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1. Introduction

In this paper, we consider optimal control problems in the following form

inf
g∈An

Ψ(g ), (1)

where Ψ is a (nonlinear) energy functional which is related to a state equation (usually a differ-
ential equation), and An is an admissible set comprising n-valued control functions.

Let us describe the problem. To begin with, we let D be a bounded domain in RN throughout
this article. The set of admissible functions is given by

An =
{

n∑
k=1

ckχEk : Ek ⊆ D, {Ek } are mutually disjoint, |Ek | =αk

}
, (2)
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where ck are fixed non-negative constants different from each other. The notation χEk indicates
the characteristic function of Ek , and αk are prescribed strictly positive constants, satisfying∑n

k=1αk = |D|. Here, | · | denotes the Lebesgue measure in RN . In this paper, we shall present
a general existence theorem that can be applied to a vast class of control problems, including the
minimization problem (1). Before that, let us briefly review the related literature.

When n = 2, the problem (1) has been widely discussed in many papers, see for example [6,11].
It is well known that the weak⋆ closure of A2 in L∞(D), identified as (L1(D))⋆, is the following set

A :=
{

g ∈ L∞(D) : min{c1,c2} ≤ g (x) ≤ max{c1,c2},
∫

D
g (x) dx = c1α1 + c2α2

}
,

see for example Proposition 2.4 in [6]. With this notation, we consider a relaxed version of the
problem (1)

inf
g∈A

Ψ(g ). (3)

The minimization problem (3) has been investigated by many authors before, see for example [11,
13]. On the other hand, see [5, 12, 19] for discussing shape optimization problems related to (1).

Let us now return to the general case. We set M = max1≤k≤n ck , m = min1≤k≤n ck , and

Am,M :=
{

g ∈ L∞(D) : m ≤ g (x) ≤ M ,
∫

D
g dx =

n∑
k=1

ckαk

}
.

Note that when n = 2, we have An = Am,M , where An denotes the weak⋆ closure of An in L∞, but
this property ceases to be true when n ≥ 3 (see Lemma 5 hereafter). The main result is as follows:

Theorem. Let Ψ : Am,M → R be weak⋆ lower semicontinuous in L∞(D), and strictly convex.
Suppose for any gi ∈ Am,M , i = 1,2, the following formula holds:

lim
t→0+

Ψ(g1 + t (g2 − g1))−Ψ(g1)

t
=

∫
D

(g2 − g1)F (g1) dx. (4)

where F : Am,M → L1(D) is an operator. Suppose the following condition holds:

for each g ∈ Am,M , every level set of F (g ) has measure zero on S(g ), (C1)

where S(g ) := {x ∈ D : g (x) > 0}. Then, the minimization problem (1) has a unique solution ĝ ∈ An .
Moreover, by rearranging {ck } in an increasing order, there exist γ1 > γ2 > ·· · > γn−1 such that
ĝ =∑n

k=1 ckχÊ k
, where Ê 1 = {x ∈ D : F (ĝ )(x) ≥ γ1}, Ê n = {x ∈ D : F (ĝ )(x) < γn−1}, and

Ê k = {x ∈ D : γk ≤ F (ĝ )(x) < γk−1} for all 2 ≤ k ≤ n −1.

Remark 1. The hypothesis (4) is a “restricted” version of Gâteaux differentiation ofΨ at g1. This
differentiation only requires the limits to be valid in the directions g2 − g1 with g2 ∈ Am,M , so
it is a weaker assumption compared with the Gâteaux one. In some applications, the Gâteaux
derivative may not exist, but this version of derivative may exist which suffices for our purpose
here. Moreover, in the proof of the Theorem, the hypothesis (4) will help us to reduce the
nonlinear minimization problem (1) to a linear minimization problem which is easier to handle.

Remark 2. In many cases, the condition (C1) is satisfied easily from the regularity of the solution
of the partial differential equation which gives rise to the function Ψ, see Section 4, where an
example of this situation is presented.

In the proof of the Theorem, we will use a decomposition result of the weak⋆ closure of the
admissible set An from [20] and the bathtub principle, see [14]. In the last section of the paper, we
will revisit a known example and demonstrate to which we apply the Theorem. More applications
of our main result are cited in Remark 10.

A surprising consequence of the Theorem is that the multi-valued control problem in [9],
where the authors had the impression that the most efficient way to prove the existence and
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uniqueness of the optimal solution was derived from the classical rearrangement optimization
theory, now can be obtained by multiple applications of the bathtub principle.

Structure of the paper

In Section 2, we recall some background knowledge about the rearrangement of functions [2]
and the bathtub principle [14]. In addition, we will state an important decomposition lemma
obtained recently by the authors, see [20]. Section 3 is devoted to the proof of the Theorem. The
final section contains applications of the Theorem, in which the partial differential equation is
the Dirichlet Poisson problem; however, other differential operators can replace the Laplacian,
for example the p-Laplacian operator.

2. Preliminaries

We begin this section with the following

Definition 3. Suppose g0, g : D → R are two measurable functions. We say g0 is a rearrangement
of g if and only if

λg0 (α) ≡ ∣∣{x ∈ D : g0(x) ≥α}∣∣= ∣∣{x ∈ D : g (x) ≥α}∣∣≡λg (α), ∀ α ∈R.

Definition 4. Let g be as in Definition 3. The rearrangement class generated by g on D, denoted
R(g ), is defined by

R(g ) = {
h : D →Rmeasurable : h is a rearrangement of g

}
.

Moreover, the decreasing rearrangement of g on (0, |D|) is defined by g∆(s) = max
{
α :λg (α) ≥ s

}
.

For E ⊆ L∞(D), we will denote the closure of E with respect to the weak⋆ topology σ(L∞,L1)
by E . It is well known that R(g ) is convex, and weak⋆ (sequentially) compact, see Theorem 6 and
Lemma 6 in [2].

Next, we present the following key decomposition lemma from [20] which we include its proof
for the convenience of the readers.

Lemma 5. Let An be defined as in (2) and suppose {ci } is strictly increasing. Then, the following
equation holds

An =
n∑

i=1
Ki (5)

where

K1 = {c1} and Ki =
{

f ∈ L∞(D) : 0 ≤ f ≤ ci − ci−1,
∫

D
f dx = (ci − ci−1)

n∑
k=i

αk

}
,

for all i = 2, . . . ,n. Here, c1 denotes the constant function.

Proof. By setting c0 = 0, we define

fi = (ci − ci−1)χ⋃n
k=i Ek

,

i = 1,2, . . . ,n. We then set

f =
n∑

i=1
fi . (6)

Clearly, An =R( f ). On the other hand, for almost every s ∈ (0, |D|), we have

f △i (s) = (ci − ci−1)χ(0,
∑n

k=i αk )(s),
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i = 1,2, . . . ,n. For i , j ∈ {1,2, . . . ,n} with i ≤ j , then we deduce, by direct computations, that∫
D

fi (x) f j (x) dx = (ci − ci−1)(c j − c j−1)
n∑

k= j
αk =

∫ |D|

0
f △i (s) f △j (s) ds. (7)

From (6), (7) and Theorem 3 in [1], we infer that

An =R( f ) =R

(
n∑

i=1
fi

)
=

n∑
i=1

R( fi ).

Moreover, by Proposition 2.4 in [6], we have

Ki :=R( fi ) =
{

g ∈ L∞(D) : 0 ≤ g ≤ ci − ci−1,
∫

D
g dx = (ci − ci−1)

n∑
k=i

αk

}
,

i = 1,2, . . . ,n. Notice that R( f1) = { f1} = {c1}, hence we infer K1 = R( f1) = {c1}. Therefore, the
decomposition (5) follows. □

We will use the following version of the bathtub principle to prove the Theorem:

Proposition 6 (Bathtub principle). Let f be a real-valued, measurable function on D, and β be a
positive constant. Set

Ã =
{

g ∈ L∞(D) : 0 ≤ g (x) ≤β,
∫

D
g (x) dx = γ

}
,

where 0 < γ<β|D|. Then, the minimization problem

I = inf
g∈Ã

∫
D

f (x)g (x) dx (8)

is solved by
g (x) =βχ{ f <s}(x)+ cχ{ f =s}(x)

where

s = sup

{
t : |{x ∈ D : f (x) < t }| ≤ γ

β

}
and

c
∣∣{x ∈ D : f (x) = s

}∣∣= γ−β ∣∣{x ∈ D : f (x) < s
}∣∣ .

The minimizer given in (8) is unique if γ
β = |{x ∈ D : f (x) < s}| or γ

β = |{x ∈ D : f (x) ≤ s}|.
Proof. By using the argument of the infimum in (8), we can use a simple scaling to transform the
problem (8) to the following one:

inf
g∈B̃

∫
D

f (x)g (x) dx, (9)

where B̃ := Ã
β = {

g ∈ L∞(D) : 0 ≤ g (x) ≤ 1,
∫

D g (x) dx = γ
β

}
. Then, we use Theorem 1.14 in [14] to

solve (9). By scaling back, we obtain the solution for (8). □

3. Proof of the Theorem

Let g0 ∈ An , and note that An =R(g0). We next relax the minimization problem (1) by considering

inf
g∈R(g0)

Ψ(g ). (10)

As R(g0) ⊆ Am,M , see the proof of Lemma 2.3 in [15] and Lemma 2.3 in [3], is weak⋆ compact and
Ψ is weak⋆ lower semicontinuous, the problem (10) is solvable. The uniqueness of the solution
follows from the convexity of R(g0) and the strict convexity of Ψ. Let us denote the minimizer
of (10) by ĝ , and we show that ĝ ∈ An .
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Now, rearranging c1,c2, . . . ,cn in an increasing order and using the decomposition result of
Lemma 5, we infer

R(g0) = An =
n∑

i=1
Ki ,

where

K1 = {c1} and Ki =
{

f ∈ L∞(D) : 0 ≤ f ≤ ci − ci−1,
∫

D
f dx = (ci − ci−1)

n∑
k=i

αk

}
,

for all i = 2, . . . ,n. Moreover, there exist ĝ i ∈ Ki , i = 1, . . . ,n, such that ĝ = ∑n
i=1 ĝ i . Note that

ĝ 1 = c1. By setting Ψi (h) =Ψ(h +∑n
j=1, j ̸=i ĝ j ), we can deduce that ĝ i is the unique minimizer of

the following problem

inf
h∈Ki

Ψi (h),

for all i = 2, . . . ,n. Fix i ∈ {2,3, . . . ,n}, and h ∈ Ki . Observe that h +∑n
j=1, j ̸=i ĝ j ∈ An ⊆ Am,M , we

then apply the formula (4) to obtain

lim
t→0+

Ψi (ĝ i + t (h − ĝ i ))−Ψi (ĝ i )

t
= lim

t→0+
Ψ(ĝ + t (h − ĝ i ))−Ψ(ĝ )

t

= lim
t→0+

Ψ(ĝ + t (h +∑n
j=1, j ̸=i ĝ j − ĝ ))−Ψ(ĝ )

t
=

∫
D

(h − ĝ i )F (ĝ ) dx. (11)

Since ĝ i is the minimizer and ĝ i + t (h − ĝ i ) ∈Ki for t ∈ (0,1), (11) implies∫
D

(h − ĝ i )F (ĝ ) dx ≥ 0.

Whence, ĝ i minimizes the linear functional Li (h) = ∫
D hF (ĝ ) dx relative to h ∈Ki .

From the condition (C1), we know that the level sets of F (ĝ ) have measure zero on S(ĝ ). As
ĝ =∑n

i=1 ĝ i and ĝ i are non-negative functions, we have S(ĝ i ) ⊆ S(ĝ ) and hence every level set of
F (ĝ ) has measure zero on S(ĝ i ). Now, we apply the bathtub principle (Proposition 6) to deduce
that the unique minimizer of Li (h) is ĝ i = (ci −ci−1)χ{F (ĝ )<γi−1} for some constant γi−1 satisfying∣∣{F (ĝ ) < γi−1

}∣∣= n∑
k=i

αk . (12)

On the other hand, by using (12), we obtain the following order

γ1 > γ2 > ·· · > γn−1.

Moreover, we have

ĝ =
n∑

i=1
ĝ i = c1 +

n∑
i=2

(ci − ci−1)χ{F (ĝ )<γi−1} =
n∑

k=1
ckχÊ k

,

where

Ê 1 = {x ∈ D : F (ĝ )(x) ≥ γ1}, Ê n = {x ∈ D : F (ĝ )(x) < γn−1},

and,

Ê k = {x ∈ D : γk ≤ F (ĝ )(x) < γk−1} for all 2 ≤ k ≤ n −1.

This completes the proof of the theorem.

Remark 7. We would like to mention that the Theorem can be proved by using technical lemmas
from [3, 16], see Section 4 in [9]. However, the proof we provided here only applies the bathtub
principle and a decomposition result of Lemma 5, which together make the proof drastically
simpler.
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4. Applications

Consider the boundary value problem{
−∆u = g (x), in D

u = 0, on ∂D,
(13)

where D is a bounded smooth (C 1,1 is enough) domain in RN . We can apply the Theorem to
prove the existence and uniqueness of the optimal solution of the following multi-valued control
problem

inf
g∈An

J (g ) :=
∫

D
g ug dx, (14)

where ug ∈ H 1
0 (D) denotes the unique solution of (13) with the right hand side control g . Indeed,

we have the following

Proposition 8. The minimization problem (14) is uniquely solvable. Moreover, by denoting the
minimizer by ĝ , there exist γ1 > γ2 > ·· · > γn−1 such that ĝ = ∑n

k=1 ckχÊ k
, where Ê 1 = {x ∈ D :

uĝ (x) ≥ γ1}, Ê n = {x ∈ D : uĝ (x) < γn−1}, and Ê k = {x ∈ D : γk ≤ uĝ (x) < γk−1} for all 2 ≤ k ≤ n −1.

Although the above result has been shown in the literature, see Remark 9 for details, we include
a sketch of its proof for the sake of completeness.

Sketch of the proof of Proposition 8. Let us examine the conditions of the Theorem:

(a) J is weak⋆ continuous: let gn
⋆
* g in L∞(D). To show that J (gn) → J (g ), it suffices to prove

that un ≡ ugn → u ≡ ug in L1(D). Indeed, from (13), we find∫
D
|∇un |2 dx =

∫
D

gnun dx ≤ ∥∥gn
∥∥

2 ∥un∥2 ≤C
∥∥gn

∥∥
2 ∥∇un∥2 ,

where we have used Hölder’s inequality in the first inequality, and Poincaré inequality in
the second one. So, {un} is bounded in H 1

0 (D). By passing to a subsequence, if necessary,
we have

un * u in H 1
0 (D), and un → u in L2(D).

Letting n go to infinity in the following identity:∫
D
∇un ·∇ϕdx =

∫
D

gnϕdx for all ϕ ∈C∞
c (D),

we deduce u = u by uniqueness. Thus, un → u in L2(D), which implies un → u in L1(D)
(remembering that D is bounded), as desired.

(b) J is strictly convex: first, by observing that

J (g ) =−2 inf
w∈H 1

0 (D)

(
1

2

∫
D
|∇w |2 dx −

∫
D

g w dx

)
= sup

w∈H 1
0 (D)

(
2
∫

D
g w dx −

∫
D
|∇w |2 dx

)
, (15)

J is convex as it is the supremum of a class of affine functions. To show J is strictly convex,
we argue by contradiction and suppose there exist different g1, g2 ∈ Am,M and t ∈ (0,1)
such that g t = t g1 + (1− t )g2 and

J (g t ) = t J (g1)+ (1− t )J (g2).

Rearranging terms, we find

t

A︷ ︸︸ ︷{
J (g1)−

(
2
∫

D
g1ug t dx −

∫
D
|∇ug t |2 dx

)}
+(1− t )

B︷ ︸︸ ︷{
J (g2)−

(
2
∫

D
g2ug t dx −

∫
D
|∇ug t |2 dx

)}
= 0.
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As the maximizer is uniquely attained in (15) by the solution ug corresponding to the
control g , we have A,B ≥ 0 and so A = B = 0 which implies ug1 = ug t = ug2 . By using (13),
we can show g1 = g2 which is a contradiction.

(c) J satisfies the formula (4) with F (g1) = 2ug1 : fix g1, g2 ∈ Am,M . Setting g t = g1 + t (g2 − g1)
with t ∈ (0,1) and using the variational formulation (15), we find

J (g t ) = 2
∫

D
g t ug t dx −

∫
D
|∇ug t |2 dx ≥ 2

∫
D

g t ug1 dx −
∫

D
|∇ug1 |2 dx

= 2
∫

D
g1ug1 dx −

∫
D
|∇ug1 |2 dx +2t

∫
D

(g2 − g1)ug1 dx = J (g1)+2t
∫

D
(g2 − g1)ug1 dx.

(16)

Similarly, we can derive

J (g1) ≥ J (g t )−2t
∫

D
(g2 − g1)ug t dx. (17)

From (16) and (17), we obtain

2
∫

D
(g2 − g1)ug1 dx ≤ J (g t )− J (g1)

t
≤ 2

∫
D

(g2 − g1)ug t dx.

Thus, J satisfies the formula (4) with F (g1) = 2ug1 , since ug t → ug1 in L1(D) as t → 0+.
(d) the condition (C1) is satisfied: fix g ∈ Am,M . In order to derive a contradiction, we

suppose there exists β ∈ R such that |Ẽ | ̸= 0 with Ẽ := {x ∈ D : ug (x) = β}∩S(g ). However,
as ug ∈ H 2

loc (D), by using the differential equation in (13) and Lemma 7.7 in [10], we
deduce g = 0 a.e. in Ẽ which is clearly a contradiction.

As all the conditions for the Theorem are verified, the assertions clearly follow. □

Remark 9. The problem (14) has been investigated by Burton and McLeod in [4] in the following
form

inf
g∈R(g0)

J (g )

where g0 ∈ L∞(D) is a prescribed function. Later, it has been generalized to the corresponding
p-Laplacian problem in [8, 15, 17]. Recently, a more generalized case is discussed in [9], and the
Theorem can be directly applied to solve multi-valued control problems in [9].

Remark 10. The Theorem can also be applied to the extremal eigenvalue problems in [6, 7, 18],
and the details are left to the readers.
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