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Abstract. We study the exact controllability of the evolution equation

u′(t )+ Au(t )+p(t )Bu(t ) = 0

where A is a nonnegative self-adjoint operator on a Hilbert space X and B is an unbounded linear operator
on X , which is dominated by the square root of A. The control action is bilinear and only of scalar-input form,
meaning that the control is the scalar function p, which is assumed to depend only on time. Furthermore,
we only consider square-integrable controls. Our main result is the local exact controllability of the above
equation to the ground state solution, that is, the evolution through time, of the first eigenfunction of A, as
initial data.

The analogous problem (in a more general form) was addressed in our previous paper [Exact controlla-
bility to eigensolutions for evolution equations of parabolic type via bilinear control, Alabau-Boussouira F.,
Cannarsa P. and Urbani C., Nonlinear Diff. Eq. Appl. (2022)] for a bounded operator B . The current extension
to unbounded operators allows for many more applications, including the Fokker–Planck equation in one
space dimension, and a larger class of control actions.

Résumé. Nous étudions la contrôlabilité exacte de l’équation d’évolution

u′(t )+ Au(t )+p(t )Bu(t ) = 0

où A est un opérateur auto-adjoint non négatif dans l’espace de Hilbert X et B est un opérateur linéaire non
borné de X, dominé par la racine carrée de l’opérateur A. L’action du contrôle est bilinéaire et sous forme
d’entrée scalaire, ce qui signifie que le contrôle est la fonction scalaire p, supposée ne dépendre que du
temps et être de carré intégrable. Notre résultat principal est la contrôlabilité locale exacte de l’équation
d’évolution au voisinage de la solution de l’état fondamental, c’est-à-dire au voisinage de la solution de
l’équation d’évolution de donnée initiale égale à la première fonction propre de A.
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Nous avons traité un problème similaire sous une forme plus générale dans notre article précédent
[Contrôlabilité exacte aux solutions propres pour les équations d’évolution de type parabolique via contrôle
bilinéaire, Alabau-Boussouira F., Cannarsa P. et Urbani C., Nonlinear Diff. Eq. Appl. (2022)] dans les cas
où l’opérateur B est borné. L’extension actuelle aux opérateurs non bornés permet de nombreuses autres
applications, comme celle de l’équation de Fokker–Planck en dimension un d’espace. Elle permet également
de considérer une classe plus large d’opérateurs de contrôle.
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1. Introduction

In a series of recent papers (see [3, 4, 16]), we have studied stabilization and exact controllability
to eigensolutions for evolution equations of the form{

u′(t )+ Au(t )+p(t )Bu(t ) = 0, t ∈ (0,T )

u(0) = u0
(1)

where u0 belongs to a Hilbert space (X ,〈·, ·〉,∥·∥) and

(i) A : D(A) ⊂ X → X is a self-adjoint operator with compact resolvent and such that
A ≥−σI , with σ≥ 0,

(ii) B : X → X is a bounded linear operator,
(iii) p ∈ L2(0,T ) is a bilinear control.

We refer to equation (1) as being of parabolic type, since assumption i) is usually satisfied by
parabolic operators.

The scalar-input bilinear controllability problem has been addressed by several authors, start-
ing with the negative result by Ball, Marsden, Slemrod [7]. Controllability issues are interesting
also in the hyperbolic or diffusive context, where several results are now available to describe
the reachable set of specific partial differential equations in 1−D, such as the Schrödinger equa-
tion [5, 8, 10] and the classical [5, 9] and degenerate [13] wave equation. The above problem
enters in the so-called class of nonlinear control problems.

We refer the readers to the book by Coron[17] where general control systems are studied as well
as mathematical methods to treat them, with a focus on systems for which the nonlinearities are
determinant for controllability issues, including the Schrödinger equation.

Most of the above results devoted to scalar-input bilinear controllability issues have in com-
mon the fact that they address controllability properties of (1) near the ground state solution
ψ1(t ) = e−λ1tϕ1 (see [9, 10, 13]) or, more in general, to eigensolutions ψ j (t ) = e−λ j tϕ j (see [3, 4]),
that are solutions of the free dynamics (p = 0) associated to (1), namely

u′(t )+ Au(t ) = 0,

with initial condition u0 =ϕ j , where we denote by {λk }k ∈N∗ the eigenvalues of A, and by {ϕk }k ∈N∗

the associated eigenfunctions.
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To prove local controllability to trajectories, we have introduced in [3] the notion of j -null
controllability in time T > 0 for the pair {A,B}: we require the existence of a constant NT > 0 such
that for any initial condition y0 ∈ X , there exists a control p ∈ L2(0,T ) satisfying∥∥p

∥∥
L2(0,T ) ≤ NT

∥∥y0
∥∥ , (2)

and for which y(T ) = 0, where y(·) is the solution of the following linear problem{
y ′(t )+ Ay(t )+p(t )Bϕ j = 0, t ∈ [0,T ]

y(0) = y0.
(3)

We call the best constant, defined as

N (T ) := sup
∥y0∥=1

inf
{∥∥p

∥∥
L2(0,T ) : y

(
T ; y0, p

)= 0
}

, (4)

the control cost.
Furthermore, we have shown that sufficient conditions for {A,B} to be j -null controllable are

a gap condition of the eigenvalues of A and a rank condition on B : we assume B to spread ϕ j

in all directions (see [4, Theorem 1.2]). When, for instance, X = L2(0,1), B could be taken as a
multiplicative operator, i.e.,

(Bϕ)(x) =µ(x)ϕ(x), x ∈ (0,1),

where µ has to be chosen in order to guarantee the dispersive action mentioned above (see [5] for
a general method to construct infinite classes of such µ, including polynomial type classes, and
for various PDE’s, as well as various boundary conditions).

Another common feature of the aforementioned references is that B is assumed to be
bounded. In many applications, however, one is forced to consider a bilinear control acting on a
drift term rather than a potential, which leads to allowing B to be unbounded.

A typical example of such a situation occurs when dealing with the Fokker–Planck equation

ut −uxx −p(t )
(
µ(x)u

)
x = 0,

which is satisfied by the probability density of the diffusion process associated with

d X t = p(t )µ(X t )d t +p
2dWt ,

where Wt is the standard Wiener process on a probability space (Ω,A ,P).
This paper aims to extend the theory of [4] to unbounded operators B : D(B) ⊂ X → X

satisfying

D
(

A1/2
σ

)
,→ D(B), and

∥∥Bϕ
∥∥≤C

(∥∥Aσϕ
∥∥2 +∥∥ϕ∥∥2

)1/2
,

for some constant C > 0, where Aσ := A+σI (the aforementioned j -null controllability property
of the pair {A,B} has to be assumed unchanged).

We consider (1) where A : D(A) ⊂ X → X is a self-adjoint accretive operator with compact
resolvent and B is an unbounded linear operator. By adapting the approach of [4], we first obtain
in Section 3 a local controllability result (in the topology of D(A1/2)), to the first eigensolution
ψ1 (the ground state), see Theorem 7. Then, in Section 4 we derive two semi-global results,
Theorems 9 and 10. Finally, in Section 5 we discuss applications to partial differential equations
including

(a) the Fokker–Planck equation,
(b) the heat equation with control on the drift under Neumann boundary conditions,
(c) a class of degenerate parabolic equations under Dirichlet or Neumann boundary condi-

tions.
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2. Preliminaries

Let (X ,〈·, ·〉,∥·∥) be a separable Hilbert space. Let A : D(A) ⊂ X → X be a densely defined linear
operator with the following properties:

(a) A is self-adjoint,
(b) 〈Ax, x〉 ≥ 0, ∀ x ∈ D(A),
(c) ∃ λ> 0 : (λI + A)−1 : X → X is compact.

(5)

We recall that under the above assumptions A is a closed operator and D(A) is itself a Hilbert
space with respect to the scalar product

(x, y)D(A) = 〈x, y〉+〈Ax, Ay〉, ∀ x, y ∈ D(A). (6)

Moreover, −A is the infinitesimal generator of a strongly continuous semigroup of contractions
on X which is also analytic and will be denoted by e−t A .

In view of the above assumptions, there exists an orthonormal basis {ϕk }k∈N∗ in X of eigen-
functions of A, that is, ϕk ∈ D(A) and Aϕk = λkϕk ∀ k ∈N∗, where {λk }k∈N∗ ⊂ R denote the cor-
responding eigenvalues. We recall that λk ≥ 0, ∀ k ∈N∗ and we suppose — without loss of gener-
ality — that {λk }k∈N∗ is ordered so that 0 ≤ λk ≤ λk+1 →∞ as k →∞. The associated semigroup
has the following representation

e−t Aϕ=
∞∑

k=1
〈ϕ,ϕk〉e−λk tϕk , ∀ ϕ ∈ X . (7)

For any s ≥ 0 we can define the operator As : D(As ) ⊂ X → X which is the s-fractional power of A
(see [21]). Under our assumptions, such a linear operator is characterized as follows

D(As ) =
{

x ∈ X

∣∣∣∣∣ ∑
k ∈N∗

λ2s
k

∣∣〈x,ϕk
〉∣∣2 <∞

}
As x = ∑

k ∈N∗
λs

k

〈
x,ϕk

〉
ϕk , ∀ x ∈ D(As ).

(8)

The space D(As ), equipped with the norm

∥x∥D(As ) :=
(
∥x∥2 +∥∥As x

∥∥2
)1/2

, ∀ x ∈ D
(

As) ,

induced by the scalar product
〈x, y〉s = 〈x, y〉+〈

As x, As y
〉

is a Hilbert space for any s ≥ 0. Note that we have trivially the inequality

∥x∥D(As ) É
(∥x∥+∥∥As x

∥∥)
, ∀ x ∈ D

(
As) . (9)

Of course, the right hand side also defines an equivalent norm to ∥·∥D(As ) on D(As ), but is not
associated to a scalar product. We will make use of the above inequality in some computations
without further referring to it.

We indicate by BR,s (x) the unit ball of radius R with respect to the norm ∥·∥D(As ) centered at x.
Let T > 0 and consider the following problem{

u′(t )+ Au(t ) = f (t ), t ∈ [0,T ]

u(0) = u0
(10)

where u0 ∈ X and f ∈ L2(0,T ; X ). We now recall two definitions of solution of problem (10):

• the function u ∈C ([0,T ], X ) defined by

u(t ) = e−t Au0 +
∫ t

0
e−(t−s)A f (s)d s

is called the mild solution of (10),
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• a function

u ∈ H 1(0,T ; X )∩L2(0,T ;D(A)) (11)

is called a strict solution of (10) if u(0) = u0 and u satisfies the equation in (10) for a.e.
t ∈ [0,T ].

The well-posedness of the Cauchy problem (10) is a classical result (see, for instance, [11,
Theorem 3.1, p. 143]). We observe that the space

W (D(A); X ) = H 1(0,T ; X )∩L2 (0,T ;D(A))

is a Banach space with the norm∥∥ϕ∥∥
W =

(∥∥ϕ∥∥2
H 1(0,T ;X ) +

∥∥ϕ∥∥2
L2(0,T ;D(A))

)1/2

for all ϕ ∈W (D(A); X ).

Theorem 1. Let u0 ∈ D(A1/2) and f ∈ L2(0,T ; X ). Under hypothesis (5), the mild solution of
system (10)

u(t ) = e−t Au0 +
∫ t

0
e−(t−s)A f (s)d s (12)

is a strict solution.
Moreover, there exists a constant C > 0 such that

∥u∥W ≤C
(∥∥ f

∥∥
L2(0,T ;X ) +∥u0∥D(A1/2)

)
. (13)

The regularity (11) of the function u given by (12) is called maximal regularity. Under our
assumptions such a property is due to the analyticity of e−t A . Observe that (13) ensures that the
strict solution of (10) is unique.

We now recall a useful result which derives from spaces interpolation.

Proposition 2. Let u ∈W (D(A); X ) then

u ∈C
(
[0,T ];D

(
A1/2)) .

We refer to [20, Proposition 2.1, p. 22 and Theorem 3.1, p. 23]) for the proof.
From Proposition 2 we deduce the following regularity property for the solution of prob-

lem (10).

Corollary 3. Let u0 ∈ D(A1/2) and f ∈ L2(0,T ; X ). Then, the strict solution u of (10) is such that
u ∈C ([0,T ];D(A1/2)) and there exists C0 > 0 such that

sup
t ∈ [0,T ]

∥u(t )∥D(A1/2) ≤C0

(∥∥ f
∥∥

L2(0,T ;X ) +∥u0∥D(A1/2)

)
. (14)

Given T > 0, let B : D(B) ⊂ X → X be a linear unbounded operator such that

D
(

A1/2) ,→ D(B), (15)

namely D(A1/2) ⊂ D(B) and there exists a constant CB > 0 (that we can suppose, without loss of
generality, to be greater than one) such that∥∥Bϕ

∥∥≤CB
∥∥ϕ∥∥

D(A1/2) , ∀ ϕ ∈ D
(

A1/2) . (16)

In the proposition that follows we show the well-posedness of the bilinear control problem
with a source term {

u′(t )+ Au(t )+p(t )Bu(t )+ f (t ) = 0, t ∈ [0,T ]

u(0) = u0.
(17)
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We introduce the following notation: ∀ s ≥ 0 we set

∥∥ϕ∥∥
s := ∥∥ϕ∥∥

D(As ) , ∀ ϕ ∈ D(As )∥∥ f
∥∥

2,s := ∥∥ f
∥∥

L2(0,T ;D(As )) , ∀ f ∈ L2 (
0,T ;D

(
As))∥∥ f

∥∥∞,s := ∥∥ f
∥∥

C ([0,T ];D(As )) = sup
t ∈ [0,T ]

∥∥As f (t )
∥∥ , ∀ f ∈C

(
[0,T ];D

(
As)) .

Proposition 4. Let T > 0 and fix p ∈ L2(0,T ). Then, for all u0 ∈ D(A1/2) and f ∈ L2(0,T ; X ) there
exists a unique mild solution u of (17).

Moreover, u ∈C ([0,T ],D(A1/2)) and the following equality holds for every t ∈ [0,T ]

u(t ) = e−t Au0 −
∫ t

0
e−(t−s)A [

p(s)Bu(s)+ f (s)
]

d s. (18)

Furthermore, u is a strict solution of (17) and there exists a constant C1 =C1(p) > 0 such that

∥u∥∞,1/2 ≤C1
(∥u0∥1/2 +∥ f ∥2,0

)
. (19)

Hereafter, we denote by C a generic positive constant which may differ from line to line.
Constants which play a specific role will be distinguished by an index i.e., C0, CB , . . . .

Proof. The existence and uniqueness of the solution of (17) comes from a fixed point argument
which is based on Theorem 1.

For any ξ ∈C ([0,T ];D(A1/2)), let us consider the map

Φ(ξ)(t ) = e−t Au0 −
∫ t

0
e−(t−s)A [

p(s)Bξ(s)+ f (s)
]

d s.

We want to prove thatΦ is a contraction. First, we prove thatΦmaps C ([0,T ];D(A1/2)) into itself.
Since u0 ∈ D(A1/2), ξ ∈ C ([0,T ];D(A1/2)) and (15) holds true, then p(·)Bξ(·), f (·) ∈ L2(0,T ; X ).
Hence, by applying Theorem 1 and Corollary 3 it turns out that Φ(ξ) ∈C ([0,T ];D(A1/2)).

Now we have to prove that Φ is a contraction. Thanks to (14), we have

∥Φ(ξ)−Φ(ζ)∥∞,1/2 = sup
t ∈ [0,T ]

∥∥∥∥∫ t

0
e−(t−s)A p(s)B(ξ−ζ)(s)d s

∥∥∥∥
1/2

≤C0
∥∥pB(ξ−ζ)

∥∥
2,0

=C0

(∫ T

0

∣∣p(s)
∣∣2 ∥B(ξ−ζ)(s)∥2 d s

)1/2

≤C0CB

(∫ T

0

∣∣p(s)
∣∣2 ∥(ξ−ζ)(s)∥2

1/2 d s

)1/2

≤C0CB
∥∥p

∥∥
L2(0,T ) ∥ξ−ζ∥∞,1/2

(20)

where we have used the fact that D(A1/2) ,→ D(B). If C0CB
∥∥p

∥∥
L2(0,T ) < 1, then (20) shows that

Φ is a contraction. If this quantity is larger than one, we subdivide the interval [0,T ] into N
subintervals [T0,T1], [T1,T2], . . . , [TN−1,TN ], with T0 = 0,TN = T , such that C0CB

∥∥p
∥∥

L2(T j ,T j+1) ≤
1/2 in [T j ,T j+1], ∀ j = 0, . . . , N −1 and we repeat the contraction argument in each interval.
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It remains to prove (19). By using once again (14), we get

∥u∥∞,1/2 ≤ ∥u0∥1/2 + sup
t ∈ [0,T ]

∥∥∥∥∫ t

0
e−(t−s)A [

p(s)Bu(s)+ f (s)
]

d s

∥∥∥∥
1/2

≤ ∥u0∥1/2 +C0

(∥∥pBu
∥∥

2,0 +
∥∥ f

∥∥
2,0

)
= ∥u0∥1/2 +C0

(∫ T

0

∣∣p(s)
∣∣2 ∥Bu(s)∥2 d s

)1/2

+C0
∥∥ f

∥∥
2,0

≤ ∥u0∥1/2 +C0CB

(∫ T

0

∣∣p(s)
∣∣2 ∥u(s)∥2

1/2 d s

)1/2

+C0
∥∥ f

∥∥
2,0

= ∥u0∥1/2 +C0CB
∥∥p

∥∥
L2(0,T ) ∥u∥∞,1/2 +C0

∥∥ f
∥∥

2,0 ,

(21)

which implies (
1−C0CB

∥∥p
∥∥

L2(0,T )

)
∥u∥∞,1/2 ≤ ∥u0∥1/2 +C0

∥∥ f
∥∥

2,0 .

If C0CB
∥∥p

∥∥
L2(0,T ) ≤ 1/2, then we have inequality (19). Otherwise, to get the conclusion, we

proceed subdividing the interval [0,T ] into smaller subintervals, as explained above. □

We now consider the following bilinear control problem with a specific source term{
v ′(t )+ Av(t )+p(t )B v(t )+p(t )Bϕ1 = 0, t ∈ [0,T ]
v(0) = v0.

(22)

Let us denote by v(·; v0, p) the solution of (22) associated to the initial condition v0 and control
p. The result that follows provides an estimate of supt∈[0,T ]

∥∥v(t ; v0, p)
∥∥

1/2 in terms of the initial
condition v0.

Proposition 5. Let T > 0. Let A and B satisfy hypotheses (5) and (15), respectively. Let v0 ∈ D(A1/2)
and p ∈ L2(0,T ) be such that ∥∥p

∥∥
L2(0,T ) ≤ NT ∥v0∥ (23)

with NT a positive constant.
Then, the solution of (22) satisfies

sup
t ∈ [0,T ]

∥∥v(t ; v0, p)
∥∥2

1/2 ≤C1,1
(
T,∥v0∥1/2

)∥v0∥2
1/2 , (24)

where

C1,1
(
T,∥v0∥1/2

)
:= eCB NT

( 5
2 CB NT ∥v0∥1/2+2

p
T

)∥v0∥1/2+T ·

·
(
1+ 5

2
C 2

B

(
1+λ1/2

1

)2
N 2

T + 3

2
C 2

B N 2
T

(
C 2

B

(
1+λ1/2

1

)2
N 2

T +1
)
∥v0∥2

1/2

)
(25)

Proof. For the sake of compactness, sometimes we will denote the solution of (22), by omitting
the reference to the initial condition and the control, as v(·). We perform energy estimates of the
equation satisfied by v by taking first the scalar product with v(t )

〈v ′(t ), v(t )〉+〈Av(t ), v(t )〉+p(t )〈B v(t )+Bϕ1, v(t )〉 = 0,

from which we have that

1

2

d

d t
∥v(t )∥2 +∥∥A1/2v(t )

∥∥2 ≤ ∣∣p(t )
∣∣∥B v(t )∥∥v(t )∥+ ∣∣p(t )

∣∣∥∥Bϕ1
∥∥∥v(t )∥

≤CB
∣∣p(t )

∣∣(∥v(t )∥2 +∥∥A1/2v(t )
∥∥2

)1/2 ∥v(t )∥+CB (1+λ1)1/2 ∣∣p(t )
∣∣∥v(t )∥

≤CB |p(t )|(∥v(t )∥+∥∥A1/2v(t )
∥∥)∥v(t )∥+CB

(
1+λ1/2

1

)∣∣p(t )
∣∣∥v(t )∥

≤CB
∣∣p(t )

∣∣∥v(t )∥2 + 1

2

∥∥A1/2v(t )
∥∥2 + C 2

B

2

∣∣p(t )
∣∣2 ∥v(t )∥2 + C 2

B

2

(
1+λ1/2

1

)2 ∣∣p(t )
∣∣2 + 1

2
∥v(t )∥2

(26)
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where we used (9) twice to get the third line of (26). Therefore, from the above inequality it follows
that

1

2

d

d t
∥v(t )∥2 ≤

(
CB

∣∣p(t )
∣∣+ C 2

B

2

∣∣p(t )
∣∣2 + 1

2

)
∥v(t )∥2 + C 2

B

2

(
1+λ1/2

1

)2 ∣∣p(t )
∣∣2 .

We integrate from 0 to t and thanks to Gronwall’s Lemma we deduce that

sup
t ∈ [0,T ]

∥∥v(t ; v0, p)
∥∥2 ≤

(
∥v0∥2 +C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T )

)
eC2(T ), (27)

where C2(T ) := 2CB
p

T
∥∥p

∥∥
L2(0,T ) +C 2

B

∥∥p
∥∥2

L2(0,T ) +T .
Now, we multiply the equation in (22) by v ′(t ) and we obtain〈

v ′(t ), v ′(t )
〉+〈

Av(t ), v ′(t )
〉+p(t )

〈
B v(t )+Bϕ1, v ′(t )

〉= 0.

We recall that under our assumptions on A the function

t 7→ 〈Av(t ), v(t )〉
is absolutely continuous on [0,T ]. Thus, it is differentiable almost everywhere on [0,T ], its
derivative is Lebesgue integrable on [0,T ] and we have

d

d t
〈Av(t ), v(t )〉 = 2

〈
Av(t ), v ′(t )

〉
, a.e. on [0,T ]

Therefore, we have for almost every t ∈ [0,T ]∥∥v ′(t )
∥∥2 + 1

2

d

d t

∥∥A1/2v(t )
∥∥2 ≤ |p(t )|∥B v(t )∥∥∥v ′(t )

∥∥+|p(t )|∥∥Bϕ1
∥∥∥∥v ′(t )

∥∥
≤CB |p(t )|(∥v(t )∥+∥∥A1/2v(t )

∥∥)∥∥v ′(t )
∥∥+CB

∣∣p(t )
∣∣(1+λ1/2

1

)∥∥v ′(t )
∥∥

≤ 3

4
C 2

B

∣∣p(t )
∣∣2 ∥v(t )∥2 + 1

3

∥∥v ′(t )
∥∥2 + 3

4
C 2

B

∣∣p(t )
∣∣2 ∥∥A1/2v(t )

∥∥2

+ 1

3

∥∥v ′(t )
∥∥2 + 3

4
C 2

B (1+λ1/2
1 )2 ∣∣p(t )

∣∣2 + 1

3

∥∥v ′(t )
∥∥2 ,

that gives for almost every t ∈ [0,T ]

d

d t

∥∥A1/2v(t )
∥∥2 ≤

(
3

2
C 2

B |p(t )|2 ∥v(t )∥2 + 3

2
C 2

B (1+λ1/2
1 )2|p(t )|2

)
+ 3

2
C 2

B |p(t )|2 ∥∥A1/2v(t )
∥∥2

.

By Gronwall’s Lemma and using the previous energy estimate (27), we deduce that for all t ∈ [0,T ]∥∥A1/2v(t )
∥∥2

≤
(∥∥A1/2v0

∥∥2 + 3

2
C 2

B

∫ t

0

∣∣p(s)
∣∣2 ∥v(s)∥2 d s + 3

2
C 2

B

(
1+λ1/2

1

)2
∫ t

0

∣∣p(s)
∣∣2 d s

)
e

3
2 C 2

B

∫ t
0 |p(s)|2d s

≤
(∥∥A1/2v0

∥∥2 + 3

2
C 2

B

∥∥p
∥∥2

L2(0,T ) sup
t ∈ [0,T ]

∥v(t )∥2 + 3

2
C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T )

)
e

3
2 C 2

B∥p∥2
L2(0,T )

≤
(∥∥A1/2v0

∥∥2 + 3

2
C 2

B

∥∥p
∥∥2

L2(0,T )

(
∥v0∥2 +C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T )

)
eC2(T )

+3

2
C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T )

)
e

3
2 C 2

B∥p∥2
L2(0,T )

≤
(∥∥A1/2v0

∥∥2 + 3

2
C 2

B

∥∥p
∥∥2

L2(0,T ) ∥v0∥2 + 3

2
C 4

B

(
1+λ1/2

1

)2 ∥∥p
∥∥4

L2(0,T )

+3

2
C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T )

)
eC3(T )

with C3(T ) := 3
2C 2

B

∥∥p
∥∥2

L2(0,T ) +C2(T ).
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Taking the supremum over the interval [0,T ], we have that

sup
t ∈ [0,T ]

∥∥A1/2v(t )
∥∥2 ≤

(∥∥A1/2v0
∥∥2 + 3

2
C 2

B

∥∥p
∥∥2

L2(0,T ) ∥v0∥2 + 3

2
C 4

B (1+λ1/2
1 )2 ∥∥p

∥∥4
L2(0,T )

+3

2
C 2

B (1+λ1/2
1 )2 ∥∥p

∥∥2
L2(0,T )

)
eC3(T ). (28)

Finally, combining (27) and (28), we find that

sup
t ∈ [0,T ]

∥v(t )∥2
1/2 ≤ sup

t ∈ [0,T ]
∥v(t )∥2 + sup

t ∈ [0,T ]

∥∥A1/2v(t )
∥∥2

≤ eC3(T )
(
∥v0∥2

1/2 +
5

2
C 2

B

(
1+λ1/2

1

)2 ∥∥p
∥∥2

L2(0,T ) +
3

2
C 2

B

∥∥p
∥∥2

L2(0,T ) ∥v0∥2

+3

2
C 4

B

(
1+λ1/2

1

)2 ∥∥p
∥∥4

L2(0,T )

)
and using estimate (23) we conclude that

sup
t ∈ [0,T ]

∥v(t )∥2
1/2 ≤ eC3(T )

(
1+ 5

2
C 2

B

(
1+λ1/2

1

)2
N 2

T + 3

2
C 2

B N 2
T

(
C 2

B

(
1+λ1/2

1

)2
N 2

T +1
)
∥v0∥2

1/2

)
∥v0∥2

1/2 .

Thus, we get (24) with C1,1(T,∥v0∥) defined in (25). □

We now turn our attention to the following control problem
w ′(t )+ Aw(t )+p(t )B v(t ) = 0, t ∈ [0,T ]

w(0) = 0
(29)

where v solves (22). Observe that p(·)B v(·) ∈ L2(0,T ; X ) so, thanks to Corollary 3, there exists a
unique strict solution of (29) and it also belongs to C ([0,T ];D(A1/2)). We will denote by w(·;0, p)
the solution of (29). In the result that follows we give a quadratic estimate of w(·;0, p) in terms of
the initial condition of the problem solved by v .

Proposition 6. Let T > 0 and let A and B satisfy hypotheses (5) and (15), respectively. Let
p ∈ L2(0,T ) satisfy (23) with NT =: N (T ) and v0 ∈ D(A1/2) be such that

N (T )∥v0∥1/2 ≤ 1. (30)

Then, it holds that ∥∥w
(
T ;0, p

)∥∥
1/2 ≤ K (T )∥v0∥2

1/2 , (31)

where

K (T )2 := 2eC4(T )C 2
B N (T )2C5(T ) (32)

with

C4(T ) :=CB

(
5

2
CB +2

p
T

)
+2T,

C5(T ) = 1+ 5

2
C 2

B

(
1+λ1/2

1

)2
N (T )2 + 3

2
C 2

B

(
C 2

B

(
1+λ1/2

1

)2
N (T )2 +1

)
.

Proof. For the sake of compactness, sometimes we will denote the solution of (29) by w(·). First,
we multiply the equation in (29) by w(t ), and we get〈

w ′(t ), w(t )
〉+〈Aw(t ), w(t )〉+p(t )〈B v(t ), w(t )〉 = 0,
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that implies

1

2

d

d t
∥w(t )∥2 ≤ ∣∣p(t )

∣∣∥B v(t )∥∥w(t )∥
≤CB

∣∣p(t )
∣∣∥v(t )∥1/2 ∥w(t )∥

≤ C 2
B

2

∣∣p(t )
∣∣2 ∥v(t )∥2

1/2 +
1

2
∥w(t )∥2 .

Applying Gronwall’s Lemma we obtain

∥w(t )∥2 ≤C 2
B e t

∫ t

0

∣∣p(s)
∣∣2 ∥v(s)∥2

1/2 d s,

and therefore
sup

t ∈ [0,T ]
∥w(t )∥2 ≤C 2

B eT ∥∥p
∥∥2

L2(0,T ) sup
t ∈ [0,T ]

∥v(t )∥2
1/2 . (33)

Now, we multiply the equation in (29) by w ′(t ),〈
w ′(t ), w ′(t )

〉+〈
Aw(t ), w ′(t )

〉+p(t )
〈

B v(t ), w ′(t )
〉= 0,

from which we deduce∥∥w ′(t )
∥∥2 + 1

2

d

d t

∥∥A1/2w(t )
∥∥2 ≤ ∣∣p(t )

∣∣∥B v(t )∥∥∥w ′(t )
∥∥

≤CB
∣∣p(t )

∣∣∥v(t )∥1/2
∥∥w ′(t )

∥∥
≤ C 2

B

2

∣∣p(t )
∣∣2 ∥v(t )∥2

1/2 +
1

2

∥∥w ′(t )
∥∥2 .

Therefore, it holds that
d

d t

∥∥A1/2w(t )
∥∥2 ≤C 2

B |p(t )|2 ∥v(t )∥2
1/2 ,

that yields the following estimate

sup
t ∈ [0,T ]

∥∥A1/2w(t )
∥∥2 ≤C 2

B

∥∥p
∥∥2

L2(0,T ) sup
t ∈ [0,T ]

∥v(t )∥2
1/2 . (34)

Combining (33) and (34) we have

sup
t ∈ [0,T ]

∥w(t )∥2
1/2 ≤ sup

t ∈ [0,T ]
∥w(t )∥2 + sup

t ∈ [0,T ]

∥∥A1/2w(t )
∥∥2

≤ 2eT C 2
B

∥∥p
∥∥2

L2(0,T ) sup
t ∈ [0,T ]

∥v(t )∥2
1/2

and thanks to the estimates of supt∈[0,T ] ∥v(t )∥2
1/2 given by (24), (25) and of

∥∥p
∥∥

L2(0,T ) given
by (23), we deduce that

sup
t ∈ [0,T ]

∥w(t )∥2
1/2 ≤ 2eT C 2

B C1,1
(
T,∥v0∥1/2

)
N (T )2 ∥v0∥4

1/2 . (35)

Finally, thanks to hypothesis (30), we obtain the claim. □

3. Main result

Let T > 0. In a separable Hilbert space (X ,〈·, ·〉,∥·∥), we consider the control problem{
u′(t )+ Au(t )+p(t )Bu(t ) = 0, t ∈ [0,T ]

u(0) = u0 ∈ D(A1/2)
(36)

where A : D(A) ⊂ X → X is a densely defined linear operator satisfying (5), B : D(B) ⊂ X → X is an
unbounded linear operator which satisfies (15) and p ∈ L2(0,T ) is a bilinear control. We denote
by u(·;u0, p) the solution of (36) associated to the initial condition u0 and control p. We call the
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“ground state solution” of problem (36) the function ψ1(t ) = e−λ1tϕ1, where λ1 ≥ 0 is the first
eigenvalue of A and ϕ1 is the associated eigenfunction.

For any 0 ≤ s0 ≤ s1 we also introduce the linear control problem{
y ′(t )+ Ay(t )+p(t )Bϕ1 = 0 t ∈ [s0, s1]

y(s0) = y0
(37)

and we denote by y(·; y0, s0, p) its solution associated to the initial condition y0, attained at time
s0, and control p.

We recall that the pair {A,B} is called 1-null controllable in time T if there exists a constant
NT > 0 such that for any y0 ∈ X there exists a control p ∈ L2(0,T ) with∥∥p

∥∥
L2(0,T ) ≤ NT

∥∥y0
∥∥

such that y(T ; y0,0, p) = 0. If {A,B} is 1-null controllable in time T , we call the constant N (T )
defined in (4) the control cost.

We now state our main controllability result.

Theorem 7. Let A : D(A) ⊂ X → X be a densely defined linear operator that satisfies (5). Let
B : D(B) ⊂ X → X be a linear unbounded operator such that (15) holds. Let {A,B} be 1-null
controllable in any T > 0 with control cost N (·) such that there exist ν,T0 > 0 for which

N (τ) ≤ eν/τ, ∀ 0 < τ≤ T0. (38)

Then, for any T > 0, there exists a constant RT > 0 such that, for any u0 ∈ BRT ,1/2(ϕ1), there
exists a control p ∈ L2(0,T ) for which system (36) is locally controllable to the ground state solution
in time T , that is, u(T ;u0, p) =ψ1(T ).

Moreover, the following estimate holds∥∥p
∥∥

L2(0,T ) ≤
e−π

2Γ0/T

e2π2Γ0/(3T ) −1
, (39)

where
Γ0 := 2ν+max{logD,0} (40)

RT := e−6Γ0/T1

with

D := 2
p

2CB eCB
( 5

4 CB+1
)+1

(
max

{
1+ 3

2
C 2

B ,
C 2

B

2

(
1+λ1/2

1

)2 (
5+3C 2

B

)})1/2

T1 = min

{
6

π2 T,1,T0

}
. (41)

Remark 8. Theorem 7 requires assumptions (5) and, in particular, it requires that all the
eigenvalues of A are nonnegative. We shall show how assumptions (5) can be weakened in order
to include the cases when A admits negative eigenvalues. Let us thus assume that A : D(A) ⊆ X →
X satisfies the following weakened assumptions:

(a)A is self-adjoint,

(b′)〈Ax, x〉 ≥−σ∥x∥2 , ∀ x ∈ D(A),

(c ′) ∃ λ>σ : (λI + A)−1 : X → X is compact.

(42)

Note that this situation has to be considered only if the smallest eigenvalue λ1 of A is strictly
negative. For such a situation the best constant σ in (42), is σ=−λ1. We claim that if the smallest
eigenvalue of A is strictly negative, we can still prove a local exact controllability result with
the appropriate changes in the assumptions. In Theorem 7 we replace (15) by the assumption
D((A+σI )

1
2 ) ,→ D(B), and (5) by assumption (42).
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Let us show how to proceed to derive a local exact controllability result to the ground state.
We assume that the smallest eigenvalue of A is strictly negative and that (42) holds. We denote by
{λk }k ∈N∗ and {ϕk }k ∈N∗ the eigenvalues and the corresponding eigenfunctions of A. Without loss
of generality, we can assume the eigenvalues ordered as λk ≤λk+1 for every k ∈N∗.

It is easy to check that σ can be supposed to satisfy in addition

σ= sup
x∈D(A), x ̸=0

( 〈(−A)x, x〉
∥x∥2

)
,

so that σ = −λ1. Hence, we assume from now on, without loss of generality, that σ = −λ1. The
ground state solution associated to A is ψ1(t ) = e−λ1tϕ1 = eσtϕ1.

We now introduce the operator Aσ = A + σI . Then it is easy to show that Aσ satisfies
hypothesis (5). One can write ((λ−σ)I + Aσ)−1 = (λ+ A)−1, so that Aσ satisfies (c) of (5) with µ=
λ−σ> 0. The eigenvalues of Aσ are given byµk =λk+σ and the associated eigenfunctions are the
same of those of A. The ground state solution associated to Aσ is therefore ψσ

1 (t ) = e−µ1tϕ1 =ϕ1.
By the change of variables z(t ;u0, p) = e−σt u(t ;u0, p), one has that z solves the following

problem {
z ′(t )+ Aσz(t )+p(t )B z(t ) = 0

z(0) = u0.
(43)

Since by hypothesis D((Aσ)
1
2 ) ,→ D(B), we can then apply Theorem 7 and deduce that the

solution of (43) is controllable in time T to the first eigensolution ψσ
1 . Finally, from this latter

result we get

u(T )−ψ1(T ) = eσT z(T )−eσTϕ1 = eσT (
z(T )−ϕ1

)= eσT (
z(T )−ψσ

1 (T )
)= 0

which implies the controllability of u to the ground state solution ψ1.

3.1. Proof of Theorem 7

Our aim is to show the local controllability of system (36) to the ground state solution ψ1(t ) =
e−λ1tϕ1, that is the solution of (36) when p = 0 and u0 = ϕ1. We recall that {ϕk }k ∈N∗ is a basis
of X of orthonormal eigenfunctions of the operator A, associated to the eigenvalues {λk }k ∈N∗ :
Aϕk = λkϕk for all k ∈ N∗. The proof of Theorem 7 is divided into two parts: we first consider
the case λ1 = 0 and prove the controllability result to the corresponding stationary eigensolution
ψ1(t ) ≡ϕ1. Then, we recover the result for the case λ1 > 0 in the second part.

3.1.1. Case λ1 = 0

We define the constant

T f := min

{
T,
π2

6
,
π2

6
T0

}
, (44)

where T > 0 and T0 is defined in (38). In what follows we construct a control p ∈ L2(0,T f ) which
drives the solution of (36) to ψ1 ≡ϕ1 in time T f .

Set

T1 := 6

π2 T f . (45)

It is easy to see that 0 < T1 ≤ 1. We now define the sequence {T j } j ∈N∗ by

T j := T1

j 2 , (46)

and the time steps

τn =
n∑

j=1
T j , ∀ n ∈N, (47)
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with the convention that
∑0

j=1 T j = 0. Notice that
∑∞

j=1 T j = π2

6 T1 = T f .
Set v := u −ϕ1. Then, for any 0 ≤ s0 ≤ s1, v solves the following bilinear control problem{

v ′(t )+ Av(t )+p(t )B v(t )+p(t )Bϕ1 = 0 t ∈ [s0, s1]

v(s0) = v0
(48)

with v0 = u(s0) −ϕ1. We denote by v(·; v0, s0, p) the solution of (48) associated to the initial
condition v0 attained at s0 and control p. Observe that showing local controllability of u to ϕ1

in time T f is equivalent to prove local null controllability for the solution v of (48): v(T f ;u0 −
ϕ1,0, p) = 0.

We follow the strategy of the proof of [4, Theorem 1.1] which consists first of obtaining an
estimate of the solution of (48) at T1 by the square of the norm of the initial condition thanks
to the construction of a suitable control p1 ∈ L2(0,T1). Then, the same procedure is iterated in
consecutive time steps [τn−1,τn] in which we build a control pn ∈ L2(τn−1,τn) such that, setting

qn :=
n∑

j=1
p j (t )χ[

τ j−1,τ j
](t ),

vn :=v
(
τn ; v0,0, qn

)
,

(49)

where χA(·) denotes the indicator function of the set A, it holds that

1.
∥∥pn

∥∥
L2(τn−1,τn ) ≤ N (Tn)∥vn−1∥ ,

2.y
(
τn ; vn−1,τn−1, pn

)= 0,

3.
∥∥v

(
τn ; vn−1,τn−1, pn

)∥∥
1/2 ≤ e

(∑n
j=1 2n− j j 2−2n 6

)
Γ0/T1 ,

4.
∥∥v

(
τn ; vn−1,τn−1, pn

)∥∥
1/2 ≤

n∏
j=1

K
(
T j

)2n− j ∥v0∥2n

1/2 ,

(50)

where y(·; vn−1,τn−1, pn) is the solution of (37) in [τn−1,τn] with initial condition vn−1 and control
pn . We recall that K (·) is defined in (32).

First step: we consider problem (48) with [s0, s1] = [0,T1]. Since by hypothesis the pair {A,B} is
1-null controllable in any time T > 0, then for any v0 ∈ D(A1/2) there exists a control p1 ∈ L2(0,T1)
such that ∥∥p1

∥∥
L2(0,T1) ≤ N (T1)∥v0∥ and y

(
T1; v0,0, p1

)= 0

with N (·) the control cost defined in (38) and y(·; v0,0, p1) the solution of (37) in [s0, s1] = [0,T1].
Therefore, 1. and 2. of (50) are satisfied. We apply now Proposition 5 with NT := N (T1) and we
obtain

sup
t ∈ [0,T1]

∥v(t )∥2
1/2 ≤C1,1

(
T1,∥v0∥1/2

)∥v0∥2
1/2

with C1,1 defined in (25).
In order to prove 3. and 4. of (50) we introduce the function w(t ) := v(t ; v0,0, p1)−y(t ; v0,0, p1).

It is easy to see that w solves (29) with T = T1 and p = p1. We then apply Proposition 6 and we
deduce that if

N (T1)∥v0∥1/2 ≤ 1 (51)

then ∥∥w
(
T1;0, p1

)∥∥
1/2 =

∥∥v
(
T1; v0,0, p1

)∥∥
1/2 ≤ K (T1)∥v0∥2

1/2 (52)

where K (·) is defined in (32). Observe that, thanks to the definition of T1 and to (38), we infer that
there exists a constant Γ0 > ν such that

K (τ) ≤ eΓ0/τ, 0 < τ≤ T1. (53)

Observe that, a possible choice of Γ0 is given by (40).
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Let RT = e−6Γ0/T1 with T1 defined as in (45). Let us prove that if v0 ∈ BRT ,1/2(0) then (51) is
satisfied:

N (T1)∥v0∥ ≤ N (T1)∥v0∥1/2 ≤ eν/T1 e−6Γ0/T1 ≤ e−5Γ0/T1 ≤ 1

where we have used that Γ0 > ν, so that (52) holds.
Thus, from (52) we deduce that∥∥v

(
T1; v0;0, p1

)∥∥
1/2 ≤ K (T1)∥v0∥2

1/2 ≤ eΓ0/T1 e−12Γ0/T1 = e−11Γ0/T1

which proves 3. and 4. of (50).
Iterative step: for the sake of completeness we report the proof of [4, Section 3.1.2] adapted to

the current choice of functional setting.
Suppose that for every j = 1, . . . ,n −1 we have built controls p j ∈ L2(τ j−1,τ j ) such that (50) is

satisfied. At the step n −1 we have construct pn−1 ∈ L2(τn−2,τn−1) such that

1.
∥∥pn−1

∥∥
L2(τn−2,τn−1) ≤ N (Tn−1)∥vn−2∥ ,

2.y
(
τn−1; vn−2,τn−2, pn−1

)= 0,

3.
∥∥v

(
τn−1; vn−2,τn−2, pn−1

)∥∥
1/2 ≤ e

(∑n−1
j=1 2n−1− j j 2−2n−16

)
Γ0/T1 ,

4.
∥∥v

(
τn−1; vn−2,τn−2, pn−1

)∥∥
1/2 ≤

n−1∏
j=1

K
(
T j

)2n−1− j ∥v0∥2n−1

1/2 .

(54)

Let us prove that there exists pn ∈ L2(τn−1,τn) which verifies (50). First, we define qn−1 and vn−1

as in (49). Consider then the problem{
v ′(t )+ Av(t )+p(t )B v(t )+p(t )Bϕ1 = 0 t ∈ [τn−1,τn]

v(τn−1) = vn−1
(55)

where the control p has to be properly chosen. We apply the change of variables s = t − τn−1

so that we shift the problem into the interval [0,Tn]. By introducing the new variables ṽ(s) =
v(s +τn−1) and p̃(t ) = p(s +τn−1), problem (55) becomes{

ṽ ′(t )+ Aṽ(t )+ p̃(t )B ṽ(t )+ p̃(t )Bϕ1 = 0 t ∈ [0,Tn]

ṽ(0) = vn−1.
(56)

Since {A,B} is 1-null controllable in any positive time, there exists p̃n ∈ L2(0,Tn) such that∥∥p̃n
∥∥

L2(0,Tn ) ≤ N (Tn)∥vn−1∥ and ỹ
(
Tn ; vn−1,0, p̃n

)= 0

with ỹ(·; vn−1,0, p̃n) solves (37) on [0,Tn]. Moreover, since vn−1 = v(τn−1; v0,0, qn−1) =
v(τn−1; vn−2,τn−2, pn−1), we deduce that

N (Tn)∥vn−1∥1/2 ≤ eνn2/T1 e

(
n−1∑
j=1

2n−1− j j 2−2n−16

)
Γ0/T1

≤ e(n2+(−(n−1)2−4(n−1)+2n−16−6−2n−16))Γ0/T1

= e−(2n+3)Γ0/T1 ≤ 1

(57)

from 3. of (54). Observe that we have used that ν≤ Γ0 and the identity
n∑

j=0

j 2

2 j
= 2−n (−n2 −4n +6

(
2n −1

))
, n ≥ 0

that can be proved by induction. We now choose p̃ = p̃n in (56) and we keep denoting by ṽ the
corresponding solution. Define w = ṽ − ỹ and observe that w solves (29) with v = ṽ , T = Tn and
control p = p̃n . Thanks to (57), we can apply Proposition 6 with T = Tn and we deduce that∥∥w

(
Tn ;0, p̃n

)∥∥
1/2 =

∥∥ṽ
(
Tn ; vn−1,0, p̃n

)∥∥
1/2 ≤ K (Tn)∥vn−1∥2

1/2 .
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We define pn(t ) := p̃n(t−τn−1). By shifting back the problem into the interval [τn−1,τn] we obtain∥∥pn
∥∥

L2(τn−1,τn ) ≤ N (Tn)∥vn−1∥ and y
(
τn ; vn−1,τn−1, pn

)= 0

and ∥∥v
(
τn ; vn−1,τn−1, pn

)∥∥
1/2 ≤ K (Tn)∥vn−1∥2

1/2 . (58)

Thus, the first two items of (50) are proved. Using 3. of (54) and (53), we deduce that

∥∥v
(
τn ; vn−1,τn−1, pn

)∥∥
1/2 ≤ eΓ0n2/T1

[
e

(∑n−1
j=1 2n−1− j j 2−2n−16

)
Γ0/T1

]2

= e

(∑n
j=1 2n− j j 2−2n 6

)
Γ0/T1 .

Therefore, item 3. of (50) is verified. Finally, using again (58) and 4. of (54) we get

=
n∏

j=1
K

(
T j

)2n− j ∥v0∥2n

1/2 .

The induction argument is then concluded.
We can now complete the proof of our theorem for the case λ1 = 0. Notice that for all n ∈N∗

we have that∥∥v
(
τn ; vn−1,τn−1, pn

)∥∥
1/2 ≤

n∏
j=1

K
(
T j

)2n− j ∥v0∥2n

1/2 ≤
n∏

j=1

(
eΓ0 j 2/T1

)2n− j

∥v0∥2n

1/2

≤ e
Γ02n /T1

∑n
j=1 j 2/2 j ∥v0∥2n

1/2 ≤
(
e6Γ0/T1 ∥v0∥1/2

)2n

.

The above inequality is equivalent to∥∥v
(
τn ; v0,0, qn

)∥∥
1/2 ≤

(
e6Γ0/T1 ∥v0∥1/2

)2n

where qn is defined in (49).
Taking the limit as n →+∞ we deduce that∥∥u

(
T f ;u0, q∞

)−ϕ1
∥∥

1/2 =
∥∥v

(
T f ; v0,0, q∞

)∥∥
1/2 ≤ 0

where T f is defined in (44) and q∞(t ) = ∑∞
n=1 pn(t )χ[τn−1,τn ](t ). Indeed, by hypothesis u0 ∈

BRT ,1/2(ϕ1), with RT defined in (40), and so ∥v0∥1/2 < e−6Γ0/T1 . This means that we have construct
a control p ∈ L2

loc ([0,+∞)), defined as follows

p(t ) =
{∑∞

n=1 pn(t )χ[τn−1,τn ](t ) t ∈ (0,T f ]

0 t > T f ,

that steers the solution u of (36) to the ground state solution in time T f , less or equal to T .
Moreover, we can give an upper bound of the L2-norm of the control:∥∥p

∥∥2
L2(0,T ) =

∞∑
n=1

∥∥pn
∥∥2

L2(τn−1,τn ) ≤
∞∑

n=1

(
N (Tn)∥vn−1∥1/2

)2

≤
∞∑

n=1
e−2(2n+3)Γ0/T1 ≤ e−6Γ0/T1

e4Γ0/T1 −1
= e−π

2Γ0/T f

e2π2Γ0/3T f −1

where we have used 1. of (50) and (57). Recalling that T f ≤ T , we obtain (39).
In the figure below we have sketched a drawing representing the iterative process we have just

described in the proof
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v0

0 τ1

v(3T ; v0, p)y(t ; v0,0, p1)

v(t ; v0,0, p1)

τ2

0

τ3

0

v(τ1; v0,0, p1)

0

T f

0

v(T f ; v0,0, q∞)

v(τ2; v(τ1),τ1, p2)

y(t ; v(τ1),τ1, p2)

3.1.2. Case λ1 > 0

If λ1 > 0 the result is easily deducible from the previous case. Indeed, we introduce the
operator

A1 := A−λ1I .

Observe that

• A1 satisfies (5),
• A1 has the same eigenfunctions of A, {ϕ j } j ∈N∗ , and the first eigenvalue of A1 is equal to
µ1 =λ1 −λ1 = 0,

• {A1,B} is 1-null controllable with associated control cost N1(·) that satisfies (38).

Hence, once proved the exact controllability in time T of the following problem{
z ′(t )+ A1z(t )+p(t )B z(t ) = 0, t ∈ [0,T ]

z(0) = u0

to the associated ground state solution ψ̃1 = e−µ1tϕ1 = ϕ1, we introduce the function u(t ) :=
z(t )e−λ1t that is the solution of{

u′(t )+ Au(t )+p(t )Bu(t ) = 0, t ∈ [0,T ]

u(0) = u0
(59)

and satisfies ∥∥u (T )−ψ1 (T )
∥∥=

∥∥∥e−λ1T z (T )−e−λ1Tϕ1

∥∥∥= e−λ1T ∥∥z (T )−ϕ1
∥∥= 0.

Therefore, we have shown that (59) is exacly controllable to the ground state solution ψ1(t ) =
e−λ1tϕ1 in time T .

4. Semi-global results

In this section we present two semi-global results for the exact controllability to the ground state
solution of problem (36). In the first one, Theorem 9, we show that the solution of (36) with initial
condition u0 lying in a suitable strip (see condition (60)), reaches the ground state in finite time
TR .

Theorem 9. Let A : D(A) ⊂ X → X be a densely defined linear operator such that (5) holds, and
let B : D(B) ⊂ X → X be an unbounded linear operator that verifies (15). Let {A,B} be a 1-null
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controllable pair with control cost that satisfies (38). Then there exists a constant r1 > 0 such that
for any R > 0 there exists TR > 0 such that for all u0 ∈ D(A1/2) that satisfy∣∣〈u0,ϕ1

〉
1/2 −1

∣∣< r1,

∥∥u0 −
〈

u0,ϕ1
〉

1/2 ϕ1
∥∥

1/2 ≤ R,

(60)

problem (36) is exactly controllable to the ground state solution ψ1(t ) = e−λ1tϕ1 in time TR .

Our second semi-global result, Theorem 10 below, ensures the exact controllability of all initial
states u0 ∈ D(A1/2) \ϕ⊥

1 to the evolution of their orthogonal projection along the ground state
defined by

φ1(t ) = 〈u0,ϕ1〉1/2 ψ1(t ), ∀ t ≥ 0, (61)

where ψ1 is the ground state solution.

Theorem 10. Let A : D(A) ⊂ X → X be a densely defined linear operator such that (5) holds, and
let B : D(B) ⊂ X → X be an unbounded linear operator that verifies (15). Let {A,B} be a 1-null
controllable pair with control cost that satisfies (38).

Then, for any R > 0 there exists TR > 0 such that for all u0 ∈ D(A1/2) satisfying∥∥u0 −
〈

u0,ϕ1
〉

1/2 ϕ1
∥∥

1/2 ≤ R
∣∣〈u0,ϕ1

〉
1/2

∣∣ (62)

system (36) is exactly controllable to φ1, defined in (61), in time TR .

To prove Theorems 9 and 10, one may follow the strategies described in [4, Section 5]. The
only difference with respect to [4, Section 5] is that, in the current setting, u0 ∈ D(A1/2) and this
yields to the following definition of the controllability time

TR := 1+ 1

λ2
log

(
R2

r 2
1

)
.

5. Applications

In this section we discuss applications of Theorem 7 to parabolic equations. In [4] we have
provided sufficient conditions for a pair of linear operators A and B , to be j -null controllable
with control cost that fulfills (38). Let us recall that a pair {A,B} is called j -null controllable in
time T > 0 if there exists a constant N (T ) > 0 such that, for any initial condition y0 ∈ X , it is
possible to find a control p ∈ L2(0,T ) satisfying∥∥p

∥∥
L2(0,T ) ≤ N (T )

∥∥y0
∥∥ ,

and for which y(T ) = 0, where y(·) is the solution of the following linear problem{
y ′(t )+ Ay(t )+p(t )Bϕ j = 0, t ∈ [0,T ]

y(0) = y0.

We state [4, Theorem 1.2] in the case of an accretive operator A and of controllability to the first
eigensolution.

Theorem 11. Let A : D(A) ⊂ X → X be such that

(a)A is self-adjoint,

(b)〈Ax, x〉 ≥ 0, ∀ x ∈ D(A),

(c) ∃ λ> 0 : (λI + A)−1 : X → X is compact

(63)
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and suppose that there exists a constant α > 0 for which the eigenvalues of A verify the gap
condition √

λk+1 −
√
λk ≥α, ∀ k ∈N∗. (64)

Let B : D(B) ⊂ X → X be a linear operator such that there exist b, q > 0 for which〈
Bϕ1,ϕ1

〉 ̸= 0 and λ
q
k

∣∣〈Bϕ1,ϕk
〉∣∣≥ b, ∀ k ≥ 2. (65)

Then, the pair {A,B} is 1-null controllable in any time T > 0 with control cost N (T ) that satis-
fies (38).

Remark 12. Notice that, for accretive operators, hypothesis√
λk+1 −λ1 −

√
λk −λ1 ≥α, ∀ k ∈N∗,

of [4, Theorem 1.2] can be replaced by (64), see [4, Remark 6.1].
Moreover, property〈

Bϕ1,ϕ1
〉 ̸= 0 and |λk −λ1|q

∣∣〈Bϕ1,ϕk
〉∣∣≥ b, ∀ k ≥ 2,

of [4, Theorem 1.2] can be replaced by (65). Indeed, if (65) holds, then by observing that

1− λ1

λk
≥ 1− λ1

λ2

we conclude that

|λk −λ1|q
∣∣〈Bϕ1,ϕk

〉∣∣≥ b̄, ∀ k ≥ 2

with

b̄ =
∣∣∣∣1− λ1

λ2

∣∣∣∣q

b.

5.1. Fokker–Planck equation

The Fokker–Planck equation describes the evolution of the probability density u(t , x) of a real-
valued random variable X t , which is associated with an Ito stochastic differential equation driven
by a standard Wiener process Wt{

d X t = ν(t , X t )d t +σ(t , X t )dWt

X (t = 0) = X0
(66)

with drift ν(t , x), diffusion coefficient D(t , x) = σ2(t , x)/2 and initial condition X0. We recall that
given any a ≤ b, denoting by u(t , x) the probability density associated to X t , the following identity
holds

P (a ≤ X t ≤ b) =
∫ b

a
u(t , x)d x.

Under suitable assumptions on the coefficients ν and σ, the equation satisfied by u(t , x), named
after A. D. Fokker and M. Planck, is the following one{

∂
∂t u(t , x) = ∂2

∂x2 (D(t , x)u(t , x))− ∂
∂x (ν(t , x)u(t , x)) , (t , x) ∈ [0,T ]×R

u(0, x) = u0(x)

where u0 is the density associated to X0.
Physically, the probability density u(t , x) can be interpreted as a quantity proportional to

the number of particles in a flow of an abstract substance. For instance, it can reflect the
concentration of this substance at the point x at time t .



Fatiha Alabau-Boussouira, Piermarco Cannarsa and Cristina Urbani 529

Let us first recall that (66) admits a strong solution (see [6, Definition 9.1]) which is pathwise
unique (see [6, Definition 9.4]) under the following assumptions

1. (t , x) 7→ ν(t , x) and (t , x) 7→σ(t , x) are measurable functions on [0,T ]×R
2. ∃ M > 0 : |ν(t , x)| É M(1+|x|) and |σ(t , x)| É M(1+|x|) , ∀ (t , x) ∈ [0,T ]×R
3. ∃ L > 0 : |ν(t , x)−ν(t , y)| É L|x − y |

and |σ(t , x)−σ(t , y)| É L|x − y |, ∀ t ∈ [0,T ], ∀ x, y ∈R

(H1)

(see [6, Theorem 9.2]).
We are interested in studying the possibility to find a drift ν such that the probability density u

reaches the associated ground state solution in finite time. Moreover, as suggested by the results
of the previous sections, we would like to take a drift of the form

ν(t , x) = p(t )µ(x), (t , x) ∈ [0,T ]×R.

However, the sublinear growth assumption 2. of (H1) on ν requires an essential bound on the
scalar control p. Since our controls p are only locally square integrable, we need to weaken (H1).
Thus, in Appendix A, we adapt the proof of the existence and uniqueness of a strong solution
of (66) under the following weaker assumptions:

1. (t , x) 7→σ(t , x) is a measurable function on [0,T ]×R
2. p ∈ L2(0,T )

3. ∃ M > 0 : |σ(t , x)| É M(1+|x|) , ∀ (t , x) ∈ [0,T ]×R
4. ∃ L > 0 : |µ(x)−µ(y)| É L|x − y | , |σ(t , x)−σ(t , y)|

É L|x − y | , ∀ t ∈ [0,T ] , ∀ x, y ∈R

(H2)

From now on we will consider a constant diffusion σ(t , x) ≡ p
2 and a drift of the form

ν(t , x) = p(t )µ(x), where p ∈ L2(0,T ) and µ : [0,1] → R is at least Lipschitz continuous. Then,
by extending µ(·) outside the interval [0,1] as follows

µ̃(x) =


µ(0) x ≤ 0

µ(x) 0 < x < 1

µ(1) x ≥ 1

(67)

it is clear that µ̃ satisfies assumption (H2).
The Fokker–Planck equation can be studied also on bounded domains under suitable bound-

ary conditions such as perfectly reflecting, partially reflective, and non reflecting boundary con-
ditions. We now describe such conditions for the equation{

∂
∂t u(t , x) = ∂2

∂x2 u(t , x)−p(t ) ∂
∂x

(
µ(x)u(t , x)

)
, (t , x) ∈ [0,T ]× [0,1]

u(0, x) = u0(x)

with their physical aspects and the mathematical difficulties they generate.
• The perfectly reflecting boundary conditions are given by:

∂

∂x
u(t ,1)−p(t )µ(1)u(t ,1) = ∂

∂x
u(t ,0)−p(t )µ(0)u(t ,0) = 0. (68)

Let us note that, for such boundary conditions, the total mass is conserved in the interval [0,1].
Thus, if the initial data u0 has a total mass 1, then through time, the probability density u satisfies∫ 1

0
u(t , x)d x = 1 ∀ t ∈ (0,T ), (69)
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that is, the probability to find particles in the interval [0,1] is equal to 1. Indeed, by using the
equation solved by u we get∫ 1

0

∂

∂t
u(t , x)d x =

∫ 1

0

(
∂2

∂x2 u(t , x)−p(t )
∂

∂x

(
µ(x)u(t , x)

))
d x = 0,

hence
∂

∂t

∫ 1

0
u(t , x)d x = 0 ∀ t ∈ (0,T )

which implies condition (69). However, these perfect boundary conditions have a great impact
on the functional framework in which one can set up the abstract formulation of the Fokker–
Planck equation: the domain of the abstract operator A will have to include the dependence on
time and control p, that is, one should have to handle D(A(t , p)) = {u(t , ·) ∈ H 2(0,1),ux (t ,1) =
p(t )µ(1)u(t ,1) ,ux (t ,0) = p(t )µ(0)u(t ,0)} for all t ∈ [0,T ]. As far as we know such mathematical
difficulties have not yet been studied in bilinear control, the strongest difficulty being that the
domain depends itself on the scalar control p.

• The partially reflecting boundary conditions (i.e. reflecting only the diffusive part of the
process, the Brownian motion), are given by

∂

∂x
u(t ,1) = ∂

∂x
u(t ,0) = 0

which leads to the following problem

∂
∂t u(t , x)− ∂2

∂x2 u(t , x)+p(t ) ∂
∂x

(
µ(x)u(t , x)

)= 0 (t , x) ∈ [0,T ]× [0,1]

∂
∂x u(t ,1) = ∂

∂x u(t ,0) = 0 t ∈ [0,T ]

u(0, x) = u0(x) x ∈ [0,1]

(70)

However, when considering such boundary conditions, the total mass is, in general, no more
conserved through time. Indeed, considering again the equation solved by u, this time we find
that∫ 1

0

∂

∂t
u(t , x)d x =

∫ 1

0

(
∂2

∂x2 u(t , x)−p(t )
∂

∂x

(
µ(x)u(t , x)

))
d x =−p(t )

[
µ(1)u(t ,1)−µ(0)u(t ,0)

]
.

• The absorbing (Dirichlet) boundary conditions

u(t ,1) = u(t ,0) = 0

leads to the following problem

∂
∂t u(t , x)− ∂2

∂x2 u(t , x)+p(t ) ∂
∂x

(
µ(x)u(t , x)

)= 0 (t , x) ∈ [0,T ]× [0,1]

u(t ,1) = u(t ,0) = 0 t ∈ [0,T ]

u(0, x) = u0(x) x ∈ [0,1].

(71)

The total density is again in general, not preserved∫ 1

0

∂

∂t
u(t , x)d x =

∫ 1

0

(
∂2

∂x2 u(t , x)−p(t )
∂

∂x

(
µ(x)u(t , x)

))
d x = ∂

∂x
u(t ,1)− ∂

∂x
u(t ,0).

In view of the mathematical difficulties generated by the perfectly reflecting boundary condi-
tions, we shall consider in the present paper, only the partially reflecting boundary conditions,
and the absorbing ones.
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Let us start by studying local controllability to the ground state for problem (70), where our
bilinear control will be the time dependent part of the drift p(·). We set I = (0,1). We recast the
problem in the general setting of (36) by introducing the operators A and B defined by

D(A) =
{
ϕ ∈ H 2(I ) :

∂

∂x
ϕ(0) = ∂

∂x
ϕ(1) = 0

}
, Aϕ=−d 2ϕ

d x2

D(B) =
{
ϕ ∈ L2(I ) :

d

d x
(µϕ) ∈ L2(I )

}
, Bϕ= d

d x

(
µϕ

)
where µ is a real-valued function in H 3(I ) to be chosen later on in order to fulfill the rank
condition (65).

A satisfies all the properties in (5) and its eigenvalues and eigenfunctions have the following
explicit expressions

λ0 = 0, ϕ0 = 1

λk = (kπ)2, ϕk (x) =p
2cos(kπx),∀ k ≥ 1.

It is straightforward to prove that the eigenvalues fulfill the required gap property. Indeed,√
λk+1 −

√
λk = (k +1)π−kπ=π, ∀ k ∈N ,

so that (64) is satisfied.
Observe that, in this context, we have an explicit description of the spaces D(As/2), see [22,

Section 4.3.3] for a general result. For example, for s = 1

D
(

A1/2)= H 1(I ).

In order to apply Theorem 7, we have to check that D(A1/2) ,→ D(B). This is easily proved as
follows:

∥ϕ∥D(B) = ∥(µϕ)x∥L2(I ) ≤Cµ

(∥ϕx∥L2(I ) +∥ϕ∥L2(I )

)≤C∥ϕ∥1/2

for all ϕ in D(A1/2).
To prove local controllability of (70) to the ground state solution ψ0(t , x) ≡ 1, we want to use

Theorem 11 for j = 0 (note also that, due to the Neumann boundary conditions, one has to
consider j = 0 instead of j = 1 and for k varying in N instead of N∗) in order to apply Theorem 7.
Thus, we have to check that (65) is satisfied for all k ∈N, that is, we have to choose some suitable
function µ. By definition of B , we have Bϕ0 = µ′, hence one can observe that the choice µ(x) = x
for all x ∈ I leads to 〈Bϕ0,ϕk〉 = 0, which is not suitable for our purposes.

Let us first examine more precisely 〈Bϕ0,ϕk〉 for all k ∈N∗:〈
Bϕ0,ϕk

〉=p
2
∫ 1

0
µ′(x)cos(kπx)d x =p

2 µ′(x)
sin(kπx)

kπ

∣∣∣∣1

0
−p

2
∫ 1

0
µ′′(x)

sin(kπx)

kπ
d x

= p
2µ′′(x)

cos(kπx)

(kπ)2

∣∣∣∣1

0
−p

2
∫ 1

0
µ′′′(x)

cos(kπx)

(kπ)2 d x

=
p

2

(kπ)2

[
µ′′(1)(−1)k −µ′′(0)

]
−p

2
∫ 1

0
µ′′′(x)

cos(kπx)

(kπ)2 d x.

By the Riemann–Lebesgue Lemma, the last integral term on the right-hand side of the above
identity converges to 0 as k goes to +∞. Thus, if we choose µ such that µ′′(1) ̸= ±µ′′(0) and
〈Bϕ0,ϕk〉 ̸= 0 for all k ≥ 1, then

∃ b > 0 : λk
∣∣〈Bϕ0,ϕk

〉∣∣≥ b , for all k ≥ 1.

Furthermore, if µ(1) ̸=µ(0), we deduce that〈
Bϕ0,ϕ0

〉= ∫ 1

0
µ′(x)d x ̸= 0.
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Remark 13. Observe that ifµ′′(1) ̸= ±µ′′(0), by the Riemann–Lebesgue Lemma, there exists k1 ≥ 0
such that

∃ b > 0 : λk
∣∣〈Bϕ0,ϕk

〉∣∣≥ b , for all k > k1.

Thus, if µ(1) ̸= µ(0), it would be enough to check that 〈Bϕ0,ϕk〉 ̸= 0 for a finite number of indices
k = 1, . . . , k1. However, k1 depends on µ and therefore, in general, is not explicit. Nevertheless,
it is possible to build constructive strategies, as in [5], to determine classes of functions µ that
satisfy such infinite set of non vanishing conditions.

To sum up, every function µ such that

µ(1) ̸=µ(0)

µ′′(1) ̸= ±µ′′(0)

〈
Bϕ0,ϕk

〉 ̸= 0, k ∈N∗

is suitable for our controllability purposes. For instance, any powerµ(x) = xn , x ∈ [0,1], with n > 2
satisfies the above conditions at the boundary. Moreover, once extending µ as in (67), it clearly
satisfies (H2)1. So, one has just to check that 〈Bϕ0,ϕk〉 ̸= 0 for k = 1, . . . , k1. For example, for n = 3
one easily proves that

〈
Bϕ0,ϕk

〉=


6
p

2 (−1)k

(kπ)2 k ≥ 1

1 k = 0.

Another suitable choice is µ(x) = sin(αx) for all x ∈ I , where α is as any positive real number
chosen in [0,∞)\πN. In this case one can check that µ′′(1) = −α2 sin(α) ̸= 0 = µ′′(0), µ(1) =
sin(α) ̸= 0 =µ(0), and 〈

Bϕ0,ϕk
〉= p

2

α2 − (kπ)2 (−1)kα2 sin(α).

Thus, any choice for µ of the above forms meets all the required properties, and also the
assumptions in (H2) for the well-posedness of the stochastic differential equation.

Hence, thanks to Theorems 11 and 7, it is possible to build a control p ∈ L2(0,T ) such that the
solution of the Fokker–Planck equation (70), with initial condition in a neighbourhood of ϕ0 = 1,
partially reflecting boundary conditions and drift ν(t , x) = p(t )µ(x), is controllable to ψ0 = 1 in
time T . This means that the probability to find the particle in the interval [0,1] at time T is equal
to 1 (then the event happens almost surely) even if we are in presence of non-perfectly reflecting
walls. This is due to the appropriate choice of the drift.

We move now to the Fokker–Planck equation with absorbing (Dirichlet) boundary conditions.
In this case the eigenvalues and eigenfunctions of the Laplacian are the following

λk = (kπ)2, ϕk (x) =p
2sin(kπx), ∀ k ∈N∗.

Since we have that ∫ 1

0
ϕ1(x)d x =p

2
∫ 1

0
sin(πx)d x = 2

p
2

π

controlling the solution to the ground state means that we are forcing some mass to remain in the

interval [0,1] after time T (in the sense that with probability equal to 2
p

2
π

∼= 0.9 we find a particle
in the interval [0,1]), even though we are in presence of absorbing boundary conditions.

1We observe that by multiplying µ by a cut-off function, it is possible to construct a smooth extension of µ which
satisfies (H2).
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In order to apply Theorem 11 for j = 1, and deduce the controllability of (71) to the ground
state by applying Theorem 7, we have to verify the rank condition (65) of the unbounded operator
B . Let us compute the following scalar product〈(

µϕ1
)′ ,ϕk

〉
=p

2
∫ 1

0
(µϕ1)′(x)sin(kπx)d x

=p
2

(
−(µϕ1)′(x)

cos(kπx)

kπ

∣∣∣∣1
0 +

∫ 1

0

(
µϕ1

)′′ (x)
cos(kπx)

kπ
d x

)
= 2

k

(
µ(1)(−1)k +µ(0)

)
+
p

2

kπ

∫ 1

0

(
µϕ1

)′′ (x)cos(kπx)d x.

Thus, if µ(1) ̸= ±µ(0) and 〈(µϕ1)′,ϕk〉 ̸= 0, ∀ k ∈N∗, there exists a constant b such that

λ1/2
k

∣∣〈Bϕ1,ϕk
〉∣∣≥ b, ∀ k ∈N∗.

Hence, any potential µ(x) = xn , with n ≥ 1, extended to the real line as in the previous example,
is admissible for having exact controllability of (71) to the ground state.

Remark 14. If we consider µ(x) = x, we can directly check that the Fourier coefficients of Bϕ1 do
not vanish for every k ∈N∗

〈
(µϕ1)′,ϕk

〉=


(−1)k 2k
k2−1

, k ≥ 2

1
2 k = 1

and the lower bound (65) is satisfied with q = 1
2 and b = 2π.

5.2. Diffusion equation with Neumann boundary conditions

Now, we consider a diffusion equation with a controlled potential subject to Neumann boundary
conditions. Let I = (0,1) and consider the following problem

ut (t , x)−∂2
x u(t , x)+p(t )µ(x) (ux (t , x)+u(t , x)) = 0 (t , x) ∈ [0,T ]× I

ux (t ,0) = 0, ux (t ,1) = 0 t ∈ [0,T ]

u(0, x) = u0(x). x ∈ I

(72)

Let X = L2(I ), we rewrite (72) in abstract form by defining the operators A and B as

D(A) = {
ϕ ∈ H 2(I ) :ϕ′(0) = 0,ϕ′(1) = 0

}
, Aϕ=−d 2ϕ

d x2

D(B) = D
(

A1/2)= H 1(I ), Bϕ=µ
(

d

d x
ϕ+ϕ

)
where µ is a real-valued function in H 2(I ).

Operator A satisfies the assumptions in (5) and it is possible to compute explicitly its eigenval-
ues and eigenfunctions:

λ0 = 0,ϕ0 = 1

λk = (kπ)2,ϕk (x) =p
2cos(kπx), ∀ k ≥ 1.

Since the eigenvalues are the same of those in Example 5.1 for k ≥ 1, the gap condition is
satisfied for all k ≥ 0.

Furthermore, we have that∥∥Bϕ
∥∥= ∥∥µ(

ϕx +ϕ
)∥∥≤Cµ

(∥∥A1/2ϕ
∥∥+∥∥ϕ∥∥)≤C

∥∥ϕ∥∥
1/2 ,

thus, also hypothesis (16) is verified.
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Let us compute the scalar product 〈Bϕ0,ϕk〉 to find a lower bound of the Fourier coefficients
of Bϕ0: 〈

µ
(
ϕ′

0 +ϕ0
)

,ϕk
〉=p

2
∫ 1

0
µ(x)cos(kπx)d x

=p
2

(
µ(x)

sin(kπx)

kπ

∣∣∣∣1
0 −

∫ 1

0
µ′(x)

sin(kπx)

kπ
d x

)
=p

2

(
µ′(x)

cos(kπx)

(kπ)2

∣∣∣∣1
0 −

∫ 1

0
µ′′(x)

cos(kπx)

(kπ)2 d x

)
=

p
2

(kπ)2

(
µ′(1)(−1)k −µ′(0)

)
−

p
2

(kπ)2

∫ 1

0
µ′′(x)cos(kπx)d x.

Thus, reasoning as Example 5.1, if 〈Bϕ0,ϕk〉 ̸= 0 ∀ k ∈N and µ′(1)±µ′(0) ̸= 0, then we have that

∃ C > 0 such that |〈Bϕ0,ϕk〉| ≥C k−2 =Cλ−1
k , ∀ k ∈N∗ (73)

and therefore hypothesis (65) is fulfilled.

Remark 15. An example of a suitable function µ for problem (72) that satisfies the above
hypothesis, is µ(x) = x2, for which〈

Bϕ0,ϕk
〉= 2

p
2(−1)k

(kπ)2 , ∀ k ≥ 1, and 〈Bϕ0,ϕ0〉 = 1/3.

Applying Theorem 7, it follows that system (72) is exactly controllable to ψ0.

5.3. Degenerate parabolic equation with Dirichlet boundary conditions

Let T > 0, I = (0,1), X = L2(I ) and consider the following degenerate bilinear control system
ut − (xαux )x +p(t )µ(x)ux = 0, (t , x) ∈ [0,T ]× I

u(t ,1) = 0,

{
u(t ,0) = 0, if α ∈ [0,1),

(xαux ) (t ,0) = 0, if α ∈ [1,2),

u(0, x) = u0(x), x ∈ I

(74)

with µ(x) = x and α ∈ [0,2) the degeneracy parameter. We recall that when α ∈ [0,1) problem (74)
is called weakly degenerate, while for α ∈ [1,2) strongly degenerate.

Let α ∈ [0,1) and we define the weighted Sobolev spaces

H 1
α(I ) = {

u ∈ X : u is absolutely continuous on [0,1], xα/2ux ∈ X
}

H 1
α,0(I ) = {

u ∈ H 1
α(I ) : u(0) = 0, u(1) = 0

}
H 2
α(I ) = {

u ∈ H 1
α(I ) : xαux ∈ H 1(I )

}
,

(75)

and the linear operator A : D(A) ⊂ X → X by∀ u ∈ D(A), Au :=− (xαux )x ,

D(A) :=
{

u ∈ H 1
α,0(I ), xαux ∈ H 1(I )

}
.

For α ∈ [1,2), we define the spaces

H 1
α(I )= {

u ∈ X : u is absolutely continuous on (0,1], xα/2ux ∈ X
}

H 1
α,0(I ):= {

u ∈ H 1
α(I ) : u(1) = 0

}
,

H 2
α(I )= {

u ∈ H 1
α(I ) : xαux ∈ H 1(I )

} (76)
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and the linear degenerate operator A : D(A) ⊂ X → X by

∀ u ∈ D(A), Au :=−(xαux )x ,

D(A) :=
{

u ∈ H 1
α,0(I ) : xαux ∈ H 1(I )

}
= {

u ∈ X : u is absolutely continuous in (0,1] , xαu ∈ H 1
0 (I ),

xαux ∈ H 1(I ) and (xαux )(0) = 0
}

.

In both cases of weak and strong degeneracy it can be proved that D(A) is dense in X and
A : D(A) ⊂ X → X is a self-adjoint accretive operator (see [12] and [14], respectively). Therefore,
−A is the infinitesimal generator of an analytic semigroup of contractions on X . Furthermore, it
has been showed (see, for instance, [1, Appendix]) that A has a compact resolvent.

Let α ∈ [0,2) and define

να := |1−α|
2−α , kα := 2−α

2
.

Given ν≥ 0, we denote by Jν the Bessel function of the first kind and order ν and by jν,1 < jν,2 <
·· · < jν,k < . . . the sequence of all positive zeros of Jν. It is possible to prove (see [18]) that the
eigenvalues and eigenfunctions of A are given by

λα,k = k2
α j 2

να,k , (77)

ϕα,k (x) =
√

2kα∣∣J ′να
(

jνα,k
)∣∣ x(1−α)/2 Jνα

(
jνα,k xkα

)
(78)

for every k ∈N∗. Moreover, the family (ϕα,k )k ∈N∗ is an orthonormal basis of X , see [18]. Hereafter,
we shall denote the eigenfunctions (ϕα,k )k ∈N∗ by (ϕk )k ∈N∗ , and the eigenvalues (λα,k )k ∈N∗ by
(λk )k ∈N∗ .

It has been proved (see, for instance, [19, p. 135, Proposition 7.8] and [15, Corollary 1]) that the
gap condition between the zeros of the Bessel functions is satisfied for allα ∈ [0,2), which implies
the required gap between the eigenvalues of the degenerate operator. More precisely, it is proved
that:

• if α ∈ [0,1), να = 1−α
2−α ∈ (0, 1

2 ], the sequence
(

jνα,k+1 − jνα,k
)

k∈N∗ is nondecreasing and
converges to π. Therefore,√

λk+1 −
√
λk = kα

(
jνα,k+1 − jνα,k

)≥ kα
(

jνα,2 − jνα,1
)≥ 7

16
π> 0,

• if να ≥ 1
2 , the sequence

(
jνα,k+1 − jνα,k

)
k ∈N∗ is nonincreasing and converges to π. Thus,

√
λk+1 −

√
λk = kα

(
jνα,k+1 − jνα,k

)≥ kαπ≥ (2−α)π

2
> 0.

Therefore, the hypothesis (64) is fulfilled in both weak and strong degenerate problems with
different constants. We now define the unbounded linear operator B by

B : D(B) = H 1(I ) ⊂ X → X

ϕ 7→µϕ′

where we recall that µ(x) = x. We observe that D(A1/2) = H 1
α,0(I ), thus D(A1/2) ⊂ D(B) and

∥ϕ∥D(B) = ∥µϕ′∥ ≤C
∥∥xα/2ϕ′∥∥≤C∥ϕ∥1/2, ∀ ϕ ∈ D

(
A1/2) .
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Hence (16) holds true. Finally, we need to prove the validity of (65). To this purpose, we study the
Fourier coefficients of Bϕ1:〈

Bϕ1,ϕk
〉= ∫ 1

0
xϕ′

1(x)ϕk (x)d x =− 1

λk

∫ 1

0
xϕ′

1(x)
(
xαϕ′

k (x)
)′ d x

=− 1

λk

[
xϕ′

1(x)xαϕ′
k (x)

∣∣∣∣1
0 −

∫ 1

0

(
xϕ′

1

)′ (x)xαϕ′
k (x)d x

]
=− 1

λk

[
ϕ′

1(1)ϕ′
k (1)−

∫ 1

0
(xϕ′

1)′(x)xαϕ′
k (x)d x

]
where we adapted [2, Proposition 2.5, Property (2.14)] to the current setting to prove that

lim
x←0+

(
xϕ′

1(x)xαϕ′
k (x)

)= 0,

so that, we have〈
Bϕ1,ϕk

〉=− 1

λk

[
ϕ′

1(1)ϕ′
k (1)− (

xϕ′
1

)′ (x)xαϕk (x)

∣∣∣∣1
0 +

∫ 1

0

((
xϕ′

1

)′ xα
)′

(x)ϕk (x)d x

]
.

We claim that for all α ∈ [0,2), the following property holds:(
xϕ′

1(x)
)′ xαϕk (x)

∣∣∣
x=0

is defined and is equal to 0.

Let us consider x ∈ (0,1). We have(
xϕ′

1

)′ (x) = x1−α (
xαϕ′

1

)′ (x)+ (1−α)ϕ′
1(x) =−λ1x1−αϕ1 + (1−α)ϕ′

1(x). (79)

Thus, we obtain

xα
(
xϕ′

1

)′ (x)ϕk (x) =−λ1xϕ1(x)ϕk (x)+ (1−α)
(
xαϕ′

1(x)
)
ϕk (x).

Observe that ∣∣xϕ1(x)ϕk (x)
∣∣É 1

2

(
xϕ2

1(x)+xϕ2
k (x)

)
, ∀ x ∈ (0,1].

Since ϕ1 and ϕk are in H 1
α(I ), we can use [2, Proposition 2.5, Property (2.12)] in the particular

case a(x) = xα for x ∈ [0,1], and successively with u =ϕ1, and u =ϕk . Hence, we have

lim
x←0+

(
xϕ2

1(x)+xϕ2
k (x)

)= 0,

so that
lim

x←0+
(
xϕ1(x)ϕk (x)

)= 0.

Since ϕ1 ∈ D(A) and ϕk is in H 1
α(I ), we can use [2, Proposition 2.5, Property (2.15)], in the

particular case a(x) = xα for x ∈ [0,1], φ = ϕk , and u = ϕ1, noticing in addition that we have
φ(0) = 0 if α ∈ [0,1). Hence, we deduce

lim
x←0+

(
xαϕ′

1(x)ϕk (x)
)= 0.

Therefore, we have proved that for all α ∈ [0,2)(
xϕ′

1(x)
)′ xαϕk (x)

∣∣∣
x=0

is defined and is equal to 0.

We easily prove that since ϕ1(1) =ϕk (1) = 0, we have(
xϕ′

1(x)
)′ xαϕk (x)

∣∣∣
x=1

= 0.

Thus, we obtain that (
xϕ′

1

)′ (x)xαϕk (x)
∣∣∣1

0
= 0,

so that using this property in our previous computations for 〈Bϕ1,ϕk〉, we get〈
Bϕ1,ϕk

〉=− 1

λk

[
ϕ′

1(1)ϕ′
k (1)+

∫ 1

0

((
xϕ′

1

)′ xα
)′

(x)ϕk (x)d x

]
.
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Now we use the identity (79) which yields(
xα

(
xϕ′

1

)′ )′(x)ϕk (x) =
(
−λ1xϕ1(x)+ (1−α)xαϕ′

1(x)
)′

(x)ϕk (x)

=
[
− (2−α)λ1ϕ1(x)ϕk (x)−λ1xϕ′

1(x)ϕk (x)
]

.

Using this identity in our previous computations and the property that the family (ϕk )k ∈N∗ is an
orthonormal basis of X , we obtain 〈

Bϕ1,ϕk
〉=−ϕ

′
1(1)ϕ′

k (1)

λk −λ1
.

We have proved in [16, p. 12, formula (2.43)] that

ϕ′
1(1)ϕ′

k (1) = 2k3
α jνα,1 jνα,k∣∣J ′να

(
jνα,1

)∣∣ ∣∣J ′να
(

jνα,k
)∣∣ J ′να

(
jνα,1

)
J ′να

(
jνα,k

)
.

The above identity, together with (77), imply that there exists a constant C > 0 such that∣∣〈Bϕ1,ϕk
〉∣∣≥Cλ−1/2

k , ∀ k > 1.

For k = 1, 〈Bϕ1,ϕ1〉 is given by〈
Bϕ1,ϕ1

〉= ∫ 1

0
xϕ′

1(x)ϕ1(x)d x = 1

2

∫ 1

0
x

d

d x

(
ϕ2

1(x)
)

d x = 1

2

[
xϕ2

1(x)

∣∣∣∣1
0 −

∫ 1

0
ϕ2

1(x)d x

]
=−1

2
,

where we used once again [2, Proposition 2.5, Property (2.12)] with u =ϕ1. Thus, we have 〈Bϕ1,
ϕ1〉 ̸= 0.

Therefore, we proved that all the hypotheses of Theorem 7 are satisfied. Applying such result,
we deduce that for any T > 0 and initial condition u0 ∈ D(A1/2) sufficiently close to the ground
stateϕ1, there exists a control p ∈ L2(0,T ) that steers the solution of (74) toψ1(T, x) = e−λ1Tϕ1(x)
in time T , by the iterative constructive process we set up in our abstract results.

5.4. Degenerate parabolic equation with Neumann boundary conditions

In this section we study the controllability of the following degenerate problem
ut − (xαux )x +p(t )µ(x)(ux +u) = 0, (t , x) ∈ [0,T ]× I
(xαux )(t ,0) = 0, ux (t ,1) = 0, t ∈ [0,T ]
u(0, x) = u0(x), x ∈ I ,

(80)

where T > 0, I = (0,1) and µ(x) = x2−α. The control p ∈ L2(0,T ) is a real valued function and µ

represents an admissible potential.
Recalling the definitions of the weighted Sobolev spaces H 1

α(I ) and H 2
α(I ) in (75) and (76) for

weak and strong degeneracy respectively, we define the second order linear operator{
∀ u ∈ D(A), Au :=− (xαux )x ,

D(A) := {
u ∈ H 2

α(I ), (xαux ) (0) = 0,ux (1) = 0
}

.

In [13, Proposition 2.1, Proposition 2.2] it is proved that for any α ∈ [0,2) the operator A is self-
adjoint accretive and has a dense domain. Therefore, −A is the infinitesimal generator of an
analytic semigroup of contraction. Moreover, in [13, Proposition 3.1] the authors showed that the
eigenvalues and eigenfunctions of the operator A, for any α ∈ [0,2), are given by

λα,0 = 0, ϕα,0(x) = 1 (81)

and for all m ≥ 1
λα,m = κ2

α j 2
να+1,m , (82)

ϕα,m(x) = Kα,m x
1−α

2 Jνα

(
jνα+1,m x

2−α
2

)
, (83)
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where

κα := 2−α
2

, να := α−1

2−α ,

Jνα is the Bessel′s function of order να, ( jνα+1,m)m≥1 are the positive zeros of the Bessel′s function
Jνα+1 and Kα,m are positive constants.

Observe that, in the same paper [13, Propositions 3.1] it is proved that the eigenvalues
{λα,m}m∈N satisfy the following gap condition

∀ α ∈ [0,2),
√
λα,m+1 −

√
λα,m ≥ 2−α

2
π.

We introduce the operator B : D(B) =: H 1(I ) ⊂ X → X defined by

Bϕ=µ(
ϕ′+ϕ)

, ∀ϕ ∈ D(B),

where µ(x) = x2−α. In order to have that D(A1/2) ,→ D(B) (that is, hypothesis (16)), we need to
restrict the analysis to the case α ∈ [0,4/3]. Indeed,∥∥Bϕ

∥∥= ∥∥µ(ϕ′+ϕ)
∥∥≤C

(∥∥xα/2ϕ′∥∥+∥∥ϕ∥∥)=C
(∥∥A1/2ϕ

∥∥+∥∥ϕ∥∥)≤C
∥∥ϕ∥∥

1/2 , ∀ϕ ∈ D
(

A1/2)
is satisfied if and only if α ∈ [0,4/3].

Furthermore, it is possible to prove that also hypothesis (65) holds true. We compute the scalar
product 〈Bϕα,0,ϕα,m〉, for all m ∈N:〈

Bϕα,0,ϕα,0
〉= ∫ 1

0
x2−αd x = 1

3−α ,

and, for all m ≥ 1 we have that〈
Bϕα,0,ϕα,m

〉= ∫ 1

0
µ(x)

(
ϕ′
α,0 +ϕα,0

)
ϕα,md x =

∫ 1

0
µ(x)ϕα,m(x)d x

= 1

λα,m

∫ 1

0
µ(x)

(−xαϕ′
α,m

)′ (x)d x

= 1

λα,m

([−xαµ(x)ϕ′
α,m(x)

]1
0 +

∫ 1

0
xαµ′(x)ϕ′

α,m(x)d x

)
.

Recalling that µ(x) = x2−α, we obtain∫ 1

0
xαµ′(x)ϕ′

α,m(x)d x = (2−α)
∫ 1

0
xϕ′

α,m(x)d x

= (2−α)
[
xϕα,m(x)

]1
0 − (2−α)

∫ 1

0
ϕα,m(x)d x

= (2−α)
[
xϕα,m(x)

]1
0 − (2−α)

〈
ϕα,0,ϕα,m

〉
.

Since the eigenfunctions are orthogonal, we have that〈
ϕα,0,ϕα,m

〉= 0,

hence 〈
Bϕα,0,ϕα,m

〉= 1

λα,m

([−x2ϕ′
α,m(x)

]1
0 + (2−α)

[
xϕα,m(x)

]1
0

)
.

From the Neumann boundary conditions satisfied byϕα,m , we know that xαϕ′
α,m(x) → 0 as x → 0

and x → 1, thus [−x2ϕ′
α,m(x)

]1
0 = 0.

Furthermore, in [13, Lemma 5.1 and Lemma 5.2] it is shown that ϕα,m has a finite limit as x → 0,
therefore

xϕα,m(x) → 0, as x → 0,

and moreover that |ϕα,m(1)| =p
2−α, which implies∣∣∣(2−α)

[
xϕα,m(x)

]1
0

∣∣∣= (2−α)3/2.
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Therefore, ∣∣〈Bϕα,0,ϕα,m
〉∣∣= (2−α)3/2

λα,m
,

that is condition (65) with q = 1.
By applying Theorem 7, we conclude that problem (80), for α ∈ [0,4/3], is exactly controllable

to the ground state solution ψ0 ≡ 1 in any time T > 0.
Let us now show an application of Theorem 10 to Example 5.4. We recall that λ0 = 0 is the first

eigenvalue of A, and is associated to the eigenfunction ϕ0 ≡ 1. We set

φ0(t ) = 〈u0,ϕ0〉1/2 ψ0(t ) =
∫ 1

0
u0(x)d x, ∀ t ≥ 0. (84)

Theorem 10 applied to Example 5.4 gives:
for any R > 0 there exists TR > 0 such that for all u0 ∈ D(A1/2) satisfying∫ 1

0
u0(x)d x ̸= 0, (85)

and 
∫ 1

0 u2
0(x)d x −

(∫ 1
0 u0(x)d x

)2 +∫ 1
0 xα

∣∣u′
0

∣∣2 (x)d x∣∣∣∫ 1
0 u0(x)d x

∣∣∣


1/2

≤ R (86)

system (80) is exactly controllable to φ0, defined in (84), in time TR .

Appendix A. {
d X t = ν(t , X t )d t +σ(t , X t )dBt

X (t = 0) = X0
(1)

under assumptions (H2) which are weaker than assumptions (H1) in [6, Theorem 9.2]. We
develop the computations for a drift ν of the form

ν(t , x) = p(t )µ(x), t ∈ [0,T ], x ∈R,

with p ∈ L2(0,T ), which is the case of interest to this paper. A general drift ν satisfying (H2) can
be treated in a similar way.

Let (Ω,F ,P) be a probability space. We recall that the process (X t )t ∈ [0,T ] is a solution of (1) if

(1) (Ω,F , (Ft )t ∈ [0,T ], (Bt )t ∈ [0,T ],P) is a standard Brownian motion
(2) (X t )t ∈ [0,T ] is adapted to the filtration (Ft )t ∈ [0,T ]

(3) for every t ∈ [0,T ]:

X t = X0 +
∫ t

0
p(s)µ(Xs )d s +

∫ t

0
σ(s, Xs )dBs .

We now prove the following preliminary result which adapts [6, Theorem 9.1] to the current
setting.

Theorem 16. Let X be a solution of

X t = X0 +
∫ t

0
p(s)µ(Xs )d s +

∫ t

0
σ(s, Xs )dBs

where µ, p and σ satisfy hypotheses 1., 2. and 3. of (H2) (see page 18), and X0 be a F0-measurable
r.v. of L2. Then,

E

(
sup

0≤ s≤T
|Xs |2

)
≤ c(T, M)

(
1+E(|X0|2

))
(2)

E

(
sup

0≤ s≤ t
|Xs −X0|2

)
≤ c(T, M)t

(
1+E(|X0|2

))
. (3)
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Proof. We follow the proof of [6, Theorem 9.1]. Fixed any R > 0, we define XR (t ) := X t∧τR where
τR := inf{t : 0 ≤ t ≤ T, |X t | ≥ R} is the exit time of the process X from the open ball of radius R. If
|X t | < R for every t ∈ [0,T ] then we set τR = T . We have that

XR (t ) = X0 +
∫ t∧τR

0
p(r )µ(Xr )dr +

∫ t∧τR

0
σ(r, Xr )dBr

= X0 +
∫ t

0
p(r )µ(Xr )1{r <τR }dr +

∫ t

0
σ(r, Xr )1{r <τR }dBr

= X0 +
∫ t

0
p(r )µ(XR (r ))1{r <τR }dr +

∫ t

0
σ(r, XR (r ))1{r <τR }dBr .

Therefore, we get

E

[
sup

0≤ s≤ t
|XR (s)|2

]
≤ 3E

[|X0|2
]+3E

[
sup

0≤ s≤ t

∣∣∣∣∫ s

0
p(r )µ (XR (r ))1{r <τR }dr

∣∣∣∣2]
+3E

[
sup

0≤ s≤ t

∣∣∣∣∫ s

0
σ (r, XR (r ))1{r <τR }dBr

∣∣∣∣2]
,

(4)

where we have used the inequality

|x1 +·· ·+xm |p ≤ mp−1 (|x1|p +·· ·+ |xm |p)
which holds, in general, for any x1, . . . , xm ∈Rd .

By Hölder’s inequality and hypothesis 3. of (H2) we obtain

E

[
sup

0≤ s≤ t

∣∣∣∣∫ s

0
p(r )µ(XR (r ))1{r <τR }dr

∣∣∣∣2]
≤ E

[
sup

0≤ s≤ t

((∫ s

0

∣∣p(r )
∣∣2 dr

)(∫ s

0
|µ(XR (r ))|21{r <τR }dr

))]
≤ ∥∥p

∥∥2
L2(0,T ) M 2E

[
sup

0≤ s≤ t

∫ s

0
(1+|XR (r )|)2

1{r <τR }dr

]
.

(5)

Whereas, by the L2 inequalities for stochastic integrals (see [6, Proposition 8.4]) we deduce

E

[
sup

0≤ s≤ t

∣∣∣∣∫ s

0
σ (r, XR (r ))1{r <τR }dBr

∣∣∣∣2]
≤ c2E

[∫ t

0
|σ (r, XR (r ))|2 dr

]
≤ c2M 2E

[∫ t

0
(1+|XR (r )|)2 dr

]
,

(6)

where in the last inequality we have used again hypothesis 3. Now, plugging (5) and (6) into (4),
we get

E

[
sup

0≤ s≤ t
|XR (s)|2

]
≤ 3E

[|X0|2
]+3M 2

(∥∥p
∥∥2

L2(0,T ) + c2

)
2E

[
T +

∫ t

0
|XR (r )|2 dr

]
≤ c1(T, M)

(
1+E[|X0|2

])+ c2(T, M)
∫ t

0
E
[|XR (r )|2]dr.

If we set v(t ) := E[sup0≤ s≤ t |XR (s)|2], from the above estimate we obtain

v(t ) ≤ c1(T, M)
(
1+E[|X0|2

])+ c2(T, M)
∫ t

0
v(r )dr.

Observe that, since |XR (t )| = |X0| if |X0| > R and |XR (t )| ≤ R otherwise, it holds that |XR (t )| ≤
max{|X0|,R} and then v(t ) ≤ E[max{|X0|2,R2}] < +∞. Thus, v is bounded and we can apply
Gronwall’s inequality:

v(T ) = E
[

sup
0≤ s≤T

|XR (s)|2
]
≤ c1(T, M)

(
1+E[|X0|2

])
eT c2(T,M) = c(T, M)

(
1+E[|X0|2

])
.

Since the right-hand side does not depend on R, we can take the limit R →+∞.
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Let us prove that τR → T as R →+∞. Since X is continuous, sup0≤ t ≤τR
|X t |2 = R2 on {τR < T }.

Therefore, we have that

E

[
sup

0≤ t ≤τR

|X t |2
]
≥ R2P(τR < T )

so that

P(τR < T ) ≤ 1

R2 E

[
sup

0≤ t ≤τR

|X t |2
]
≤ c(T, M)

(
1+E(|X0|2

))
R2 .

Hence, P(τR < T ) → 0 as R →+∞. Since R → τR is increasing, limR →+∞τR = T a.s. and

sup
0≤ s≤T

|XR (s)|2 → sup
0≤ s≤T

|Xs |2 a.s., f or R →+∞.

By applying Fatou’s lemma we conclude that (2) holds true. We refer to [6, Theorem 9.1] for the
proof of (3). □

Let a,b ∈ R such that a ≤ b. We recall the definition of the spaces M p ([a,b]), with p ≥ 1.
First, we define the space M p

loc ([a,b]) as the space of the equivalence classes of real-valued
progressively measurable processes X = (Ω,F , (Ft )a≤ t ≤b , (X t )a≤ t ≤b ,P) such that∫ b

a
|Xs |p d s <+∞ a.s.

Then, by M p ([a,b]) we denote the subspace of M p
loc ([a,b]) of the processes such that

E

[∫ b

a
|Xs |p d s

]
<+∞.

Theorem 17. Let X0 be a real-valued r.v., F0 measurable and square integrable. Then, under
assumption (H2) (see page 18) there exists X ∈ M 2([0,T ]) that satisfies

X t = X0 +
∫ t

0
p(s)µ(Xs )d s +

∫ t

0
σ(s, Xs )dBs . (7)

Moreover, if X ′ is another solution of (7), then

P
(
X t = X ′

t for every t ∈ [0,T ]
)= 1 (8)

(pathwise uniqueness).

Proof. We follow the proof of [6, Theorem 9.2]. We define recursively a sequence of processes by
X0(t ) = X0 and

Xm+1(t ) = X0 +
∫ t

0
p(s)µ (Xm(s))d s +

∫ t

0
σ (s, Xm(s))dBs .

Our aim is to show that the sequence (Xm)m converges uniformly on [0,T ] to a process X which
is solution of (7).

We first prove by induction that

E

[
sup

0≤r ≤ t
|Xm+1(r )−Xm(r )|2

]
≤ (Rt )m+1

(m +1)!
(9)

with R := 2(
∥∥p

∥∥2
L2(0,T )+4)max{2M 2(1+E[|X0|2]),L2}, where L, M > 0 are the constants in hypothe-

ses 3. and 4..
For m = 0 we have that

sup
0≤r ≤ t

|X1(r )−X0|2 ≤ 2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
p(s)µ(X0)d s

∣∣∣∣2

+2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
σ(s, X0)dBs

∣∣∣∣2

≤ 2
∥∥p

∥∥2
L2(0,T ) sup

0≤r ≤ t

∫ r

0

∣∣µ(X0)
∣∣2 d s +2 sup

0≤r ≤ t

∣∣∣∣∫ r

0
σ(s, X0)dBs

∣∣∣∣2

≤ 4M 2 ∥∥p
∥∥2

L2(0,T )

(
1+|X0|2

)
t +2 sup

0≤r ≤ t

∣∣∣∣∫ r

0
σ(s, X0)dBs

∣∣∣∣2
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where we have applied Hölder’s inequality and hypothesis 3.
By using Doob’s maximal inequality (see [6, formula (7.23), p. 195]) and hypothesis 3. of (H2)

it is possible to prove that

E

[
sup

0≤r ≤ t

∣∣∣∣∫ r

0
σ(s, Xs )dBs

∣∣∣∣2]
≤ 4E

[∫ t

0
|σ(s, Xs )|2 d s

]
≤ 8M 2

(
t +E

[∫ t

0
|Xs |2 d s

])
.

Hence, we get that

E

[
sup

0≤r ≤ t
|X1(r )−X0|2

]
≤ 4M 2 ∥∥p

∥∥2
L2(0,T )

(
1+E[|X0|2

])
t +16M 2 (

t + tE
[|X0|2

])
= 4M 2(

∥∥p
∥∥2

L2(0,T ) +4)
(
1+E[|X0|2

])
t ≤ Rt .

Now, suppose that (9) holds till index m − 1 and let us prove it for m. Observe that, thanks to
Hölder’s inequality and hypothesis 4., it holds

sup
0≤r ≤ t

|Xm+1(r )−Xm(r )|2 ≤ 2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
p(s)

[
µ (Xm(s))−µ (Xm−1(s))

]
d s

∣∣∣∣2

+2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
[σ (s, Xm(s))−σ (s, Xm−1(s))]dBs

∣∣∣∣2

≤ 2
∥∥p

∥∥2
L2(0,T ) sup

0≤r ≤ t

∫ r

0

∣∣µ (Xm(s))−µ (Xm−1(s))
∣∣2 d s

+2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
[σ (s, Xm(s))−σ (s, Xm−1(s))]dBs

∣∣∣∣2

≤ 2L2 ∥∥p
∥∥2

L2(0,T ) sup
0≤r ≤ t

∫ r

0
|Xm(s)−Xm−1(s)|2 d s

+2 sup
0≤r ≤ t

∣∣∣∣∫ r

0
[σ (s, Xm(s))−σ (s, Xm−1(s))]dBs

∣∣∣∣2

.

We now compute the expected value

E

[
sup

0≤r ≤ t
|Xm+1(r )−Xm(r )|2

]
≤ 2L2 ∥∥p

∥∥2
L2(0,T )

∫ t

0
E
[|Xm(s)−Xm−1(s)|2]d s

+2E

[
sup

0≤r ≤ t

∣∣∣∣∫ r

0
[σ (s, Xm(s))−σ (s, Xm−1(s))]dBs

∣∣∣∣2]
.

By using again Dobb’s inequality, hypothesis 4. and the inductive step, we have

E

[
sup

0≤r ≤ t
|Xm+1(r )−Xm(r )|2

]
≤ 2L2 ∥∥p

∥∥2
L2(0,T )

∫ t

0
E
[|Xm(s)−Xm−1(s)|2]d s

+8E

[∫ t

0
|σ (s, Xm(s))−σ (s, Xm−1(s))|2 d s

]
≤ 2L2 ∥∥p

∥∥2
L2(0,T )

∫ t

0
E
[|Xm(s)−Xm−1(s)|2]d s

+8L2
∫ t

0
E
[|Xm(s)−Xm−1(s)|2]d s

≤ 2L2
(∥∥p

∥∥2
L2(0,T ) +4

)∫ t

0

(Rs)m

m!
d s ≤ (Rt )m+1

(m +1)!
.

Thus, the proof of (9) is completed.
Now we apply Markov’s inequality which gives

P

(
sup

0≤ t ≤T
|Xm+1(t )−Xm(t )| > 1

2m

)
≤ 22mE

[
sup

0≤ t ≤T
|Xm+1(t )−Xm(t )|2

]
≤ 22m (RT )m+1

(m +1)!
.
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Since the right-hand side of the above inequality is summable, by the Borel-Cantelli lemma we
get

P

(
sup

0≤ t ≤T
|Xm+1(t )−Xm(t )| > 1

2m for infinitely many indices m

)
= 0,

that is, for almost every ω we eventually have

sup
0≤ t ≤T

(Xm+1(t )−Xm(t )) ≤ 1

2m

and therefore, for fixed ω the series

X0 +
m−1∑
k=0

|Xk+1(t )−Xk (t )| = Xm(t )

converges uniformly on [0,T ] a.s. Let X t = limm→+∞ Xm(t ). Then, X is continuous, being the
uniform limit of continuous processes, and therefore X ∈ M 2

loc ([0,T ]).
We now prove that X is solution of (7). Recall that

Xm+1(t ) = X0 +
∫ t

0
p(s)µ(Xm(s))d s +

∫ t

0
σ(s, Xm(s))dBs . (10)

Then, the left-hand side converges uniformly to X . From hypothesis 3. of (H2) we get that

|p(t )| ∣∣µ (Xm(t ))−µ(X t )
∣∣≤ L

∣∣p(t )
∣∣ |Xm(t )−X t | .

By Lebesgue’s dominated convergence theorem, we deduce that∫ t

0
p(s)µ(Xm(s))d s →

∫ t

0
p(s)µ(Xs )d s a.s. as m →+∞.

Moreover, since by hypothesis 3. of (H2)

|σ(s, Xm(s))−σ(s, Xs )| ≤ L |Xm(s)−Xs |

we deduce that, uniformly on [0,T ] a.s.,

lim
m→+∞σ(t , Xm(t )) = lim

m→+∞σ(t , X t )

and therefore ∫ t

0
σ(s, Xm(s))dB s →

∫ t

0
σ(s, Xs )dB s a.s. as m →+∞.

Since a.s. convergence implies convergence in probability, we can take the limit in probability
in (10) and obtain that

X t = X0 +
∫ t

0
p(s)µ(Xs )d s +

∫ t

0
σ(s, Xs )dBs ,

that is, X is solution of the stochastic differential equation. Moreover, X ∈ M 2([0,T ]) thanks to
Theorem 16.

We now prove uniqueness. Let X1, X2 be two solutions of (7). Then, we have

|X1(t )−X2(t )| ≤
∣∣∣∣∫ t

0
p(s)

(
µ (X1(s))−µ (X2(s))

)
d s

∣∣∣∣+ ∣∣∣∣∫ t

0
(σ (s, X1(s))−σ (s, X2(s)))dBs

∣∣∣∣ .
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We compute the mean value of the supremum over [0, t ] of the difference of the solutions

E

[
sup

0≤r ≤ t
|X1(r )−X2(r )|2

]
≤ 2E

[
sup

0≤r ≤ t

∣∣∣∣∫ r

0
p(s)

(
µ (X1(s))−µ (X2(s))

)
d s

∣∣∣∣2]
+2E

[
sup

0≤r ≤ t

∣∣∣∣∫ r

0

(
σ (s, X1(s))−σ (s, X2(s))

)
dBs

∣∣∣∣2]
≤ 2

∥∥p
∥∥2

L2(0,T )E

[∫ t

0

∣∣µ (X1(s))−µ (X2(s))
∣∣2 d s

]
+8E

[∫ t

0
|σ (s, X1(s))−σ (s, X2(s))|2 d s

]
≤

(
2L2 ∥∥p

∥∥2
L2(0,T ) +8L2

)∫ t

0
E
[|X1(s)−X2(s)|2]d s.

If we set v(t ) = E[sup0≤r ≤ t |X1(r )− X2(r )|2], then v is bounded thanks to Theorem 16 and from
the above inequality we deduce

v(t ) ≤C
∫ t

0
v(s)d s, 0 ≤ t ≤ T

with C := 2L2(
∥∥p

∥∥2
L2(0,T ) +4). From Gronwall’s inequality we conclude that v ≡ 0 on [0,T ]. Thus,

the two solutions X1 and X2 coincide. □
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