

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Brendan McCann

On the factorised subgroups of products of cyclic and non-cyclic finite p-groups

Volume 362 (2024), p. 293-300

Online since: 2 May 2024

https://doi.org/10.5802/crmath.565

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

The Comptes Rendus. Mathématique are a member of the Mersenne Center for open scientific publishing www.centre-mersenne.org — e-ISSN : 1778-3569

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Research article / *Article de recherche* Group theory / *Théorie des groupes*

On the factorised subgroups of products of cyclic and non-cyclic finite *p*-groups

Sur les sous-groupes factorisés des produits de p-groupes finis cycliques et non cycliques

Brendan McCann^a

 $^{\it a}$ Department of Computing and Mathematics, South-East Technological University Waterford, Cork Road, Waterford, Ireland

E-mail: brendan.mccann@setu.ie

Abstract. Let *p* be an odd prime and let G = AB be a finite *p*-group that is the product of a cyclic subgroup *A* and a non-cyclic subgroup *B*. Suppose in addition that the nilpotency class of *B* is less than $\frac{p}{2}$. We denote by $\mathcal{O}_i(B)$ the subgroup of *B* generated by the p^i -th powers of elements of *B*, that is $\mathcal{O}_i(B) = \langle bp^i | b \in B \rangle$. In this article we show that, for all values of *i*, the set $A\mathcal{O}_i(B)$ is a subgroup of *G*. We also present some applications of this result.

Résumé. Soient *p* un nombre premier impair et *G* = *AB* un *p*-groupe fini qui est le produit des sous-groupes *A* et *B*, tels que *A* soit un sous-groupe cyclique et *B* soit un sous-groupe non cyclique. Supposons également que la classe de nilpotence de *B* soit inférieure à $\frac{p}{2}$. On note $\mathcal{O}_i(B)$ le sous-groupe de *B* engendré par les puissances p^i des éléments de *B*, alors $\mathcal{O}_i(B) = \langle b^{p^i} | b \in B \rangle$. Dans cet article nous montrons que, pour chaque valeur du nombre *i*, l'ensemble $A\mathcal{O}_i(B)$ est sous-groupe du groupe *G*. Nous présentons également quelques applications de ce résultat.

Keywords. factorised groups, products of groups, finite *p*-groups.

Mots-clés. groupes factorisés, produit de groupes, p-groupes finis.

2020 Mathematics Subject Classification. 20D40, 20D15.

Manuscript received 22 June 2023, revised 4 September 2023, accepted 5 September 2023.

1. Introduction

We say that the group *G* is the product of the subgroups *A* and *B* if *G* is equal to the set product of *A* and *B*, that is $G = \{ab \mid a \in A, b \in B\}$. Such groups are also referred to as factorised groups. For a factorised group G = AB, is seems natural to ask whether we can identify subgroups of the "factors" *A* and *B* whose set product with each other forms a subgroup of *G*. By a result from elementary Group Theory (see, for instance, [4, I 2.12 Hilfssatz]), this is equivalent to determining subgroups $A_1 \leq A$ and $B_1 \leq B$ such that their set products satisfy $A_1B_1 = B_1A_1$. Despite an extensive literature on factorised groups, as documented in Amberg, Franciosi and de Giovanni [1] and Ballester-Bolinches, Esteban-Romero and Assad [2], results in this direction remain scarce, even when both factors are abelian. The most notable result goes back to that of Huppert (see [3, Satz 3] or [2, Corollary 3.1.9]), which states that if the finite *p*-group G = AB is the product of two cyclic subgroups *A* and *B*, then *G* is the *totally permutable* product of *A* and *B*, that is $A_1B_1 \leq G$ for each $A_1 \leq A$ and $B_1 \leq B$. Since *A* and *B* are cyclic *p*-groups, this can be restated as $\Omega_s(A)\Omega_t(B) \leq G$ for all values of *s* and *t*, where the characteristic subgroup $\Omega_i(W)$ of the finite *p*-group *W* is defined by $\Omega_i(W) = \langle w \in W | w^{p^i} = 1 \rangle$. In general, we cannot expect that G = AB will be a totally permutable product if either of the subgroups *A* or *B* is non-cyclic. However, if the prime *p* is odd, then in the case where $A \cap B = 1$, *A* is cyclic and the nilpotency class c(B) of B satisfies $c(B) < \frac{p}{2}$, it has been shown in [5, Theorem 2.6(i)] that $A\Omega_i(B) \leq G$ for all values of *i*. Since *A* is cyclic, it is then straightforward to deduce that $\Omega_s(A)\Omega_t(B) \leq G$, for all values of *s* and *t*. This can be viewed as a partial analogue to Huppert's result for products of cyclic subgroups. It is notable that Example 2.8 of [5] further shows that $A\Omega_i(B)$ is not always a subgroup of *G* when $A \cap B \neq 1$. This places a limit on the extent to which Huppert's result can be directly generalised.

In this paper we present some results that can be considered as dual to those contained in [5]. Our main result is Theorem 9, which states that if G = AB is a finite *p*-group for subgroups *A* and *B* such that *A* is cyclic and $c(B) < \frac{p}{2}$ then, for all *i*, $A \mho_i(B) \leq G$. Here $\mho_i(B)$ denotes the characteristic subgroup of *B* generated by the p^i -th powers of elements of *B*, that is $\mho_i(B) = \langle b^{p^i} | b \in B \rangle$. We apply Theorem 9 in Theorem 10 to provide results that are dual to [5, Theorems 2.6 and 2.9]. This leads to a new derivation of established results concerning the structure of products of cyclic and non-cyclic finite *p*-groups (see [5, Theorems 2.9 and 4.1]). Namely we show in Corollary 11 that if *p* is an odd prime and G = AB is a finite *p*-group, where *A* is a cyclic subgroup and *B* is a subgroup such that $c(B) < \frac{p}{2}$ and $exp(B) = p^k$, then $\Omega_k(A)B \leq G$ and $d(G) \leq 1+k+d(B)$.

We denote the n^{th} term of the derived series of a group G by $G^{(n)}$. Thus $G^{(0)} = G$, $G^{(1)} = G'$ and $G^{(n+1)} = [G^{(n)}, G^{(n)}]$ for $n \ge 1$. We denote the derived length of a soluble group G by d(G). The i^{th} term of the lower (or descending) central series of G will be denoted by $K_i(G)$, that is $K_1(G) = G$, $K_2(G) = G'$ and $K_{i+1}(G) = [K_i(G), G]$ for $i \ge 2$. If G is nilpotent then c(G) will denote the class of G. We note in particular that if c(G) < s, then $K_s(G) = 1$. The normal closure of the subgroup U in G is denoted by U^G , so that $U^G = \langle U^g | g \in G \rangle$. We remark that if $N \leq G$, then $(UN/N)^{G/N} = U^G N/N$. We finally denote the cyclic group of order p^n by C_{p^n} .

2. Results and Proofs

We begin with some elementary lemmas that will find application in the proofs of Theorems 9 and 10.

Lemma 1. Let *G* be a finite *p*-group and let $N \leq G$. Let *U* be a subgroup of *G*. Then $\mathfrak{V}_i(UN/N) = \mathfrak{V}_i(U)N/N$.

Proof. By definition we have

$$\mathfrak{O}_i(UN/N) = \langle (uN)^{p'} \mid u \in U \rangle N/N = \langle u^{p'}N \mid u \in U \rangle N/N = \langle u^{p'} \mid u \in U \rangle N/N$$

It then follows that $\mathcal{O}_i(UN/N) = \mathcal{O}_i(U)N/N$.

Lemma 2. Let G be a group such that G = AB, where A and B are subgroups of G. Suppose that $B_1 \leq B$ is such that $AB_1 \leq G$. Then $B_1^G = B_1^{AB_1} = A_1B_1$, where $A_1 = A \cap B_1^G$.

Proof. Since $B_1 \triangleleft B$, we see that

$$B_1^G = \langle B_1^g \mid g \in G \rangle = \langle B_1^{ba} \mid b \in B, \ a \in A \rangle = \langle B_1^a \mid a \in A \rangle \leqslant B_1^{AB_1} \leqslant AB_1$$

But $B_1 \leq B_1^{AB_1} \leq B_1^G$, so we have

$$B_1^G = B_1^{AB_1} = (A \cap B_1^G)B_1 = A_1B_1$$

where $A_1 = A \cap B_1^G$.

Lemma 3. Let G be a group and let $N \leq G$. Suppose that H and K are subgroups of G with $N \leq H \cap K$ such that $(H/N)(K/N) \leq G/N$. Then $HK \leq G$. Moreover, if $(H/N)(K/N) \leq G/N$, then $HK \leq G$.

Proof. We let $h \in H$ and $k \in K$. Since $(H/N)(K/N) \leq G/N$, we have (H/N)(K/N) = (K/N)(H/N). Hence there exist $h_1 \in H$ and $k_1 \in K$ such that $(hN)(kN) = (k_1N)(h_1N)$. Equivalently, we see that $hkN = k_1h_1N$. Thus there exists $x \in N$ such that $hk = k_1h_1x$. But $N \leq H \cap K$, so $h_1x \in H$. It follows that

$$hk = k_1(h_1x) \in KH.$$

Hence $HK \subseteq KH$. Since (K/N)(H/N) = (H/N)(K/N), we similarly see that $KH \subseteq HK$. We conclude that HK = KH, so $HK \leq G$.

We now make the additional assumption that $(H/N)(K/N) \leq G/N$. We let $h \in H$ and $k \in K$. If $g \in G$ then, by normality, we have $((hN)(kN))^{gN} = (hkN)^{gN} = (hk)^g N \in (H/N)(K/N)$. Hence there exist $h_1 \in H$ and $k_1 \in K$ such that $(hk)^g N = (h_1N)(k_1N) = h_1k_1N$. It follows that there exists $x \in N \leq H \cap K$ such that $(hk)^g = h_1k_1x$. Since $x \in K$, we have $k_1x \in K$, so $(hk)^g = h_1(k_1x) \in HK$. We thus conclude that $HK \leq G$.

Our next lemma is a consequence of the Hall-Petrescu identity (see [4, III 9.4 Satz]).

Lemma 4. Let p be a prime and let G be a finite p-group such that c(G) < p. Suppose, in addition, that $exp(G') \le p$. Then for $g_1, g_2 \in G$, we have $(g_1g_2)^p = g_1^p g_2^p$.

Proof. Since c(G) < p, we have $K_p(G) = 1$. We further have $K_i(G) \leq G'$ for $i \geq 2$. Hence $\exp(K_i(G)) \leq p$ for $i \geq 2$. By the Hall-Petrescu identity, there exist c_2, \ldots, c_p , with $c_s \in K_s(G)$ for $s = 2, \ldots, p$, such that

$$(g_1g_2)^p = g_1^p g_2^p c_2^{\binom{p}{2}} \cdots c_{p-1}^{\binom{p}{p-1}} c_p$$

We note that $c_p \in K_p(G) = 1$. Since $\exp(K_s(G)) \le p$ for $s \ge 2$, we further see that $c_s^p = 1$ for $s \ge 2$. But p is a divisor of $\binom{p}{s}$ for s = 2, ..., p - 1. Hence $c_s^{\binom{p}{s}} = 1$ for s = 2, ..., p - 1. It follows that $(g_1g_2)^p = g_1^p g_2^p$.

Corollary 5. Let p be an odd prime and let G be a finite p-group such that c(G) < p and $exp(G) = p^2$. Let $y \in G$ be such that $o(y) = p^2$ and suppose that there exists $W \leq G$ such that |G:W| = p and exp(W) = p. Then $\mathcal{O}_1(G) = \langle y^p \rangle$.

Proof. By definition, we have $\langle y^p \rangle \leq \Im_1(G)$. Since $\exp(W) = p$, we see that $y \notin W$. Now |G:W| = p so, by comparison of orders, we have $G = W \langle y \rangle$. In addition, we have $W \leq G$ and $G/W \cong C_p$. Hence $G' \leq W$, so $\exp(G') \leq p$. We let $g \in G$. Then there exist a suitable value α and an element $w \in W$ such that $g = wy^{\alpha}$. By Lemma 4, we have $g^p = (wy^{\alpha})^p = w^p(y^{\alpha})^p = w^p(y^p)^{\alpha}$. But $\exp(W) = p$, so $w^p = 1$. Hence $g^p = (y^p)^{\alpha} \in \langle y^p \rangle$, so $\Im_1(G) \leq \langle y^p \rangle$.

The following theorem is a restatement of results of Philip Hall concerning regular *p*-groups (see [4, III 10.2 Satz and 10.5 Hauptsatz]).

Theorem 6. Let p be an odd prime and let G be a finite p-group such that c(G) < p. Then, for all i,

- (i) $\Omega_i(G) = \{g \in G \mid g^{p^i} = 1\}$. In particular $\exp(\Omega_i(G)) \le p^i$;

We next prove a consequence of Theorem 6.

Corollary 7. Let *p* be an odd prime and let *G* be a finite *p*-group such that c(G) < p. Then, for all *i*, we have $\mho_{i+1}(G) = \mho_1(\mho_i(G))$.

Proof. By Theorem 6 (ii), we see that $\mathcal{O}_{i+1}(G) = \{g^{p^{i+1}} \mid g \in G\} = \{(g^{p^i})^p \mid g \in G\} = \{u^p \mid u \in \{g^{p^i} \mid g \in G\}\} = \{u^p \mid u \in \mathcal{O}_i(G)\} = \mathcal{O}_1(\mathcal{O}_i(G)).$

We make extensive use of the next result, which deals with *p*-groups that are the product of a cyclic subgroup and a subgroup that has exponent *p* and class less than $\frac{p}{2}$. The first part is a restatement of [5, Lemma 2.2].

Lemma 8. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B such that A is cyclic, $\exp(B) = p$ and $c(B) < \frac{p}{2}$. Then:

- (i) $\Omega_1(A) \underset{C}{B} \leq G;$
- (ii) $\exp(B^G) = p$.

Proof. We note that the proof of (i) is given in [5, Lemma 2.2]. For (ii), we see that the result is trivial if $B \leq G$. Letting $A = \langle x \rangle$, we can thus assume that $B^x \neq B$. In particular A is non-trivial, so $\Omega_1(A) \cong C_p$. By (i), we have $\Omega_1(A)B \leq G$. Hence, by comparison of orders, we have $B^G = \Omega_1(A)B = BB^x$. We further see that $|B^G:B| = |B^G:B^x| = |\Omega_1(A)| = p$. In particular, B and B^x are normal in B^G . It follows that $c(B^G) \leq c(B) + c(B^x) < \frac{p}{2} + \frac{p}{2} = p$. Now $B^G = BB^x$, so $B^G = \Omega_1(B^G)$. By Theorem 6, we then have $\exp(B^G) \leq p$. But $\exp(B) = p$, so we conclude that $\exp(B^G) = p$.

We now proceed to our main result.

Theorem 9. Let *p* be an odd prime and let G = AB be a finite *p*-group for subgroups *A* and *B* such that *A* is cyclic and $c(B) < \frac{p}{2}$. Then, for all *i*, we have $A \mho_i(B) \leq G$.

Proof. The bulk of our proof is devoted to showing that $A\mathcal{O}_1(B) \leq G$. For this, we use induction on |G|. If G = A, then the result is trivial. Hence we can assume that A is a proper subgroup of G. We can further assume that $B \not\leq G$, as otherwise $\mathcal{O}_1(B) \leq G$ and we trivially have $A\mathcal{O}_1(B) \leq G$. Since $|G:B| \leq p$ is then excluded, we have $|A| \geq p^2$. In particular, we see that $\Omega_1(A)$ is a proper subgroup of A with $\Omega_1(A) \cong C_p$.

By a result of Morigi (see [6, Lemma 1] or [2, Lemma 3.3.8]), there exists a non-trivial normal subgroup $W \leq G$ such that either $W \leq A$ or $W \leq B$. Since *G* is a finite *p*-group, we then have either $A \cap Z(G) \neq 1$ or $B \cap Z(G) \neq 1$. We assume first that $A \cap Z(G) \neq 1$. By minimality, it follows that $\Omega_1(A) \leq Z(G)$. By induction, we see that $(A/\Omega_1(A))\mathcal{O}_1(B\Omega_1(A)/\Omega_1(A)) \leq G/\Omega_1(A)$. By Lemma 1, we further have $\mathcal{O}_1(B\Omega_1(A)/\Omega_1(A)) = \mathcal{O}_1(B)\Omega_1(A)/\Omega_1(A)$. Hence

$$A/\Omega_1(A)(\mathcal{O}_1(B)\Omega_1(A)/\Omega_1(A)) \leqslant G/\Omega_1(A).$$

We now apply Lemma 3 to see that $A \mathfrak{V}_1(B) \Omega_1(A) \leq G$. Since $\Omega_1(A) \leq Z(G)$, we have

$$A\mho_1(B)\Omega_1(A) = A\Omega_1(A)\mho_1(B) = A\mho_1(B),$$

so $A\mathcal{O}_1(B) \leq G$. We can therefore assume that $A \cap Z(G) = 1$ and thus $B \cap Z(G) \neq 1$.

We let $z \in B \cap Z(G)$ be such that $\langle z \rangle \cong C_p$. By induction, we have $(A\langle z \rangle / \langle z \rangle)(\mho_1(B/\langle z \rangle) \leqslant G/\langle z \rangle$. By Lemma 1, we see that $\mho_1(B/\langle z \rangle) = \mho_1(B\langle z \rangle / \langle z \rangle) = \mho_1(B)\langle z \rangle / \langle z \rangle$. Thus $(A\langle z \rangle / \langle z \rangle)(\mho_1(B)\langle z \rangle / \langle z \rangle) \leqslant G/\langle z \rangle$. By Lemma 3, we then have $A\langle z \rangle \mho_1(B)\langle z \rangle \leqslant G$. But $A\langle z \rangle \mho_1(B)\langle z \rangle = A \mho_1(B)\langle z \rangle$. Hence

$$A \mathfrak{O}_1(B) \langle z \rangle \leq G.$$

Since *A* is a proper subgroup of *G*, we let *M* be a maximal subgroup of *G* such that $A \leq M$. Then $M = A(B \cap M)$. We let $B_1 = B \cap M$, so that $M = AB_1$. Since $A \leq M$, we have $A \cap B = A \cap B \cap M = A \cap B_1$. Hence

$$|G| = \frac{|A||B|}{|A \cap B|} = p|M| = p\frac{|A||B_1|}{|A \cap B_1|} = p\frac{|A||B_1|}{|A \cap B|}$$

It follows that

$$|B:B_1| = \frac{|B|}{|B_1|} = p.$$

We consider the case where $\mho_1(B_1) \neq 1$. By induction, we have $A \mho_1(B_1) \leq A B_1 \leq G$. Now $\mho_1(B_1)$ is characteristic in B_1 and $|B:B_1| = p$, so $B_1 \leq B$. Hence $\mho_1(B_1) \leq B$. Applying Lemma 2,

we have $\mathcal{O}_1(B_1)^G = (A \cap \mathcal{O}_1(B_1)^G) \mathcal{O}_1(B_1)$. We let $N = \mathcal{O}_1(B_1)^G$. Since $\mathcal{O}_1(B_1) \neq 1$, we see that *N* is a non-trivial normal subgroup of *G*. By our induction hypothesis and Lemma 1, we then have

$$(AN/N)\mho_1(BN/N) = (AN/N)(\mho_1(B)N/N) \leqslant G/N.$$

Hence, by Lemma 3, we have $AN\mathcal{O}_1(B)N = AN\mathcal{O}_1(B) \leqslant G$. But $N = \mathcal{O}_1(B_1)^G = (A \cap \mathcal{O}_1(B_1)^G)\mathcal{O}_1(B_1)$, so

$$AN\mathcal{O}_1(B) = A(A \cap \mathcal{O}_1(B_1)^G)\mathcal{O}_1(B_1)\mathcal{O}_1(B) = A\mathcal{O}_1(B).$$

Thus, in the case where $\mho_1(B_1) \neq 1$, we conclude that $A \mho_1(B) \leq G$.

We now assume that $\mathcal{O}_1(B_1) = 1$. Thus $\exp(B_1) \leq p$. Since $|B:B_1| = p$, it follows that $\exp(B) \leq p^2$. If $\exp(B) = p$, then $\mathcal{O}_1(B) = 1$ and the result is trivial. Hence we can assume that there exists $y \in B$ such that $o(y) = p^2$. But $|B:B_1| = p$ and $c(B) < \frac{p}{2} < p$, so we can apply Corollary 5 to see that $\mathcal{O}_1(B) = \langle y^p \rangle \cong C_p$. In particular, we have $\mathcal{O}_1(B) \leq Z(B)$. From the above, there exists $z \in B \cap Z(G)$ with $\langle z \rangle \cong C_p$ such that $A\mathcal{O}_1(B) \langle z \rangle \leq G$. But $\mathcal{O}_1(B) \leq Z(B)$, so $\mathcal{O}_1(B) \langle z \rangle \leq Z(B)$. Hence we can apply Lemma 2 to see that $(\mathcal{O}_1(B) \langle z \rangle)^G = (\mathcal{O}_1(B) \langle z \rangle)^{A\mathcal{O}_1(B) \langle z \rangle}$. Since $\mathcal{O}_1(B) \cong \langle z \rangle \cong C_p$, we see that $\mathcal{O}_1(B) \langle z \rangle$ is elementary abelian. In particular, we have $\exp(\mathcal{O}_1(B) \langle z \rangle) = p$ and $c(\mathcal{O}_1(B) \langle z \rangle) = 1 < \frac{p}{2}$. We can thus apply Lemma 8 (i) to see that $\mathcal{O}_1(A)\mathcal{O}_1(B) \langle z \rangle \leqslant A\mathcal{O}_1(B) \langle z \rangle$. Hence

$$(\mathfrak{O}_1(B)\langle z\rangle)^G = (\mathfrak{O}_1(B)\langle z\rangle)^{A\mathfrak{O}_1(B)\langle z\rangle} \leqslant \Omega_1(A)\mathfrak{O}_1(B)\langle z\rangle.$$

We can assume that *B* is a proper subgroup of *G*, since otherwise $\mathcal{O}_1(B) \leq G$ and it trivially follows that $A\mathcal{O}_1(B) \leq G$. We let M_1 be a maximal subgroup of *G* such that $B \leq M_1$. Then $|G: M_1| = p$ and $M_1 = (A \cap M_1)B$. We let $A_1 = A \cap M_1$. As above, we have $|A: A_1| = p$. Since $|A| \geq p^2$, we see that $\Omega_1(A) \leq A_1$. Hence $\Omega_1(A) = \Omega_1(A_1) \cong C_p$. By induction, we have $A_1\mathcal{O}_1(B) \leq A_1B \leq G$. We can thus apply Lemma 2 and Lemma 8 (i) to see that

$$\mho_1(B)^{A_1B} = \mho_1(B)^{A_1\mho_1(B)} \leqslant \Omega_1(A)\mho_1(B) \leqslant A_1\mho_1(B).$$

Bearing in mind that $\Omega_1(A) \cong C_p$, we see by comparison of orders that either $\mathfrak{V}_1(B)^{A_1B} = \Omega_1(A)\mathfrak{V}_1(B)$ or $\mathfrak{V}_1(B)^{A_1B} = \mathfrak{V}_1(B)$.

If $\mathcal{O}_1(B)^{A_1B} = \Omega_1(A)\mathcal{O}_1(B)$, then $\Omega_1(A)\mathcal{O}_1(B) \leq A_1B$. In particular $\Omega_1(A)\mathcal{O}_1(B)B = \Omega_1(A)B \leq A_1B$, so $\Omega_1(A)B$ is a subgroup of *G*. We can then apply Lemma 2 to see that

$$\Omega_1(A)^G = \Omega_1(A)^{\Omega_1(A)B} \leq \Omega_1(A) \mathcal{O}_1(B) \leq A_1 B$$

But $\mathfrak{O}_1(B) \cong C_p$, so either $\Omega_1(A)^G = \Omega_1(A)$ or $\Omega_1(A)^G = \Omega_1(A)\mathfrak{O}_1(B)$. In the former case, we have $\Omega_1(A) \triangleleft G$. But $\Omega_1(A) \cong C_p$, so $1 \neq \Omega_1(A) \triangleleft A \cap Z(G)$, which has been excluded. If $\Omega_1(A)^G = \Omega_1(A)\mathfrak{O}_1(B)$ then $\Omega_1(A)\mathfrak{O}_1(B) \triangleleft G$, so $A\mathfrak{O}_1(B) = A\Omega_1(A)\mathfrak{O}_1(B) \triangleleft G$, and we are done. We can thus assume that

$$\mathfrak{O}_1(B)^{A_1B} = \mathfrak{O}_1(B) \triangleleft A_1B.$$

Since $\mathfrak{V}_1(B) \cong C_p$, it follows that $\mathfrak{V}_1(B) \leqslant Z(A_1B)$. But $A_1B = M_1 \leqslant G$, so we further have $\mathfrak{V}_1(B)^G \leqslant Z(A_1B) \leqslant G$. Now, for *z* as above, we have $\langle z \rangle \leqslant B \cap Z(G) \leqslant Z(A_1B)$. We therefore see that

$$(\mathfrak{O}_1(B)\langle z\rangle)^G = \mathfrak{O}_1(B)^G \langle z\rangle \leqslant Z(A_1B).$$

We recall from the above that $(\mathcal{U}_1(B)\langle z \rangle)^G \leq \Omega_1(A)\mathcal{U}_1(B)\langle z \rangle$. Since $\Omega_1(A) \cong C_p$, we have either $\Omega_1(A) \leq (\mathcal{U}_1(B)\langle z \rangle)^G \leq Z(A_1B)$ or $\Omega_1(A) \cap (\mathcal{U}_1(B)\langle z \rangle)^G = 1$. In the former case we see that *B* centralises $\Omega_1(A)$. But then $G = AB \leq C_G(\Omega_1(A))$, so $\Omega_1(A) \leq Z(G)$. Since this is excluded, we have $\Omega_1(A) \cap (\mathcal{U}_1(B)\langle z \rangle)^G = 1$. By comparison of orders, it follows that

$$(\mathfrak{O}_1(B)\langle z\rangle)^G = \mathfrak{O}_1(B)\langle z\rangle \triangleleft G.$$

We let $N_1 = \mathcal{O}_1(B)\langle z \rangle$ and have $N_1 \leq B$. Hence $G/N_1 = (AN_1/N_1)(B/N_1)$. If $A \cap N_1 \neq 1$ then, by minimality, we have $\Omega_1(A) \leq N_1 = (\mathcal{O}_1(B)\langle z \rangle)^G$. But this has been excluded, so $A \cap N_1 = 1$. Hence $\Omega_1(AN_1/N_1) = \Omega_1(A)N_1/N_1 \cong \Omega_1(A) \cong C_p$. We further note that $c(B/N_1) \leq c(B) < \frac{p}{2}$. Since

 $\exp(B) = p^2$ and $\mathcal{O}_1(B) \leq N_1$, we also see that $\exp(B/N_1) = p$. We can thus apply Lemma 8(i) to see that

$$\Omega_1(AN_1/N_1)(B/N_1) = (\Omega_1(A)N_1/N_1)(B/N_1) \triangleleft G/N_1$$

By Lemma 3, we then have $\Omega_1(A)N_1B = \Omega_1(A)B \leq G$.

We let $A = \langle x \rangle$. We can assume that $B^x \neq B$ as otherwise $B \leq G$, which has been excluded. Since $\Omega_1(A) \cong C_p$, we then have $\Omega_1(A) \cap B = 1$ and see that $|\Omega_1(A)B : B| = |\Omega_1(A)B : B^x| = |\Omega_1(A)| = p$. Thus both *B* and B^x are normal in $\Omega_1(A)B$. By comparison of orders, we further see that $\Omega_1(A)B = BB^x$. Since $c(B^x) = c(B) < \frac{p}{2}$, it follows that

$$c(\Omega_1(A)B) = c(BB^x) \le c(B) + c(B^x) < \frac{p}{2} + \frac{p}{2} = p$$

From the above there exists $B_1 \leq B$, with $|B:B_1| = p$ and $\exp(B_1) = p$, such that $AB_1 \leq G$. Since $\Omega_1(A) \cap B = 1$, we see by minimality that $A \cap B = 1$. In particular, we have $A \cap B_1 = 1$. Since A is non-trivial, it follows that B_1 is a proper subgroup of AB_1 . Hence B_1 is a proper subgroup of $N_{AB_1}(B_1)$. But $N_{AB_1}(B_1) = (A \cap N_{AB_1}(B_1))B_1$, so $A \cap N_{AB_1}(B_1)$ is non-trivial. It follows that $\Omega_1(A) \leq A \cap N_{AB_1}(B_1)$. In particular, we see that $\Omega_1(A)B_1 \leq G$. Since $|B:B_1| = p$, we further see that

$$|\Omega_1(A)B:\Omega_1(A)B_1| = |B:B_1| = p.$$

Now $\exp(B_1) = p$ and $\Omega_1(A) \cong C_p$, so $\Omega_1(A)B_1$ is generated by elements of order p. Thus $\Omega_1(A)B_1 = \Omega_1(\Omega_1(A)B_1)$. But $c(\Omega_1(A)B_1) \le c(\Omega_1(A)B) < p$. Hence we can apply Theorem 6 to see that

$$\exp(\Omega_1(A)B_1) = p.$$

As shown above, there exists $y \in B$ such that $o(y) = p^2$ and $\mathcal{O}_1(B) = \langle y^p \rangle$. It follows, in particular, that $\exp(\Omega_1(A)B) \ge p^2$. But $|\Omega_1(A)B : \Omega_1(A)B_1| = p$, so $\Omega_1(A)B/\Omega_1(A)B_1 \cong C_p$. Since $\exp(\Omega_1(A)B_1) = p$, we further see that $\exp(\Omega_1(A)B) \le p^2$. Hence

$$\exp(\Omega_1(A)B) = p^2.$$

We can therefore apply Corollary 5 to see that

$$\mathfrak{O}_1(\Omega_1(A)B) = \langle \gamma^p \rangle = \mathfrak{O}_1(B).$$

Since $\Omega_1(A)B \leq G$, we then have $\mho_1(B) \leq G$. We thus conclude that $A\mho_1(B) \leq G$.

Having established that $AU_1(B) \leq G$, we use induction on *i* to show that $AU_i(B) \leq G$ for all *i*. We assume that the result holds for i = s, where $s \geq 1$. Since $c(B) < \frac{p}{2} < p$, we see, by Corollary 7, that $U_{s+1}(B) = U_1(U_s(B))$. By induction, we can assume that $AU_s(B) \leq G$. Applying the result we have proven for i = 1, we then have $AU_1(U_s(B)) \leq AU_s(B) \leq G$. Since $U_1(U_s(B)) = U_{s+1}(B)$, it follows that $AU_{s+1}(B) \leq G$.

We use Theorem 9 to prove the following result, which can be considered as an analogue to [5, Theorem 2.6].

Theorem 10. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B such that A is cyclic, $c(B) < \frac{p}{2}$ and $exp(B) = p^k$, where $k \ge 1$. Then, for all i such that $1 \le i \le k$, we have:

(i)
$$A \mathfrak{O}_{k-i}(B) \leq G;$$

(ii)
$$\mathfrak{O}_{k-i}(B)^G \leq \Omega_i(A)\mathfrak{O}_{k-i}(B) \leq G;$$

(iii)
$$\exp(\mho_{k-i}(B)^G) = p^i$$
.

Proof. We see that (i) holds by Theorem 9. For (ii) and (iii), we first deal with the case where i = 1. Since $c(B) < \frac{p}{2} < p$, we see by Theorem 6 that $\mathcal{O}_{k-1}(B) = \{b^{p^{k-1}} \mid b \in B\}$. Since $\exp(B) = p^k$, it follows that $\exp(\mho_{k-1}(B)) = p$. By (*i*), we have $A \mho_{k-1}(B) \leq G$. Hence we can apply Lemma 2 to see that

$$\mho_{k-1}(B)^G = \mho_{k-1}(B)^{A\mho_{k-1}(B)}$$

Now $c(\mathcal{O}_{k-1}(B)) \le c(B) < \frac{p}{2}$. Hence, by Lemma 8 (i), we have $\Omega_1(A)\mathcal{O}_{k-1}(B) \le A\mathcal{O}_{k-1}(B)$. It follows that

$$\mathfrak{O}_{k-1}(B)^G = \mathfrak{O}_{k-1}(B)^{A\mathfrak{O}_{k-1}(B)} \leqslant \mathfrak{O}_1(A)\mathfrak{O}_{k-1}(B).$$

Thus (ii) holds for i = 1. By Lemma 8(ii), we further see that $\exp(\mho_{k-1}(B)^G) = \exp(\mho_{k-1}(B)^{A\mho_{k-1}(B)}) = p$, so (iii) also holds for i = 1.

We now assume that $k \ge 2$ and further assume that (ii) and (iii) hold for i = s, where $1 \le s < k$. Thus $\mathfrak{V}_{k-s}(B)^G \le \Omega_s(A)\mathfrak{V}_{k-s}(B)$ and $\exp(\mathfrak{V}_{k-s}(B)^G) = p^s$. By Lemma 2, we have $\mathfrak{V}_{k-s}(B)^G = \mathfrak{V}_{k-s}(B)^{A\mathfrak{V}_{k-s}(B)} = A_1\mathfrak{V}_{k-s}(B)$, where $A_1 = A \cap \mathfrak{V}_{k-s}(B)^G$. Since $\exp(A_1) \le \exp((\mathfrak{V}_{k-s}(B))^G) = p^s$, we see that $A_1 = \Omega_t(A)$ for some $t \le s$.

We let $N = \mathcal{O}_{k-s}(B)^G$. Then $A \cap N = \Omega_t(A) \leq \Omega_s(A)$. If $\Omega_s(A) = A$, then $\Omega_{s+1}(A) = A$ and $\Omega_1(AN/N) \leq AN/N = \Omega_{s+1}(A)N/N$. If $\Omega_s(A)$ is a proper subgroup of A, then $\Omega_{s+1}(A) \cong C_{p^{s+1}}$. Since $\exp(N) = p^s$, we see that $\Omega_{s+1}(A) \leq N$. By minimality, we then have $\Omega_1(AN/N) \leq \Omega_{s+1}(A)N/N$. Thus, in every case, we have

$$\Omega_1(AN/N) \leqslant \Omega_{s+1}(A)N/N.$$

By Lemma 1, we have $\mho_{k-s-1}(BN/N) = \mho_{k-s-1}(B)N/N$. Since $c(B) \le \frac{p}{2} < p$ we see, by Corollary 7, that $\mho_1(\mho_{k-s-1}(B)) = \mho_{k-s}(B) \le N$. Hence $\exp(\mho_{k-s-1}(B)N/N) \le p$. But, by our inductive assumption, we have $\exp(N) = \exp(\mho_{k-s}(B)^G) = p^s$. In addition, $\exp(B) = p^k$, so $\mho_{k-s-1}(B)$ contains elements of order p^{s+1} . Hence $\exp(\mho_{k-s-1}(B)N/N) = p$. Since $A\mho_{k-s-1}(B) \le G$ and $N = \Omega_t(A)\mho_{k-s}(B) \le A\mho_{k-s-1}(B)$, we see that

$$(AN/N)(\mathfrak{O}_{k-s-1}(B)N/N) = A\mathfrak{O}_{k-s-1}(B)/N \leqslant G/N.$$

But $\exp(\mho_{k-s-1}(B)N/N) = p$ and $c(\mho_{k-s-1}(B)N/N) \le c(B) < \frac{p}{2}$. Hence, we can apply Lemma 8 (i) to see that

$$\Omega_1(AN/N)(\mho_{k-s-1}(B)N/N) \triangleleft A\mho_{k-s-1}(B)/N.$$

By Lemma 8(ii), we further have $\exp((\mho_{k-s-1}(B)N/N)^{A\mho_{k-s-1}(B)/N}) = p$. We note that $(\mho_{k-s-1}(B)N/N)^{A\mho_{k-s-1}(B)/N} = \mho_{k-s-1}(B)^{A\mho_{k-s-1}(B)}N/N$. In addition, we see by Lemma 2 that $\mho_{k-s-1}(B)^{A\mho_{k-s-1}(B)} = \mho_{k-s-1}(B)^G$. It then follows that

$$\exp(\mho_{k-s-1}(B)^G N/N) = \exp((\mho_{k-s-1}(B)N/N)^{A\mho_{k-s-1}(B)/N}) = p.$$

We let $W/N = \Omega_1(AN/N)$. Then $N \leq W \leq AN$, so $W = (A \cap W)N$. From the above, we have $W \leq \Omega_{s+1}(A)N$. Since *A* is cyclic, we see that if $A \cap W \leq \Omega_{s+1}(A)$ then $\Omega_{s+1}(A)$ is a proper subgroup of $A \cap W$. It follows that $\Omega_{s+2}(A) \leq A \cap W$, where $\Omega_{s+2}(A) \cong C_{p^{s+2}}$. Hence $\Omega_{s+2}(A) \leq W \leq \Omega_{s+1}(A)N$, so $\Omega_{s+2}(A) = \Omega_{s+1}(A)(\Omega_{s+2}(A) \cap N)$. But, for *t* as above, we have $\Omega_{s+2}(A) \cap N \leq A \cap N \leq \Omega_t(A)$. Since $t \leq s$, the contradiction $\Omega_{s+2}(A) \leq \Omega_{s+1}(A)\Omega_t(A) = \Omega_{s+1}(A) \cong C_{p^{s+1}}$ then arises. We can thus assume that $A \cap W = \Omega_m(A)$ for some *m* such that $t \leq m \leq s + 1$. Hence

$$\Omega_1(AN/N)(\mho_{k-s-1}(B)N/N) = (\Omega_m(A)N/N)(\mho_{k-s-1}(B)N/N) \triangleleft A\mho_{k-s-1}(B)/N.$$

By Lemma 3, it follows that $\Omega_m(A)N\mho_{k-s-1}(B)N \leq A\mho_{k-s-1}(B)$. But $N = \Omega_t(A)\mho_{k-s}(B)$ and $\Omega_m(A)N\mho_{k-s-1}(B)N = \Omega_m(A)N\mho_{k-s-1}(B)$. Hence

$$\Omega_m(A)\Omega_t(A)\mho_{k-s}(B)\mho_{k-s-1}(B) = \Omega_m(A)\mho_{k-s-1}(B) \leqslant A\mho_{k-s-1}(B).$$

We can now apply Lemma 2 to see that

$$\mathfrak{O}_{k-s-1}(B)^G = \mathfrak{O}_{k-s-1}(B)^{A\mathfrak{O}_{k-s-1}(B)} \leqslant \mathfrak{O}_m(A)\mathfrak{O}_{k-s-1}(B).$$

Since *A* is cyclic and $A \heartsuit_{k-s-1}(B) \leq G$, we see that $\Omega_j(A) \heartsuit_{k-s-1}(B) \leq G$ for all *j*. Now $m \leq s+1$, so

$$\mho_{k-s-1}(B)^G \leqslant \Omega_m(A) \mho_{k-s-1}(B) \leqslant \Omega_{s+1}(A) \mho_{k-s-1}(B) \leqslant G.$$

We thus conclude that (ii) holds for i = s + 1.

From the above, we have $\exp(\mho_{k-s-1}(B)^G N/N) = p$. But $N = \mho_{k-s}(B)^G$ and, by our inductive assumption, we have $\exp(\mho_{k-s}(B)^G) = p^s$. Hence $\exp(\mho_{k-s-1}(B)^G) \le p^{s+1}$. Now $\exp(B) = p^k$ so there exists $b \in B$ such that $o(b) = p^k$. Since $s + 1 \le k$, we see that $o(b^{p^{k-s-1}}) = p^{s+1}$. Thus $b^{p^{k-s-1}}$ is an element of order p^{s+1} in $\mho_{k-s-1}(B)$. Hence $\exp(\mho_{k-s-1}(B)^G) \ge p^{s+1}$. We conclude that $\exp(\mho_{k-s-1}(B)^G) = p^{s+1}$, so (iii) also holds for i = s + 1.

In our final result we use Theorem 10 to provide an alternative derivation of two results concerning the structure of products of cyclic *p*-groups with *p*-groups of class less than $\frac{p}{2}$ (see [5, Theorems 2.9 and 4.1]).

Corollary 11. Let p be an odd prime and let G = AB be a finite p-group for subgroups A and B such that A is cyclic, $c(B) < \frac{p}{2}$ and $exp(B) = p^k$, where $k \ge 1$. Then:

- (i) $\Omega_k(A)B \leq G;$
- (ii) $d(G) \le 1 + k + d(B)$.

Proof. We let i = k in Theorem 10 (iii) and see that $\exp(B^G) = p^k$. Now $B \leq B^G$, so $B^G = (A \cap B^G)B$. We have $A \cap B^G = \Omega_t(A)$, for a suitable t. Since $\exp(B^G) = p^k$, we can assume that $t \leq k$. Now $G/B^G = G/\Omega_t(A)B$ is isomorphic to a subgroup of A, so G/B^G is cyclic. Since $B^G = \Omega_t(A)B \leq \Omega_k(A)B$, we then see that $\Omega_k(A)B/B^G \leq G$. It follows that $\Omega_k(A)B \leq G$, so (i) is established.

For (ii), we note that $G/\Omega_k(A)B$ is isomorphic to a factor group of the cyclic group A. Hence $G' \leq \Omega_k(A)B$. Since A is cyclic, we see that $\Omega_1(A)B \leq \cdots \leq \Omega_k(A)B \leq G$. For $i = 1, \dots, k$, we have $|\Omega_i(A)B : \Omega_{i-1}(A)B| \leq |\Omega_i(A) : \Omega_{i-1}(A)| \leq p$, so $\Omega_{i-1}(A)B \leq \Omega_i(A)B$. We further see that $\Omega_i(A)B/\Omega_{i-1}(A)B$ is isomorphic to a factor group of the cyclic group $\Omega_i(A)/\Omega_{i-1}(A)$. Hence $(\Omega_i(A)B)' \leq \Omega_{i-1}(A)B$ for $i = 1, \dots, k$, so $G^{(1+k)} \leq B$. It then follows that $G^{(1+k+d(B))} = 1$, in accordance with (ii).

References

- [1] B. Amberg, S. Franciosi, E de Giovanni, Products of Groups, Oxford Mathematical Monographs, Clarendon Press, 1992.
- [2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, De Gruyter Expositions in Mathematics, vol. 53, Walter de Gruyter, 2010.
- [3] B. Huppert, "Über das Produkt von paarweise vertauschbaren zyklischen Gruppen", Math. Z. 58 (1953), p. 243-264.
- [4] ______, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, 1967.
- [5] B. McCann, "On products of cyclic and non-abelian finite *p*-groups", *Adv. Group Theory Appl.* 9 (2020), p. 5-37.
- [6] M. Morigi, "A Note on Factorized (Finite) p-Groups", Rend. Semin. Mat. Univ. Padova 98 (1997), p. 101-105.