm{c}(G)<p$. Then, for all i,
(i) $\Omega_{i}(G)=\left\{g \in G \mid g^{p^{i}}=1\right\}$. In particular $\exp \left(\Omega_{i}(G)\right) \leq p^{i}$;
(ii) $\mho_{i}(G)=\left\{g^{p^{i}} \mid g \in G\right\}$.

We next prove a consequence of Theorem 6.
Corollary 7. Let p be an odd prime and let G be a finite p-group such that $\mathrm{c}(G)<p$. Then, for all i, we have $\mho_{i+1}(G)=\mho_{1}\left(\mho_{i}(G)\right)$.
Proof. By Theorem 6 (ii), we see that $\mho_{i+1}(G)=\left\{g^{p^{i+1}} \mid g \in G\right\}=\left\{\left(g^{p^{i}}\right)^{p} \mid g \in G\right\}=\left\{u^{p} \mid u \in\left\{g^{p^{i}} \mid\right.\right.$ $g \in G\}\}=\left\{u^{p} \mid u \in \mho_{i}(G)\right\}=\mho_{1}\left(\mho_{i}(G)\right)$.

We make extensive use of the next result, which deals with p-groups that are the product of a cyclic subgroup and a subgroup that has exponent p and class less than $\frac{p}{2}$. The first part is a restatement of [5, Lemma 2.2].

Lemma 8. Let p be an odd prime and let $G=A B$ be a finite p-group for subgroups A and B such that A is cyclic, $\exp (B)=p$ and $\mathrm{c}(B)<\frac{p}{2}$. Then:
(i) $\Omega_{1}(A) B 太 G$;
(ii) $\exp \left(B^{G}\right)=p$.

Proof. We note that the proof of (i) is given in [5, Lemma 2.2]. For (ii), we see that the result is trivial if $B \unlhd G$. Letting $A=\langle x\rangle$, we can thus assume that $B^{x} \neq B$. In particular A is nontrivial, so $\Omega_{1}(A) \cong C_{p}$. By (i), we have $\Omega_{1}(A) B \geqq G$. Hence, by comparison of orders, we have $B^{G}=\Omega_{1}(A) B=B B^{x}$. We further see that $\left|B^{G}: B\right|=\left|B^{G}: B^{x}\right|=\left|\Omega_{1}(A)\right|=p$. In particular, B and B^{x} are normal in B^{G}. It follows that $\mathrm{c}\left(B^{G}\right) \leq \mathrm{c}(B)+\mathrm{c}\left(B^{x}\right)<\frac{p}{2}+\frac{p}{2}=p$. Now $B^{G}=B B^{x}$, so $B^{G}=\Omega_{1}\left(B^{G}\right)$. By Theorem 6, we then have $\exp \left(B^{G}\right) \leq p$. But $\exp (B)=p$, so we conclude that $\exp \left(B^{G}\right)=p$.

We now proceed to our main result.
Theorem 9. Let p be an odd prime and let $G=A B$ be a finite p-group for subgroups A and B such that A is cyclic and $\mathrm{c}(B)<\frac{p}{2}$. Then, for all i, we have $A \mho_{i}(B) \leqslant G$.

Proof. The bulk of our proof is devoted to showing that $A \mho_{1}(B) \leqslant G$. For this, we use induction on $|G|$. If $G=A$, then the result is trivial. Hence we can assume that A is a proper subgroup of G. We can further assume that $B \notin G$, as otherwise $\mho_{1}(B) 太 G$ and we trivially have $A \mho_{1}(B) \leqslant G$. Since $|G: B| \leq p$ is then excluded, we have $|A| \geq p^{2}$. In particular, we see that $\Omega_{1}(A)$ is a proper subgroup of A with $\Omega_{1}(A) \cong C_{p}$.

By a result of Morigi (see [6, Lemma 1] or [2, Lemma 3.3.8]), there exists a non-trivial normal subgroup $W \Vdash G$ such that either $W \leqslant A$ or $W \leqslant B$. Since G is a finite p-group, we then have either $A \cap Z(G) \neq 1$ or $B \cap Z(G) \neq 1$. We assume first that $A \cap Z(G) \neq 1$. By minimality, it follows that $\Omega_{1}(A) \leqslant Z(G)$. By induction, we see that $\left(A / \Omega_{1}(A)\right) \mho_{1}\left(B \Omega_{1}(A) / \Omega_{1}(A)\right) \leqslant G / \Omega_{1}(A)$. By Lemma 1, we further have $\mho_{1}\left(B \Omega_{1}(A) / \Omega_{1}(A)\right)=\mho_{1}(B) \Omega_{1}(A) / \Omega_{1}(A)$. Hence

$$
A / \Omega_{1}(A)\left(\mho_{1}(B) \Omega_{1}(A) / \Omega_{1}(A)\right) \leqslant G / \Omega_{1}(A) .
$$

We now apply Lemma 3 to see that $A \mho_{1}(B) \Omega_{1}(A) \leqslant G$. Since $\Omega_{1}(A) \leqslant Z(G)$, we have

$$
A \mho_{1}(B) \Omega_{1}(A)=A \Omega_{1}(A) \mho_{1}(B)=A \mho_{1}(B),
$$

so $A \mho_{1}(B) \leqslant G$. We can therefore assume that $A \cap Z(G)=1$ and thus $B \cap Z(G) \neq 1$.
We let $z \in B \cap Z(G)$ be such that $\langle z\rangle \cong C_{p}$. By induction, we have $(A\langle z\rangle /\langle z\rangle)\left(\mho_{1}(B /\langle z\rangle) \leqslant\right.$ $G /\langle z\rangle$. By Lemma 1, we see that $\mho_{1}(B /\langle z\rangle)=\mho_{1}(B\langle z\rangle /\langle z\rangle)=\mho_{1}(B)\langle z\rangle /\langle z\rangle$. Thus $(A\langle z\rangle /\langle z\rangle)\left(\mho_{1}(B)\langle z\rangle /\langle z\rangle\right) \leqslant G /\langle z\rangle$. By Lemma 3, we then have $A\langle z\rangle \mho_{1}(B)\langle z\rangle \leqslant G$. But $A\langle z\rangle \mho_{1}(B)\langle z\rangle=A \mho_{1}(B)\langle z\rangle$. Hence

$$
A \mho_{1}(B)\langle z\rangle \leqslant G .
$$

Since A is a proper subgroup of G, we let M be a maximal subgroup of G such that $A \leqslant M$. Then $M=A(B \cap M)$. We let $B_{1}=B \cap M$, so that $M=A B_{1}$. Since $A \leqslant M$, we have $A \cap B=A \cap B \cap M=$ $A \cap B_{1}$. Hence

$$
|G|=\frac{|A||B|}{|A \cap B|}=p|M|=p \frac{|A|\left|B_{1}\right|}{\left|A \cap B_{1}\right|}=p \frac{|A|\left|B_{1}\right|}{|A \cap B|} .
$$

It follows that

$$
\left|B: B_{1}\right|=\frac{|B|}{\left|B_{1}\right|}=p .
$$

We consider the case where $\mho_{1}\left(B_{1}\right) \neq 1$. By induction, we have $A \mho_{1}\left(B_{1}\right) \leqslant A B_{1} \leqslant G$. Now $\mho_{1}\left(B_{1}\right)$ is characteristic in B_{1} and $\left|B: B_{1}\right|=p$, so $B_{1} \boxtimes B$. Hence $\mho_{1}\left(B_{1}\right) \Downarrow B$. Applying Lemma 2,
we have $\mho_{1}\left(B_{1}\right)^{G}=\left(A \cap \mho_{1}\left(B_{1}\right)^{G}\right) \mho_{1}\left(B_{1}\right)$. We let $N=\mho_{1}\left(B_{1}\right)^{G}$. Since $\mho_{1}\left(B_{1}\right) \neq 1$, we see that N is a non-trivial normal subgroup of G. By our induction hypothesis and Lemma 1, we then have

$$
(A N / N) \mho_{1}(B N / N)=(A N / N)\left(\mho_{1}(B) N / N\right) \leqslant G / N .
$$

Hence, by Lemma 3, we have $A N \mho_{1}(B) N=A N \mho_{1}(B) \leqslant G$. But $N=\mho_{1}\left(B_{1}\right)^{G}=(A \cap$ $\left.\mho_{1}\left(B_{1}\right)^{G}\right) \mho_{1}\left(B_{1}\right)$, so

$$
A N \mho_{1}(B)=A\left(A \cap \mho_{1}\left(B_{1}\right)^{G}\right) \mho_{1}\left(B_{1}\right) \mho_{1}(B)=A \mho_{1}(B)
$$

Thus, in the case where $\mho_{1}\left(B_{1}\right) \neq 1$, we conclude that $A \mho_{1}(B) \leqslant G$.
We now assume that $\mho_{1}\left(B_{1}\right)=1$. Thus $\exp \left(B_{1}\right) \leq p$. Since $\left|B: B_{1}\right|=p$, it follows that $\exp (B) \leq$ p^{2}. If $\exp (B)=p$, then $\mho_{1}(B)=1$ and the result is trivial. Hence we can assume that there exists $y \in B$ such that $\mathrm{o}(y)=p^{2}$. But $\left|B: B_{1}\right|=p$ and $\mathrm{c}(B)<\frac{p}{2}<p$, so we can apply Corollary 5 to see that $\mho_{1}(B)=\left\langle y^{p}\right\rangle \cong C_{p}$. In particular, we have $\mho_{1}(B) \leqslant Z(B)$. From the above, there exists $z \in B \cap Z(G)$ with $\langle z\rangle \cong C_{p}$ such that $A \mho_{1}(B)\langle z\rangle \leqslant G$. But $\mho_{1}(B) \leqslant Z(B)$, so $\mho_{1}(B)\langle z\rangle \leqslant Z(B)$. Hence we can apply Lemma 2 to see that $\left(\mho_{1}(B)\langle z\rangle\right)^{G}=\left(\mho_{1}(B)\langle z\rangle\right)^{A \mho_{1}(B)\langle z\rangle}$. Since $\mho_{1}(B) \cong\langle z\rangle \cong C_{p}$, we see that $\mho_{1}(B)\langle z\rangle$ is elementary abelian. In particular, we have $\exp \left(\mho_{1}(B)\langle z\rangle\right)=p$ and $c\left(\mho_{1}(B)\langle z\rangle\right)=1<\frac{p}{2}$. We can thus apply Lemma 8 (i) to see that $\Omega_{1}(A) \mho_{1}(B)\langle z\rangle \preccurlyeq A \mho_{1}(B)\langle z\rangle$. Hence

$$
\left(\mho_{1}(B)\langle z\rangle\right)^{G}=\left(\mho_{1}(B)\langle z\rangle\right)^{A \mho_{1}(B)\langle z\rangle} \leqslant \Omega_{1}(A) \mho_{1}(B)\langle z\rangle .
$$

We can assume that B is a proper subgroup of G, since otherwise $\mho_{1}(B) \sharp G$ and it trivially follows that $A \mho_{1}(B) \leqslant G$. We let M_{1} be a maximal subgroup of G such that $B \leqslant M_{1}$. Then $\left|G: M_{1}\right|=p$ and $M_{1}=\left(A \cap M_{1}\right) B$. We let $A_{1}=A \cap M_{1}$. As above, we have $\left|A: A_{1}\right|=p$. Since $|A| \geq p^{2}$, we see that $\Omega_{1}(A) \leqslant A_{1}$. Hence $\Omega_{1}(A)=\Omega_{1}\left(A_{1}\right) \cong C_{p}$. By induction, we have $A_{1} \mho_{1}(B) \leqslant A_{1} B \leqslant G$. We can thus apply Lemma 2 and Lemma 8 (i) to see that

$$
\mho_{1}(B)^{A_{1} B}=\mho_{1}(B)^{A_{1} \mho_{1}(B)} \leqslant \Omega_{1}(A) \mho_{1}(B) 太 A_{1} \mho_{1}(B)
$$

Bearing in mind that $\Omega_{1}(A) \cong C_{p}$, we see by comparison of orders that either $\mho_{1}(B)^{A_{1} B}=$ $\Omega_{1}(A) \mho_{1}(B)$ or $\mho_{1}(B)^{A_{1} B}=\mho_{1}(B)$.

If $\mho_{1}(B)^{A_{1} B}=\Omega_{1}(A) \mho_{1}(B)$, then $\Omega_{1}(A) \mho_{1}(B) \boxtimes A_{1} B$. In particular $\Omega_{1}(A) \mho_{1}(B) B=\Omega_{1}(A) B \leqslant$ $A_{1} B$, so $\Omega_{1}(A) B$ is a subgroup of G. We can then apply Lemma 2 to see that

$$
\Omega_{1}(A)^{G}=\Omega_{1}(A)^{\Omega_{1}(A) B} \leqslant \Omega_{1}(A) \mho_{1}(B) \preccurlyeq A_{1} B .
$$

But $\mho_{1}(B) \cong C_{p}$, so either $\Omega_{1}(A)^{G}=\Omega_{1}(A)$ or $\Omega_{1}(A)^{G}=\Omega_{1}(A) \mho_{1}(B)$. In the former case, we have $\Omega_{1}(A) \geqq G$. But $\Omega_{1}(A) \cong C_{p}$, so $1 \neq \Omega_{1}(A) \leqslant A \cap Z(G)$, which has been excluded. If $\Omega_{1}(A)^{G}=\Omega_{1}(A) \mho_{1}(B)$ then $\Omega_{1}(A) \mho_{1}(B) \Vdash G$, so $A \mho_{1}(B)=A \Omega_{1}(A) \mho_{1}(B) \leqslant G$, and we are done. We can thus assume that

$$
\mho_{1}(B)^{A_{1} B}=\mho_{1}(B) \preccurlyeq A_{1} B
$$

Since $\mho_{1}(B) \cong C_{p}$, it follows that $\mho_{1}(B) \leqslant Z\left(A_{1} B\right)$. But $A_{1} B=M_{1} \triangleq G$, so we further have $\mho_{1}(B)^{G} \leqslant Z\left(A_{1} B\right) \boxtimes G$. Now, for z as above, we have $\langle z\rangle \leqslant B \cap Z(G) \leqslant Z\left(A_{1} B\right)$. We therefore see that

$$
\left(\mho_{1}(B)\langle z\rangle\right)^{G}=\mho_{1}(B)^{G}\langle z\rangle \leqslant Z\left(A_{1} B\right)
$$

We recall from the above that $\left(\mho_{1}(B)\langle z\rangle\right)^{G} \leqslant \Omega_{1}(A) \mho_{1}(B)\langle z\rangle$. Since $\Omega_{1}(A) \cong C_{p}$, we have either $\Omega_{1}(A) \leqslant\left(\mho_{1}(B)\langle z\rangle\right)^{G} \leqslant Z\left(A_{1} B\right)$ or $\Omega_{1}(A) \cap\left(\mho_{1}(B)\langle z\rangle\right)^{G}=1$. In the former case we see that B centralises $\Omega_{1}(A)$. But then $G=A B \leqslant C_{G}\left(\Omega_{1}(A)\right)$, so $\Omega_{1}(A) \leqslant Z(G)$. Since this is excluded, we have $\Omega_{1}(A) \cap\left(\mho_{1}(B)\langle z\rangle\right)^{G}=1$. By comparison of orders, it follows that

$$
\left(\mho_{1}(B)\langle z\rangle\right)^{G}=\mho_{1}(B)\langle z\rangle \preccurlyeq G .
$$

We let $N_{1}=\mho_{1}(B)\langle z\rangle$ and have $N_{1} \leqslant B$. Hence $G / N_{1}=\left(A N_{1} / N_{1}\right)\left(B / N_{1}\right)$. If $A \cap N_{1} \neq 1$ then, by minimality, we have $\Omega_{1}(A) \leqslant N_{1}=\left(\mho_{1}(B)\langle z\rangle\right)^{G}$. But this has been excluded, so $A \cap N_{1}=1$. Hence $\Omega_{1}\left(A N_{1} / N_{1}\right)=\Omega_{1}(A) N_{1} / N_{1} \cong \Omega_{1}(A) \cong C_{p}$. We further note that $\mathrm{c}\left(B / N_{1}\right) \leq \mathrm{c}(B)<\frac{p}{2}$. Since
$\exp (B)=p^{2}$ and $\mho_{1}(B) \leqslant N_{1}$, we also see that $\exp \left(B / N_{1}\right)=p$. We can thus apply Lemma 8 (i) to see that

$$
\Omega_{1}\left(A N_{1} / N_{1}\right)\left(B / N_{1}\right)=\left(\Omega_{1}(A) N_{1} / N_{1}\right)\left(B / N_{1}\right) \sharp G / N_{1} .
$$

By Lemma 3, we then have $\Omega_{1}(A) N_{1} B=\Omega_{1}(A) B \leqslant G$.
We let $A=\langle x\rangle$. We can assume that $B^{x} \neq B$ as otherwise $B \boxtimes G$, which has been excluded. Since $\Omega_{1}(A) \cong C_{p}$, we then have $\Omega_{1}(A) \cap B=1$ and see that $\left|\Omega_{1}(A) B: B\right|=\left|\Omega_{1}(A) B: B^{x}\right|=\left|\Omega_{1}(A)\right|=p$. Thus both B and B^{x} are normal in $\Omega_{1}(A) B$. By comparison of orders, we further see that $\Omega_{1}(A) B=B B^{x}$. Since $c\left(B^{x}\right)=c(B)<\frac{p}{2}$, it follows that

$$
\mathrm{c}\left(\Omega_{1}(A) B\right)=\mathrm{c}\left(B B^{x}\right) \leq \mathrm{c}(B)+\mathrm{c}\left(B^{x}\right)<\frac{p}{2}+\frac{p}{2}=p .
$$

From the above there exists $B_{1} \leqslant B$, with $\left|B: B_{1}\right|=p$ and $\exp \left(B_{1}\right)=p$, such that $A B_{1} \leqslant G$. Since $\Omega_{1}(A) \cap B=1$, we see by minimality that $A \cap B=1$. In particular, we have $A \cap B_{1}=1$. Since A is non-trivial, it follows that B_{1} is a proper subgroup of $A B_{1}$. Hence B_{1} is a proper subgroup of $N_{A B_{1}}\left(B_{1}\right)$. But $N_{A B_{1}}\left(B_{1}\right)=\left(A \cap N_{A B_{1}}\left(B_{1}\right)\right) B_{1}$, so $A \cap N_{A B_{1}}\left(B_{1}\right)$ is non-trivial. It follows that $\Omega_{1}(A) \leqslant A \cap N_{A B_{1}}\left(B_{1}\right)$. In particular, we see that $\Omega_{1}(A) B_{1} \leqslant G$. Since $\left|B: B_{1}\right|=p$, we further see that

$$
\left|\Omega_{1}(A) B: \Omega_{1}(A) B_{1}\right|=\left|B: B_{1}\right|=p .
$$

Now $\exp \left(B_{1}\right)=p$ and $\Omega_{1}(A) \cong C_{p}$, so $\Omega_{1}(A) B_{1}$ is generated by elements of order p. Thus $\Omega_{1}(A) B_{1}=\Omega_{1}\left(\Omega_{1}(A) B_{1}\right)$. But $\mathrm{c}\left(\Omega_{1}(A) B_{1}\right) \leq \mathrm{c}\left(\Omega_{1}(A) B\right)<p$. Hence we can apply Theorem 6 to see that

$$
\exp \left(\Omega_{1}(A) B_{1}\right)=p
$$

As shown above, there exists $y \in B$ such that $o(y)=p^{2}$ and $\mho_{1}(B)=\left\langle y^{p}\right\rangle$. It follows, in particular, that $\exp \left(\Omega_{1}(A) B\right) \geq p^{2}$. But $\left|\Omega_{1}(A) B: \Omega_{1}(A) B_{1}\right|=p$, so $\Omega_{1}(A) B / \Omega_{1}(A) B_{1} \cong C_{p}$. Since $\exp \left(\Omega_{1}(A) B_{1}\right)=p$, we further see that $\exp \left(\Omega_{1}(A) B\right) \leq p^{2}$. Hence

$$
\exp \left(\Omega_{1}(A) B\right)=p^{2}
$$

We can therefore apply Corollary 5 to see that

$$
\mho_{1}\left(\Omega_{1}(A) B\right)=\left\langle y^{p}\right\rangle=\mho_{1}(B)
$$

Since $\Omega_{1}(A) B \boxtimes G$, we then have $\mho_{1}(B) \boxtimes G$. We thus conclude that $A \mho_{1}(B) \leqslant G$.
Having established that $A \mho_{1}(B) \leqslant G$, we use induction on i to show that $A \mho_{i}(B) \leqslant G$ for all i. We assume that the result holds for $i=s$, where $s \geq 1$. Since $\mathrm{c}(B)<\frac{p}{2}<p$, we see, by Corollary 7 , that $\mho_{s+1}(B)=\mho_{1}\left(\mho_{s}(B)\right)$. By induction, we can assume that $A \mho_{s}(B) \leqslant G$. Applying the result we have proven for $i=1$, we then have $A \mho_{1}\left(\mho_{s}(B)\right) \leqslant A \mho_{s}(B) \leqslant G$. Since $\mho_{1}\left(\mho_{s}(B)\right)=\mho_{s+1}(B)$, it follows that $A \mho_{s+1}(B) \leqslant G$.

We use Theorem 9 to prove the following result, which can be considered as an analogue to [5, Theorem 2.6].

Theorem 10. Let p be an odd prime and let $G=A B$ be a finite p-group for subgroups A and B such that A is cyclic, $\mathrm{c}(B)<\frac{p}{2}$ and $\exp (B)=p^{k}$, where $k \geq 1$. Then, for all i such that $1 \leq i \leq k$, we have:
(i) $A \mho_{k-i}(B) \leqslant G$;
(ii) $\mho_{k-i}(B)^{G} \leqslant \Omega_{i}(A) \mho_{k-i}(B) \leqslant G$;
(iii) $\exp \left(\mho_{k-i}(B)^{G}\right)=p^{i}$.

Proof. We see that (i) holds by Theorem 9. For (ii) and (iii), we first deal with the case where $i=1$. Since $\mathrm{c}(B)<\frac{p}{2}<p$, we see by Theorem 6 that $\mho_{k-1}(B)=\left\{b^{p^{k-1}} \mid b \in B\right\}$. Since $\exp (B)=p^{k}$, it
follows that $\exp \left(\mho_{k-1}(B)\right)=p$. By (i), we have $A \mho_{k-1}(B) \leqslant G$. Hence we can apply Lemma 2 to see that

$$
\mho_{k-1}(B)^{G}=\mho_{k-1}(B)^{A \mho_{k-1}(B)} .
$$

Now $\mathrm{c}\left(\mho_{k-1}(B)\right) \leq \mathrm{c}(B)<\frac{p}{2}$. Hence, by Lemma $8(\mathrm{i})$, we have $\Omega_{1}(A) \mho_{k-1}(B) \preccurlyeq A \mho_{k-1}(B)$. It follows that

$$
\mho_{k-1}(B)^{G}=\mho_{k-1}(B)^{A \mho_{k-1}(B)} \leqslant \Omega_{1}(A) \mho_{k-1}(B) .
$$

Thus (ii) holds for $i=1$. By Lemma 8 (ii), we further see that $\exp \left(\mho_{k-1}(B)^{G}\right)=$ $\exp \left(\mho_{k-1}(B)^{A J_{k-1}(B)}\right)=p$, so (iii) also holds for $i=1$.

We now assume that $k \geq 2$ and further assume that (ii) and (iii) hold for $i=s$, where $1 \leq s<k$. Thus $\mho_{k-s}(B)^{G} \leqslant \Omega_{s}(A) \mho_{k-s}(B)$ and $\exp \left(\mho_{k-s}(B)^{G}\right)=p^{s}$. By Lemma 2, we have $\mho_{k-s}(B)^{G}=$ $\mho_{k-s}(B)^{A \mho_{k-s}(B)}=A_{1} \mho_{k-s}(B)$, where $A_{1}=A \cap \mho_{k-s}(B)^{G}$. Since $\exp \left(A_{1}\right) \leq \exp \left(\left(\mho_{k-s}(B)\right)^{G}\right)=p^{s}$, we see that $A_{1}=\Omega_{t}(A)$ for some $t \leq s$.

We let $N=\mho_{k-s}(B)^{G}$. Then $A \cap N=\Omega_{t}(A) \leqslant \Omega_{s}(A)$. If $\Omega_{s}(A)=A$, then $\Omega_{s+1}(A)=A$ and $\Omega_{1}(A N / N) \leqslant A N / N=\Omega_{s+1}(A) N / N$. If $\Omega_{s}(A)$ is a proper subgroup of A, then $\Omega_{s+1}(A) \cong C_{p^{s+1}}$. Since $\exp (N)=p^{s}$, we see that $\Omega_{s+1}(A) \nless N$. By minimality, we then have $\Omega_{1}(A N / N) \leqslant$ $\Omega_{s+1}(A) N / N$. Thus, in every case, we have

$$
\Omega_{1}(A N / N) \leqslant \Omega_{s+1}(A) N / N .
$$

By Lemma 1, we have $\mho_{k-s-1}(B N / N)=\mho_{k-s-1}(B) N / N$. Since $\mathrm{c}(B) \leq \frac{p}{2}<p$ we see, by Corollary 7, that $\mho_{1}\left(\mho_{k-s-1}(B)\right)=\mho_{k-s}(B) \leqslant N$. Hence $\exp \left(\mho_{k-s-1}(B) N / N\right) \leq p$. But, by our inductive assumption, we have $\exp (N)=\exp \left(\mho_{k-s}(B)^{G}\right)=p^{s}$. In addition, $\exp (B)=p^{k}$, so $\mho_{k-s-1}(B)$ contains elements of order p^{s+1}. Hence $\exp \left(\mho_{k-s-1}(B) N / N\right)=p$. Since $A \mho_{k-s-1}(B) \leqslant$ G and $N=\Omega_{t}(A) \mho_{k-s}(B) \leqslant A \mho_{k-s-1}(B)$, we see that

$$
(A N / N)\left(\mho_{k-s-1}(B) N / N\right)=A \mho_{k-s-1}(B) / N \leqslant G / N .
$$

But $\exp \left(\mho_{k-s-1}(B) N / N\right)=p$ and $\mathrm{c}\left(\mho_{k-s-1}(B) N / N\right) \leq \mathrm{c}(B)<\frac{p}{2}$. Hence, we can apply Lemma $8(\mathrm{i})$ to see that

$$
\Omega_{1}(A N / N)\left(\mho_{k-s-1}(B) N / N\right) \preccurlyeq A \mho_{k-s-1}(B) / N .
$$

By Lemma 8 (ii), we further have $\exp \left(\left(\mho_{k-s-1}(B) N / N\right)^{A \mho_{k-s-1}(B) / N}\right)=p$. We note that $\left(\mho_{k-s-1}(B) N / N\right)^{A \mho_{k-s-1}(B) / N}=\mho_{k-s-1}(B)^{A \mho_{k-s-1}(B)} N / N$. In addition, we see by Lemma 2 that $\mho_{k-s-1}(B)^{A \mho_{k-s-1}(B)}=\mho_{k-s-1}(B)^{G}$. It then follows that

$$
\exp \left(\mho_{k-s-1}(B)^{G} N / N\right)=\exp \left(\left(\mho_{k-s-1}(B) N / N\right)^{A \mho_{k-s-1}(B) / N}\right)=p .
$$

We let $W / N=\Omega_{1}(A N / N)$. Then $N \leqslant W \leqslant A N$, so $W=(A \cap W) N$. From the above, we have $W \leqslant \Omega_{s+1}(A) N$. Since A is cyclic, we see that if $A \cap W \nless \Omega_{s+1}(A)$ then $\Omega_{s+1}(A)$ is a proper subgroup of $A \cap W$. It follows that $\Omega_{s+2}(A) \leqslant A \cap W$, where $\Omega_{s+2}(A) \cong C_{p^{s+2}}$. Hence $\Omega_{s+2}(A) \leqslant W \leqslant \Omega_{s+1}(A) N$, so $\Omega_{s+2}(A)=\Omega_{s+1}(A)\left(\Omega_{s+2}(A) \cap N\right)$. But, for t as above, we have $\Omega_{s+2}(A) \cap N \leqslant A \cap N \leqslant \Omega_{t}(A)$. Since $t \leq s$, the contradiction $\Omega_{s+2}(A) \leqslant \Omega_{s+1}(A) \Omega_{t}(A)=\Omega_{s+1}(A) \cong$ $C_{p^{s+1}}$ then arises. We can thus assume that $A \cap W=\Omega_{m}(A)$ for some m such that $t \leq m \leq s+1$. Hence

$$
\Omega_{1}(A N / N)\left(\mho_{k-s-1}(B) N / N\right)=\left(\Omega_{m}(A) N / N\right)\left(\mho_{k-s-1}(B) N / N\right) \preccurlyeq A \mho_{k-s-1}(B) / N .
$$

By Lemma 3, it follows that $\Omega_{m}(A) N \mho_{k-s-1}(B) N 太 A \mho_{k-s-1}(B)$. But $N=\Omega_{t}(A) \mho_{k-s}(B)$ and $\Omega_{m}(A) N \mho_{k-s-1}(B) N=\Omega_{m}(A) N \mho_{k-s-1}(B)$. Hence

$$
\Omega_{m}(A) \Omega_{t}(A) \mho_{k-s}(B) \mho_{k-s-1}(B)=\Omega_{m}(A) \mho_{k-s-1}(B) \Vdash A \mho_{k-s-1}(B) .
$$

We can now apply Lemma 2 to see that

$$
\mho_{k-s-1}(B)^{G}=\mho_{k-s-1}(B)^{A \mho_{k-s-1}(B)} \leqslant \Omega_{m}(A) \mho_{k-s-1}(B)
$$

Since A is cyclic and $A \mho_{k-s-1}(B) \leqslant G$, we see that $\Omega_{j}(A) \mho_{k-s-1}(B) \leqslant G$ for all j. Now $m \leq s+1$, so

$$
\mho_{k-s-1}(B)^{G} \leqslant \Omega_{m}(A) \mho_{k-s-1}(B) \leqslant \Omega_{s+1}(A) \mho_{k-s-1}(B) \leqslant G
$$

We thus conclude that (ii) holds for $i=s+1$.
From the above, we have $\left.\exp \left(\mho_{k-s-1}(B)^{G} N / N\right)\right)=p$. But $N=\mho_{k-s}(B)^{G}$ and, by our inductive assumption, we have $\exp \left(\mho_{k-s}(B)^{G}\right)=p^{s}$. Hence $\exp \left(\mho_{k-s-1}(B)^{G}\right) \leq p^{s+1}$. Now $\exp (B)=p^{k}$ so there exists $b \in B$ such that $\mathrm{o}(b)=p^{k}$. Since $s+1 \leq k$, we see that $\mathrm{o}\left(b^{p^{k-s-1}}\right)=p^{s+1}$. Thus $b^{p^{k-s-1}}$ is an element of order p^{s+1} in $\mho_{k-s-1}(B)$. Hence $\exp \left(\mho_{k-s-1}(B)^{G}\right) \geq p^{s+1}$. We conclude that $\exp \left(\mho_{k-s-1}(B)^{G}\right)=p^{s+1}$, so (iii) also holds for $i=s+1$.

In our final result we use Theorem 10 to provide an alternative derivation of two results concerning the structure of products of cyclic p-groups with p-groups of class less than $\frac{p}{2}$ (see [5, Theorems 2.9 and 4.1]).

Corollary 11. Let p be an odd prime and let $G=A B$ be a finite p-group for subgroups A and B such that A is cyclic, $\mathrm{c}(B)<\frac{p}{2}$ and $\exp (B)=p^{k}$, where $k \geq 1$. Then:
(i) $\Omega_{k}(A) B \boxtimes G$;
(ii) $\mathrm{d}(G) \leq 1+k+\mathrm{d}(B)$.

Proof. We let $i=k$ in Theorem 10 (iii) and see that $\exp \left(B^{G}\right)=p^{k}$. Now $B \leqslant B^{G}$, so $B^{G}=\left(A \cap B^{G}\right) B$. We have $A \cap B^{G}=\Omega_{t}(A)$, for a suitable t. Since $\exp \left(B^{G}\right)=p^{k}$, we can assume that $t \leq k$. Now $G / B^{G}=G / \Omega_{t}(A) B$ is isomorphic to a subgroup of A, so G / B^{G} is cyclic. Since $B^{G}=\Omega_{t}(A) B \leqslant$ $\Omega_{k}(A) B$, we then see that $\Omega_{k}(A) B / B^{G} \triangleleft G$. It follows that $\Omega_{k}(A) B \preccurlyeq G$, so (i) is established.

For (ii), we note that $G / \Omega_{k}(A) B$ is isomorphic to a factor group of the cyclic group A. Hence $G^{\prime} \leqslant \Omega_{k}(A) B$. Since A is cyclic, we see that $\Omega_{1}(A) B \leqslant \cdots \leqslant \Omega_{k}(A) B \leqslant G$. For $i=1, \ldots, k$, we have $\left|\Omega_{i}(A) B: \Omega_{i-1}(A) B\right| \leq\left|\Omega_{i}(A): \Omega_{i-1}(A)\right| \leq p$, so $\Omega_{i-1}(A) B \leqslant \Omega_{i}(A) B$. We further see that $\Omega_{i}(A) B / \Omega_{i-1}(A) B$ is isomorphic to a factor group of the cyclic group $\Omega_{i}(A) / \Omega_{i-1}(A)$. Hence $\left(\Omega_{i}(A) B\right)^{\prime} \leqslant \Omega_{i-1}(A) B$ for $i=1, \ldots, k$, so $G^{(1+k)} \leqslant B$. It then follows that $G^{(1+k+\mathrm{d}(B))}=1$, in accordance with (ii).

References

[1] B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Oxford Mathematical Monographs, Clarendon Press, 1992.
[2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, De Gruyter Expositions in Mathematics, vol. 53, Walter de Gruyter, 2010.
[3] B. Huppert, "Über das Produkt von paarweise vertauschbaren zyklischen Gruppen", Math. Z. 58 (1953), p. 243-264.
[4] _ Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, 1967.
[5] B. McCann, "On products of cyclic and non-abelian finite p-groups", Adv. Group Theory Appl. 9 (2020), p. 5-37.
[6] M. Morigi, "A Note on Factorized (Finite) p-Groups", Rend. Semin. Mat. Univ. Padova 98 (1997), p. 101-105.

