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Abstract. The q-analogs of Bernoulli and Euler numbers were introduced by Carlitz in 1948. Similar to recent
results on the Hankel determinants for the q-Bernoulli numbers established by Chapoton and Zeng, we
perform a parallel analysis for the q-Euler numbers. It is shown that the associated orthogonal polynomials
for q-Euler numbers are given by a specialization of the big q-Jacobi polynomials, thereby leading to their
corresponding Jacobi continued fraction expressions, which eventually serve as a key to our determinant
evaluations.
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1. Introduction

A Hankel matrix (Mi , j ) is a square matrix with constant skew diagonals, i.e., Mi , j = Mi ′, j ′

whenever i + j = i ′+ j ′. This terminology was named after Hermann Hankel, and in recent years
Hankel matrices have exhibited substantial utility in data analysis, ranging from geophysics [12]
to signal processing [21]. Letting {sn}n≥0 be a sequence in a fieldK, one may define its associated
Hankel matrices by (si+ j )0≤i , j≤n . It is often of significance to evaluate the determinant of these
matrices. Such determinants

det
0≤i , j≤n

(si+ j ) = det


s0 s1 s2 · · · sn

s1 s2 s3 · · · sn+1

s2 s3 s4 · · · sn+2
...

...
...

. . .
...

sn sn+1 sn+2 · · · s2n


are usually called the Hankel determinants for {sn}n≥0.
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From a number-theoretic perspective, it is a natural game to take classical sequences of
arithmetic meaning for sn . As an example, considering the Bernoulli numbers Bn defined by
the exponential generating function ∑

n≥0
Bn

t n

n!
= t

e t −1
,

it was shown by Al-Salam and Carlitz [1, p. 93, eq. (3.1)] that

det
0≤i , j≤n

(Bi+ j ) = (−1)
(n+1

2

) n∏
k=1

(k !)6

(2k)!(2k +1)!
.

Another example treats the Euler numbers En given by∑
n≥0

En
t n

n!
= 2

e t +e−t .

Al-Salam and Carlitz [1, p. 93, eq. (4.2)] also proved that

det
0≤i , j≤n

(Ei+ j ) = (−1)
(n+1

2

) n∏
k=1

(k !)2.

More such Hankel determinant evaluations were nicely collected by Krattenthaler in his seminal
surveys [16, Section 2.7] and [17, Section 5.4].

When it comes to generalizing number sequences, there are numerous ways available, with
polynomialization standing out as one of the most evident choices. Simply speaking, one may
construct a sequence of polynomials so that it reduces to the original number sequence when
the argument is specifically chosen. Along this line, we can define Bernoulli polynomials Bn(x)
and Euler polynomials En(x) by ∑

n≥0
Bn(x)

t n

n!
= text

e t −1
,

∑
n≥0

En(x)
t n

n!
= 2ext

e t +1
.

Then Bn = Bn(0) and En = 2nEn( 1
2 ). However, the Hankel determinant evaluations for Bn(x) and

En(x) are not very exciting since

Bn(x) =
n∑

k=0

(
n

k

)
Bk xn−k ,

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x − 1

2

)n−k

In this connection, there is a standard result [19, p. 419, Item 445] stating that

det
0≤i , j≤n

(si+ j ) = det
0≤i , j≤n

(
si+ j (x)

)
,

where

sn(x) =
n∑

k=0

(
n

k

)
sk xn−k .

Thus,

det
0≤i , j≤n

(
Bi+ j (x)

)= (−1)
(n+1

2

) n∏
k=1

(k !)6

(2k)!(2k +1)!
, (1)

det
0≤i , j≤n

(
Ei+ j (x)

)= (− 1
4 )

(n+1
2

) n∏
k=1

(k !)2, (2)
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which can be found in, for instance, [1, p. 94, eqs. (5.1) and (5.2)]. Although the above evaluations
are independent of the variable x, the story becomes different when subsequences of Bernoulli or
Euler polynomials are considered. As shown in a recent paper of Dilcher and Jiu [9, Theorem 1.1
and Corollary 5.2],

det
0≤i , j≤n

(
B2(i+ j )+1( x+1

2 )
)= (−1)

(n+1
2

) ( x

2

)n+1 n∏
k=1

(
k4(x2 −k2)

4(2k −1)(2k +1)

)n−k+1

,

det
0≤i , j≤n

(
E2(i+ j )+1( x+1

2 )
)= (−1)

(n+1
2

) ( x

2

)n+1 n∏
k=1

(
k2(x2 −4k2)

4

)n−k+1

.

In addition, results of a similar nature can be found in [10].
For other generalizations of number sequences, the q-version is sometimes of more “q-

riosity.” Usually, we have a sequence of rational functions in q , which yields our original sequence
at the limiting case q → 1. Throughout, we introduce the q-integers for m ∈Z,

[m]q := 1−qm

1−q
,

and the q-factorials for M ∈N,

[M ]q ! :=
M∏

m=1
[m]q .

We also require the q-Pochhammer symbols for N ∈N∪ {∞},

(A; q)N :=
N−1∏
k=0

(1− Aqk ),

and

(A,B , . . . ,C ; q)N := (A; q)N (B ; q)N · · · (C ; q)N .

The q-analogs of Bernoulli and Euler numbers were introduced by Carlitz [4]:

βn := 1

(1−q)n

n∑
k=0

(−1)k

(
n

k

)
k +1

[k +1]q
, (3)

ϵn := 1

(1−q)n

n∑
k=0

(−1)k

(
n

k

)
1+q

1+qk+1
. (4)

Alternatively, Carlitz’s q-Bernoulli numbers βn can be recursively defined by β0 = 1 and for n ≥ 1,

n∑
k=0

(
n

k

)
qk+1βk −βn =

{
1, if n = 1,

0, if n ≥ 2,
(5)

while the q-Euler numbers are given by ϵ0 = 1 and recursively for n ≥ 1,

n∑
k=0

(
n

k

)
qk+1ϵk +ϵn = 0. (6)

It should be remarked that at the q → 1 limit, ϵn reduces to

1,− 1
2 ,0, 1

4 ,0,− 1
2 ,0, 17

8 ,0,− 31
2 , . . . ,

which is identical to En(0) rather than 2nEn( 1
2 ), the Euler numbers En .

In regard to the Hankel determinants, interestingly, we still have neat evaluations for the q-
Bernoulli numbers. It was obtained by Chapoton and Zeng [7, p. 359, eq. (4.7)] that

det
0≤i , j≤n

(βi+ j ) = (−1)
(n+1

2

)
q

(n+1
3

) n∏
k=1

([k]q !)6

[2k]q ![2k +1]q !
.
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Meanwhile, Chapoton and Zeng also evaluated det(βi+ j+ℓ)0≤i , j≤n with ℓ ∈ {1,2,3}. Now one may
naturally ask if similar results exist for the q-Euler numbers. Our objective in this paper is to
answer this question in the affirmative.

Theorem 1.

det
0≤i , j≤n

(ϵi+ j ) = (−1)
(n+1

2

)
q

1
4

(2n+2
3

)
(1−q)n(n+1)

n∏
k=1

(q2, q2; q2)k

(−q,−q2,−q2,−q3; q2)k
, (7)

det
0≤i , j≤n

(ϵi+ j+1) = (−1)
(n+2

2

)
q

1
4

(2n+4
3

)
(1−q)n(n+1)(1+q2)n+1

n∏
k=1

(q2, q4; q2)k

(−q2,−q3,−q3,−q4; q2)k
, (8)

det
0≤i , j≤n

(ϵi+ j+2) = (−1)
(n+2

2

)
q

1
4

(2n+4
3

)
(1+q)n

(
1− (−1)n q (n+2)2)

(1−q)n(n+1)(1+q2)2(n+1)(1+q3)n+1

n∏
k=1

(q4, q4; q2)k

(−q3,−q4,−q4,−q5; q2)k
. (9)

Remark 2. Taking q → 1, (7) becomes

lim
q→1

det
0≤i , j≤n

(ϵi+ j ) = (− 1
16 )

(n+1
2

) n∏
k=1

(
(2k)!!

)2 = (− 1
4 )

(n+1
2

) n∏
k=1

(k !)2.

In light of the fact that limq→1 ϵn = En(0), the above relation matches (2) with x = 0.

Remark 3. It is notable that the evaluation of Hankel determinants for q-Euler numbers also
has a close connection with q-analogs of values at negative integers for certain Dirichlet L-series,
as advocated in a recent paper of Chapoton, Krattenthaler and Zeng [6]. In particular, our (7)
can be recovered by a specialization of [6, Theorem 1.5], which suggests a route towards possible
bivariate extensions.

It is well-known that the evaluation of Hankel determinants is closely related to orthogonal
polynomials and continued fractions, so several preliminary lemmas are provided in Section 2.
Then in Section 3, we introduce the big q-Jacobi polynomials, whose orthogonality will be used
for our determinant calculations. In addition, to clearly characterize the orthogonality of the
big q-Jacobi polynomials, we require a linear functional on Q(q)[z], as discussed in Section 4.
With the above preparations, Section 5 is devoted to the continued fraction expressions for the
generating functions of {ϵk }k≥0 and {ϵk+1}k≥0, thereby leading to the proof of Theorem 1. Finally,
in Section 6, we close this paper with some additional discussions.

2. Preliminaries

A family of polynomials {pn(z)}n≥0 with pn(z) of degree n is called orthogonal if there is a linear
functional L on the space of polynomials in z such that L

(
pm(z)pn(z)

) = δm,nσn where δm,n is
the Kronecker delta and {σn}n≥0 is a fixed nonzero sequence. Notably, orthogonal polynomials
can be characterized as follows:

Lemma 4 (cf. [22, p. 195, Theorem 50.1] or [16, p. 21, Theorem 12]). Let {pn(z)}n≥0 be a family
of monic polynomials with pn(z) of degree n. Then they are orthogonal if and only if there exist
sequences {an}n≥0 and {bn}n≥1 with bn ̸= 0 such that p0(z) = 1, p1(z) = a0 + z, and for n ≥ 1,

pn+1(z) = (an + z)pn(z)−bn pn−1(z). (10)

Remark 5. The above result is often referred to as the Favard theorem, named after Jean
Favard [11], who discovered it in 1935. However, Favard’s discovery is not the earliest, and indeed
a similar result was already presented by Stieltjes [20] in 1894. For more historical discussions,
see the survey by Marcellán and Álvarez-Nodarse [18].
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Note that {zk }k≥0 forms a basis of the space of polynomials in z. Therefore, for a family
of orthogonal polynomials, to explicitly express its associated linear functional L, it suffices
to evaluate L(zk ), which is called the k-th moment associated with L, for each k ≥ 0. Such
evaluations have a surprising connection with Jacobi continued fractions, or J-fractions for short.

Lemma 6 (cf. [22, p. 197, Theorem 51.1] or [16, p. 21, Theorem 13]). Let L be an associated linear
functional for a family of orthogonal monic polynomials {pn(z)}n≥0 with pn(z) of degree n. Then∑

k≥0
L(zk )xk = L(z0)

1+a0x − b1x2

1+a1x − b2x2

1+a2x − . . .

, (11)

where {an}n≥0 and {bn}n≥1 are as in (10).

Finally, given a J-fraction, Heilermann [14] established evaluations of the Hankel determi-
nants for the sequence of coefficients in the series expansion of this continued fraction.

Lemma 7 (cf. [17, pp. 115–116, Theorem 29]). Let {µk }k≥0 be a sequence such that its generating
function

∑
k≥0µk xk has the J-fraction expression∑

k≥0
µk xk = µ0

1+a0x − b1x2

1+a1x − b2x2

1+a2x − . . .

.

Then for n ≥ 0,

det
0≤i , j≤n

(µi+ j ) =µn+1
0 bn

1 bn−1
2 · · ·b2

n−1bn . (12)

Further, with an and bn from the J-fraction above, define {pn(z)}n≥0 a family of polynomials given
by a three-term recursive relation for n ≥ 1,

pn+1(z) = (an + z)pn(z)−bn pn−1(z),

with initial conditions p0(z) = 1 and p1(z) = a0 + z. Then

det
0≤i , j≤n

(µi+ j+1) = det
0≤i , j≤n

(µi+ j ) · (−1)n+1pn+1(0). (13)

Remark 8. It is asserted by Lemma 4 that the polynomials pn(z) in Lemma 7 are orthogonal.
Hence, we shall call pn(z) the associated orthogonal polynomials for {µk }k≥0 throughout.

3. Big q-Jacobi polynomials

The big q-Jacobi polynomials were introduced by Andrews and Askey [3], and they form a family
of q-hypergeometric orthogonal polynomials in the basic Askey scheme. For our purpose, the
following specialization is required.

For each nonnegative integer ℓ, we define a family of polynomials {Jℓ,n(z)}n≥0 by

Jℓ,n(z) := 3φ2

(
q−n ,−qn+ℓ+1, z

qℓ+1,0
; q, q

)
. (14)
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Here the q-hypergeometric series r+1φr is defined by

r+1φr

(
a1, a2, . . . , ar+1

b1,b2, . . . ,br
; q, z

)
:= ∑

n≥0

(a1, a2, . . . , ar+1; q)n zn

(q,b1,b2, . . . ,br ; q)n
.

It is stated in [15, p. 438, eq. (14.5.3)] that Jℓ,n(z) satisfies the three-term recursive relation

Aℓ,nJℓ,n+1(z) = (Aℓ,n +Bℓ,n −1+ z)Jℓ,n(z)−Bℓ,nJℓ,n−1(z), (15)

where

Aℓ,n = 1−q2n+2ℓ+2

(1+q2n+ℓ+1)(1+q2n+ℓ+2)
,

Bℓ,n =− q2n+2ℓ+1(1−q2n)

(1+q2n+ℓ)(1+q2n+ℓ+1)
.

If we normalize Jℓ,n(z) as monic polynomials

J̃ℓ,n(z) := (qℓ+1; q)n

(−qn+ℓ+1; q)n
Jℓ,n(z), (16)

then J̃ℓ,0(z) = 1, J̃ℓ,1(z) = ãℓ,0 + z, and for n ≥ 1,

J̃ℓ,n+1(z) = (ãℓ,n + z)J̃ℓ,n(z)− b̃ℓ,nJ̃ℓ,n−1(z), (17)

where

ãℓ,n =− q2n+ℓ+1(1+q)(1+qℓ)

(1+q2n+ℓ)(1+q2n+ℓ+2)
,

b̃ℓ,n =− q2n+2ℓ+1(1−q2n)(1−q2n+2ℓ)

(1+q2n+ℓ−1)(1+q2n+ℓ)2(1+q2n+ℓ+1)
.

Let us further recall a standard result for orthogonal polynomials presented in [8, p. 25,
Exercise 4.4].

Lemma 9. Suppose that {pn(z)}n≥0 is a family of polynomials given by a three-term recursive
relation for n ≥ 1,

pn+1(z) = (an + z)pn(z)−bn pn−1(z),

with initial conditions p0(z) = 1 and p1(z) = a0+z, where {an}n≥0 and {bn}n≥1 are fixed sequences.
Let

rn(z) := u−n pn(uz + v)

for n ≥ 0 be a new family of polynomials. Then rn(z) satisfies the three-term recursive relation

rn+1(z) = (
u−1(an + v)+ z

)
rn(z)−u−2bnrn−1(z). (18)

Now we introduce a family of polynomials {Pℓ,n(z)}n≥0 for each nonnegative integer ℓ:

Pℓ,n(z) := (−1)n(qℓ+1; q)n

qn(1−q)n(−qn+ℓ+1; q)n
3φ2

(
q−n ,−qn+ℓ+1, q

(
1− (1−q)z

)
qℓ+1,0

; q, q

)
. (19)

In other words,

Pℓ,n(z) = (−1)n

qn(1−q)n J̃ℓ,n
(
(q2 −q)z +q

)
.

The following result is a direct consequence of (17) and (18).
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Theorem 10. We have Pℓ,0(z) = 1, Pℓ,1(z) = aℓ,0 + z, and for n ≥ 1,

Pℓ,n+1(z) = (aℓ,n + z)Pℓ,n(z)−bℓ,nPℓ,n−1(z), (20)

where

aℓ,n = q2n+ℓ(1+q)(1+qℓ)

(1−q)(1+q2n+ℓ)(1+q2n+ℓ+2)
− 1

1−q
,

bℓ,n =− q2n+2ℓ−1(1−q2n)(1−q2n+2ℓ)

(1−q)2(1+q2n+ℓ−1)(1+q2n+ℓ)2(1+q2n+ℓ+1)
.

4. A linear functional onQ(q)[z]

Define for 0 ≤ m ≤ n a family of polynomials inQ(q)[z],[
m, z

n

]
q

:= 1

[n]q !

m∏
k=m−n+1

([k]q +qk z).

It is clear that
[m,z

n

]
q is of degree n in z. Further, {

[n,z
n

]
q }n≥0 forms a basis ofQ(q)[z].

LetΦ be the linear functional onQ(q)[z] given by

Φ

([
n, z

n

]
q

)
:= 1

(−q2; q)n
(n ≥ 0). (21)

Lemma 11. For 0 ≤ m ≤ n,

Φ

([
m, z

n

]
q

)
= (−1)n−m qn−m

(−q2; q)n
. (22)

Proof. It was shown in [5, p. 19, Lemma 1] that for 0 ≤ m ≤ n,[
m, z

n

]
q

=
n∑

k=0
(−1)n−k q−n(n−m)+(n−k

2

)[n −m

n −k

]
q

[
k, z

k

]
q

= q−n(n−m)
n−m∑
k=0

(−1)n−m−k q
(n−m−k

2

)[ n −m

n −m −k

]
q

[
m +k, z

m +k

]
q

.

Here the q-binomial coefficients are given by[
M

N

]
q

:=


(q ; q)M

(q ; q)N (q ; q)M−N
if 0 ≤ N ≤ M ,

0 otherwise.

Recalling thatΦ is linear,Φ
([m,z

n

]
q

)
equals

q−n(n−m)
n−m∑
k=0

(−1)n−m−k q
(n−m−k

2

)[ n −m

n −m −k

]
q

Φ

([
m +k, z

m +k

]
q

)
.

In light of (21),

Φ

([
m, z

n

]
q

)
= q−n(n−m)

n−m∑
k=0

(−1)n−m−k q
(n−m−k

2

)[ n −m

n −m −k

]
q

1

(−q2; q)m+k

= (−1)n−m q
(m+1

2

)−(n+1
2

)
(−q2; q)m

2φ1

(
q−(n−m),0
−qm+2 ; q, q

)
= (−1)n−m q

(m+1
2

)−(n+1
2

)
(−q2; q)m

· q (m+2)(n−m)+(n−m
2

)
(−qm+2; q)n−m

,
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thereby yielding the desired result. Here for the evaluation of the 2φ1 series, we have applied the
q-Chu–Vandermonde Sum [13, p. 354, eq. (II.6)]:

2φ1

(
a, q−N

c
; q, q

)
= aN (c/a; q)N

(c; q)N
(23)

at the a → 0 limiting case. □

Lemma 12. For n ≥ 0,

Φ

([
n +1, z

n

]
q

)
= 1+q

q
− 1

q(−q2; q)n
. (24)

Proof. We prove this relation by induction on n. It is clear that the statement is true for n = 0 as

Φ

([
1, z

0

]
q

)
=Φ(1) =Φ

([
0, z

0

]
q

)
= 1.

Assuming that the statement is true for some n ≥ 0, we shall show that it is also true for n +1. We
begin by noticing that[

n +2, z

n +1

]
q

−qn+1

[
n +1, z

n +1

]
q

= (
([n +2]q +qn+2z)−qn+1([1]q +qz)

) · 1

[n +1]q !

n+1∏
k=2

([k]q +qk z)

= [n +2]q −qn+1

[n +1]q
·
[

n +1, z

n

]
q

=
[

n +1, z

n

]
q

.

Applying the linear functionalΦ on both sides gives

Φ

([
n +2, z

n +1

]
q

)
= qn+1 ·Φ

([
n +1, z

n +1

]
q

)
+Φ

([
n +1, z

n

]
q

)

= qn+1 · 1

(−q2; q)n+1
+

(
1+q

q
− 1

q(−q2; q)n

)
= 1+q

q
− 1

q(−q2; q)n+1
,

as desired. Here we have utilized (21) together with the inductive assumption for the second
equality. □

Theorem 13. For any P (z) ∈Q(q)[z],

qΦ
(
P (1+qz)

)+Φ(
P (z)

)= (1+q)P (0). (25)

Proof. Since {
[n,z

n

]
q }n≥0 forms a basis ofQ(q)[z], we may write P (z) as

P (z) =
N∑

n=0
cn

[
n, z

n

]
q

,

with N the degree of P (z) and cn ∈Q(q) for each 0 ≤ n ≤ N . Note that for n ≥ 0,[
n,1+qz

n

]
q

= 1

[n]q !

n∏
k=1

(
[k]q +qk (1+qz)

)= [
n +1, z

n

]
q

.
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Therefore,

qΦ
(
P (1+qz)

)+Φ(
P (z)

)= q
N∑

n=0
cnΦ

([
n +1, z

n

]
q

)
+

N∑
n=0

cnΦ

([
n, z

n

]
q

)
(
by (21)

(24)

) = q
N∑

n=0
cn

(
1+q

q
− 1

q(−q2; q)n

)
+

N∑
n=0

cn

(
1

(−q2; q)n

)
= (1+q)

N∑
n=0

cn .

Finally, we evaluate that

P (0) =
N∑

n=0
cn

[
n,0

n

]
q

=
N∑

n=0
cn

[n]q !

[n]q !
=

N∑
n=0

cn ,

thereby concluding the required relation. □

Theorem 14. For n ≥ 0,

Φ(zn) = ϵn . (26)

Proof. We first notice that Φ(z0) = Φ(1) = 1 = ϵ0. Now for n ≥ 1, we apply Theorem 13 with
P (z) = zn , and derive that

qΦ
(
(1+qz)n)+Φ(zn) = 0,

namely,

n∑
k=0

(
n

k

)
qk+1Φ(zk )+Φ(zn) = 0.

Since this recursive relation for Φ(zn) is identical to that for ϵn as given in (6), we conclude that
Φ(zn) = ϵn . □

5. Jacobi continued fractions and Hankel determinants

Let ℓ ∈ {0,1}. We define two linear functionalsΦℓ onQ(q)[z] by

Φℓ(zn) :=Φ(zn+ℓ) (n ≥ 0), (27)

where the linear functionalΦ is as in (21).

Theorem 15. Let ℓ ∈ {0,1}. The family of monic polynomials {Pℓ,n(z)}n≥0 given in (19) is
orthogonal under the linear functionalΦℓ.

Proof. The orthogonality of {Pℓ,n(z)}n≥0 is ensured by Lemma 4 since Pℓ,n(z) satisfies a three-
term recursive relation as shown in (20). Note that

Φ0
(
P0,0(z)

)=Φ0(z0) =Φ(z0) = ϵ0 ̸= 0,

and that
Φ1

(
P1,0(z)

)=Φ1(z0) =Φ(z1) = ϵ1 ̸= 0,

where (26) is invoked. Hence, it suffices to show that for ℓ ∈ {0,1}, the identity Φℓ
(
Pℓ,n(z)

) = 0
holds whenever n ≥ 1.

When ℓ= 0, we start by observing that for k ≥ 0,

(q(1− (1−q)z); q)k = (q ; q)k

[
k, z

k

]
q

.
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Thus,

P0,n(z) = (−1)n(q ; q)n

qn(1−q)n(−qn+1; q)n

n∑
k=0

qk (q−n ,−qn+1; q)k

(q ; q)k

[
k, z

k

]
q

.

SinceΦ0
(
P0,n(z)

)=Φ(
P0,n(z)

)
, it follows that for n ≥ 1,

Φ0
(
P0,n(z)

)= (−1)n(q ; q)n

qn(1−q)n(−qn+1; q)n

n∑
k=0

qk (q−n ,−qn+1; q)k

(q ; q)k
Φ

([
k, z

k

]
q

)

(by (21)) = (−1)n(q ; q)n

qn(1−q)n(−qn+1; q)n

n∑
k=0

qk (q−n ,−qn+1; q)k

(q,−q2; q)k

(by (23)) = (−1)n(q ; q)n

qn(1−q)n(−qn+1; q)n
· (−1)n qn(n+1)(q1−n ; q)n

(−q2; q)n

= 0.

When ℓ= 1, we notice that for k ≥ 0,

z(q(1− (1−q)z); q)k = (q2; q)k

[
k, z

k +1

]
q

.

Thus,

z ·P1,n(z) = (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n

n∑
k=0

qk (q−n ,−qn+2; q)k

(q ; q)k

[
k, z

k +1

]
q

.

SinceΦ1
(
P1,n(z)

)=Φ(
z ·P1,n(z)

)
, it follows that for n ≥ 1,

Φ1
(
P1,n(z)

)= (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n

n∑
k=0

qk (q−n ,−qn+2; q)k

(q ; q)k
Φ

([
k, z

k +1

]
q

)

(by (22)) =− (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n
· q

1+q2

n∑
k=0

qk (q−n ,−qn+2; q)k

(q,−q3; q)k

(by (23)) =− (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n
· q

1+q2 · (−1)n qn(n+2)(q1−n ; q)n

(−q3; q)n

= 0.

The required claim therefore holds. □

Now we are ready to state the J-fraction expressions for the series generated by {ϵk }k≥0 and
{ϵk+1}k≥0.

Corollary 16. Let ℓ ∈ {0,1}. We have

∑
k≥0

ϵk+ℓxk = ϵℓ

1+aℓ,0x − bℓ,1x2

1+aℓ,1x − bℓ,2x2

1+aℓ,2x − . . .

. (28)

Further, the associated orthogonal polynomials for {ϵk+ℓ}k≥0 are Pℓ,n(z). Here, aℓ,n , bℓ,n and
Pℓ,n(z) are as in Theorem 10.



Shane Chern and Lin Jiu 213

Proof. From (26), we know that when ℓ ∈ {0,1}, the relation ϵk+ℓ =Φℓ(zk ) holds for all k ≥ 0. In
view of Theorems 10 and 15, we apply Lemma 6 and obtain

∑
k≥0

ϵk+ℓxk = ∑
k≥0

Φℓ(zk )xk = Φℓ(z0)

1+aℓ,0x − bℓ,1x2

1+aℓ,1x − bℓ,2x2

1+aℓ,2x − . . .

,

where we have noted thatΦ0(z0) = ϵ0 andΦ1(z0) = ϵ1. □

Finally, we are in a position to complete the proof of Theorem 1.

Proof of Theorem 1. For (7) and (8), we directly apply (12) with Corollary 16 in mind. For (9), we
make use of (13) so that

det
0≤i , j≤n

(ϵi+ j+2) = det
0≤i , j≤n

(ϵi+ j+1) · (−1)n+1P1,n+1(0).

Note that by (19),

P1,n(0) = (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n
3φ2

(
q−n ,−qn+2, q

q2,0
; q, q

)
= (−1)n(q2; q)n

qn(1−q)n(−qn+2; q)n

∑
k≥0

(q−n ,−qn+2; q)k qk

(q2; q)k

= (−1)n+1(q ; q)n

(1−q)n(−qn+1; q)n+1

∑
k≥1

(q−n−1,−qn+1; q)k qk

(q ; q)k

(by (23)) = (−1)n+1(q ; q)n

(1−q)n(−qn+1; q)n+1

(
−1+ (−1)n+1q (n+1)2

)
.

Finally, invoking (8) yields the desired result after simplification. □

6. Conclusion

Noting that Theorem 15 only covers the cases of ℓ = 0 or 1, it is natural to ask if one could go
beyond. Recall that for every ℓ ≥ 0, the orthogonality of {Pℓ,n(z)}n≥0 is ensured by Lemma 4 in
light of (20). Now let us reformulate Pℓ,n(z) as

Pℓ,n(z) = (−1)n(qℓ+1; q)n

qn(1−q)n(−qn+ℓ+1; q)n

n∑
k=0

qk (q−n ,−qn+ℓ+1; q)k

(qℓ+1; q)k

[
k, z

k

]
q

.

For each ℓ≥ 0, define the linear functionalΘℓ onQ(q)[z] by

Θℓ

([
n, z

n

]
q

)
:= (qℓ+1; q)n

(q,−qℓ+2; q)n
(n ≥ 0). (29)
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ThenΘℓ
(
Pℓ,0(z)

)= 1 and for n ≥ 1,

Θℓ
(
Pℓ,n(z)

)= (−1)n(qℓ+1; q)n

qn(1−q)n(−qn+ℓ+1; q)n

n∑
k=0

qk (q−n ,−qn+ℓ+1; q)k

(qℓ+1; q)k
Θℓ

([
k, z

k

]
q

)

= (−1)n(qℓ+1; q)n

qn(1−q)n(−qn+ℓ+1; q)n
2φ1

(
q−n ,−qn+ℓ+1

−qℓ+2 ; q, q

)
(by (23)) = (−1)n(qℓ+1; q)n

qn(1−q)n(−qn+ℓ+1; q)n
· (−1)n qn(n+ℓ+1)(q1−n ; q)n

(−qℓ+2; q)n

= 0.

Hence, Theorem 15 can be extended as follows.

Theorem 17. For each nonnegative integer ℓ, the family of monic polynomials {Pℓ,n(z)}n≥0 given
in (19) is orthogonal under the linear functionalΘℓ.

Remark 18. Given a family of orthogonal polynomials {pn(z)}n≥0 in K[z] and two associated
linear functionals L1 and L2, it is clear by choosing {pn(z)}n≥0 as a basis of K[z] that there is a
nonzero constant C ∈K such that L1 =C ·L2. In our case, we have

Φ0 = ϵ0 ·Θ0 and Φ1 = ϵ1 ·Θ1.

On the other hand, it is a direct consequence of (12) and (20) that for each nonnegative integer ℓ,

det
0≤i , j≤n

(
Θℓ(zi+ j )

)= (−1)
(n+1

2

)
q2

(n+2
3

)+(2ℓ−1)
(n+1

2

)
(1−q)n(n+1)

n∏
k=1

(q2, q2ℓ+2; q2)k

(−qℓ+1,−qℓ+2,−qℓ+2,−qℓ+3; q2)k
. (30)

This identity reduces to (7) and (8) for

det
0≤i , j≤n

(
Φ0(zi+ j )

)= ϵn+1
0 · det

0≤i , j≤n

(
Θ0(zi+ j )

)
,

det
0≤i , j≤n

(
Φ1(zi+ j )

)= ϵn+1
1 · det

0≤i , j≤n

(
Θ1(zi+ j )

)
.

However, for ℓ ≥ 2, the linear functionals Θℓ and Φ are no longer related, thereby resulting in a
gap between Θℓ(zn) and the q-Euler numbers for higher cases of ℓ. In fact, it remains uncertain
if there is a closed expression for the momentsΘℓ(zn) when ℓ≥ 2.

Interestingly, if we directly look at the normalized big q-Jacobi polynomials J̃ℓ,n(z), it is
possible to deduce an infinite family of nice Hankel determinant evaluations, as demonstrated
below. In particular, these evaluations have a quite different nature from the rest because the
involved moments, as stated in (32), do have an explicit expression.

Theorem 19. For each nonnegative integer ℓ, define a sequence {ξℓ,n}n≥0 by

ξℓ,n := q (ℓ+1)n(−q ; q)n

(−qℓ+2; q)n
.

Then

det
0≤i , j≤n

(ξℓ,i+ j ) = (−1)
(n+1

2

)
q2

(n+2
3

)+(2ℓ+1)
(n+1

2

) n∏
k=1

(q2, q2ℓ+2; q2)k

(−qℓ+1,−qℓ+2,−qℓ+2,−qℓ+3; q2)k
. (31)

Proof. For each ℓ≥ 0, we introduce the linear functional Ξℓ onQ(q)[z] by

Ξℓ(zn) := ξℓ,n (n ≥ 0). (32)

We then have that for n ≥ 0,

Ξℓ
(
(z; q)n

)= (qℓ+1; q)n

(−qℓ+2; q)n
. (33)
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This is because the q-binomial theorem [2, p. 36, eq. (3.3.6)] tells us that

(z; q)n =
n∑

k=0
(−z)k q

(k
2

)[n

k

]
q

,

so that

Ξℓ
(
(z; q)n

)= n∑
k=0

(−1)k q
(k

2

)[n

k

]
q

·Ξℓ(zk )

(by (32)) =
n∑

k=0
(−1)k q

(k
2

)
· (−1)k qnk−(k

2

)
(q−n ; q)k

(q ; q)k
· q (ℓ+1)k (−q ; q)k

(−qℓ+2; q)k

= 2φ1

(
q−n ,−q
−qℓ+2 ; q, qn+ℓ+1

)
= (qℓ+1; q)n

(−qℓ+2; q)n
,

as claimed. Here we have made use of the reverse q-Chu–Vandermonde Sum [13, p. 354, eq. (II.7)]
in the last equality.

Now we consider the orthogonal polynomials J̃ℓ,n(z) as defined in (16). To show that Ξℓ is
their associated linear functional, we note that Ξℓ

(
J̃ℓ,0(z)

) = Ξℓ(1) = 1 and need to verify that
Ξℓ

(
J̃ℓ,n(z)

)= 0 whenever n ≥ 1. In fact,

Ξℓ
(
J̃ℓ,n(z)

)= (qℓ+1; q)n

(−qn+ℓ+1; q)n

n∑
k=0

qk (q−n ,−qn+ℓ+1; q)k

(q, qℓ+1; q)k
·Ξℓ

(
(z; q)k

)
= (qℓ+1; q)n

(−qn+ℓ+1; q)n
2φ1

(
q−n ,−qn+ℓ+1

−qℓ+2 ; q, q

)
= 0.

Finally, in light of the recursive relation for J̃ℓ,n(z) given in (17) with the same ãℓ,n and b̃ℓ,n

therein, we have ∑
k≥0

ξℓ,k xk = 1

1+ ãℓ,0x − b̃ℓ,1x2

1+ ãℓ,1x − b̃ℓ,2x2

1+ ãℓ,2x − . . .

. (34)

Applying (12) yields the desired Hankel determinant evaluations. □
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