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Abstract. Let N be the set of all nonnegative integers. For any positive integer k and any subset A of
nonnegative integers, let r1,k (A,n) be the number of solutions (a1, a2) to the equation n = a1 +ka2. In 2016,
Qu proved that

liminf
n→∞ r1,k (A,n) =∞

providing that r1,k (A,n) = r1,k (N\ A,n) for all sufficiently large integers, which answered affirmatively a 2012
problem of Yang and Chen. In a very recent article, another Chen (the first named author) slightly improved
Qu’s result and obtained that

liminf
n→∞

r1,k (A,n)

logn
> 0.

In this note, we further improve the lower bound on r1,k (A,n) by showing that

liminf
n→∞

r1,k (A,n)

n
> 0.

Our bound reflects the correct order of magnitude of the representation function r1,k (A,n) under the above
restrictions due to the trivial fact that r1,k (A,n) ≤ n/k.

Résumé. SoitN l’ensemble de tous les entiers non négatifs. Pour tout entier positif k et tout sous-ensemble A
d’entiers non négatifs, notons r1,k (A,n) le nombre de solutions (a1, a2) de l’équation n = a1 +ka2. En 2016,
Qu a prouvé que

liminf
n→∞ r1,k (A,n) =∞

ce qui signifie que r1,k (A,n) = r1,k (N \ A,n) pour tous les entiers suffisamment grands, ce qui répondait par
l’affirmative à un problème de Yang et Chen datant de 2012. Dans un article très récent, un autre Chen (le
premier auteur dans notre article) a légèrement amélioré le résultat de Qu et obtenu que

liminf
n→∞

r1,k (A,n)

logn
> 0.

Dans cette note, nous améliorons encore le minorant de r1,k (A,n) en montrant que

liminf
n→∞

r1,k (A,n)

n
> 0.

Notre limite reflète l’ordre de grandeur correct de la fonction de représentation r1,k (A,n) sous les restrictions
ci-dessus en raison du fait trivial que r1,k (A,n) ≤ n/k.
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1. Introduction

Let N be the set of all nonnegative integers and A a subset of N. For any nonnegative integer n,
let R1(A,n);R2(A,n) and R3(A,n) be the number of solutions (a, a′) to the equations n = a + a′

with a, a′ ∈ A; a, a′ ∈ A, a < a′ and a, a′ ∈ A, a ≤ a′, respectively. For backgrounds on these
representation functions Ri (A,n), i = 1,2,3, one can refer to an early survey article of Sárközy
and Sós [11]. Following Sárközy’s question, Dombi [6], Chen and Wang [5], Lev [7], Sándor [10],
Tang [13], Chen and Tang [4] and Chen [3] investigated various properties on values of the
representation functions Ri (A,n) and Ri (N\ A,n), i = 1,2,3.

In an interesting paper, Yang and Chen [15] introduced the following weighted representation
function

rk1,k2 (A,n) = #
{
(a1, a2) ∈ A2 : n = k1a1 +k2a2

}
,

where A is a subset of N and k1,k2 are two positive integers. They determined all pairs (k1,k2) of
positive integers for which there exists a set A ⊆N such that

rk1,k2 (A,n) = rk1,k2 (N\ A,n)

for all sufficiently large integers, which would reduce to partial answers to the original question
of Sárközy mentioned above for k1 = k2 = 1 on R1(A,n). For 1 ≤ k1 < k2 with (k1,k2) = 1, if there
exists a set A ⊆N such that

rk1,k2 (A,n) = rk1,k2 (N\ A,n)

for all sufficiently large integers, then Yang and Chen proved that k1 = 1. So the studies of the
weighted representation function r1,k (A,n) would be of particular interest.

For a positive integer k ≥ 2, letΨk be the set of all A ⊆N such that

r1,k (A,n) = r1,k (N\ A,n)

for sufficiently large integers n. A result of Yang [14] states that if k,ℓ are multiplicatively
independent (equivalently, logk/logℓ is irrational), then Ψk ∩Ψℓ = ;. Qu [9] then gave a
complete criteria for which Ψk ∩Ψℓ = ;. It turns out to be that Ψk ∩Ψℓ ̸= ; if and only
if logk/logℓ = a/b for some odd positive integers a and b, which disproved a conjecture of
Yang [14]. For related result, see also the article of Li and Ma [8], Shallit [1, 12]. In [15], Yang
and Chen posed the following problem:
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Problem 1. For any set A ∈Ψk , is it true that r1,k (A,n) ≥ 1 for all sufficiently large integers n? Is it
true that r1,k (A,n) →∞ as n →∞?

Problem 1 was later answered affirmatively by Qu [9]. Very recently, Chen [2] improved Qu’s
result by showing that

liminf
n→∞

r1,k (A,n)

logn
> 0

for any A ∈Ψk . In this note, we give the following very much stronger bound.

Theorem 2. Let k ≥ 2 be a given integer. For any set A ∈Ψk , we have

liminf
n→∞

r1,k (A,n)

n
> 0.

Remark 3. It can be seen that our new bound is sharp on the order of magnitude of r1,k (A,n) in
the sense that

limsup
n→∞

r1,k (A,n)

n
≤ 1/k.

Perhaps, it should be pointed out that the original argument of Qu [9] with necessary adjustments
can also lead to the bound given by Chen [2]. It is also worth mentioning that our argument here
leading to the sharp bound above in Theorem 2 is different and simplified comparing with the
somewhat complicated ones taken by Qu and Chen.

2. Proofs

Following Qu [9], we may write A as the following union of the “blocks”

A =
∞⋃

i=0
[t2i , t2i+1) ,

where 0 ≤ t0 < t1 < t2 < · · · is an increasing sequence of integers. The proof of our theorem is
based on the following lemma of Qu [9, Lemma 2.1].

Lemma 4. Let k ≥ 2 be a given integer. For any A ∈Ψk with

A =
∞⋃

i=0
[t2i , t2i+1) ,

there exist an odd positive integer a and a nonnegative integer i0 such that ti+a = kti for all i ≥ i0.

Proof of Theorem 2. By Lemma 4 for A ∈Ψk with

A =
∞⋃

i=0
[t2i , t2i+1) ,

there exists an odd positive integer a such that ti+a = kti for all i ≥ i0. Without loss of generality,
we can assume that i0 = 0, otherwise one can consider Ã = A \ [0, ti0 ) instead of A (this can be
seen from the proofs below). Let T = 4(ta+2 − t0). Then there exists some odd integer g ∈N such
that kg > T .

From now on, let n be a sufficiently large number. It is clear that there are nonnegative integers
m and r with 0 ≤ r < (kg +1) such that

n = (
kg +1

)
m + r.

We can assume that m ∈ [k s tℓ,k s tℓ+1) for two nonnegative integers s and ℓ with

0 ≤ ℓ≤ a −1.
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Recall that the integer n is assumed to be sufficiently large, it follows that both m and s are
sufficiently large. We will prove that

r1,k (A,n) ≥ n

k5ta (kg +2)
− (

kg +1
)

,

from which it follows clearly that

liminf
n→∞

r1,k (A,n)

n
> 0.

Since r1,k (A,n) = r1,k (N \ A,n) for all sufficiently large n, we can also assume, without loss of
generality, that [

k s tℓ,k s tℓ+1
)⊆ A.

Since g is an odd integer, we make the observation that each of the following three intervals[
k s tℓ−2,k s tℓ−1

)
,

[
k s tℓ+2,k s tℓ+3

)
and

[
k s+g−1tℓ,k s+g−1tℓ+1

)
contains in A as well, which is crucial in the following arguments. Before the continuation of the
proof, we make the following notice that for brevity we write, for example,

k3t2, k4t2−a and k2t2+a

as the same number at different occasions. The proofs are divided into three cases:

Case I. k s tℓ+k s−4 ≤ m < k s tℓ+1 −k s−4. Noting that for any 0 ≤ q < k s−5 − r , we have

n = (m +kq + r )+k
(
kg−1m −q

)
,

where both m +kq + r and kg−1m −q belong to A since

m +kq + r ∈ [
k s tℓ,k s tℓ+1

)
and kg−1m −q ∈ [

k s+g−1tℓ,k s+g−1tℓ+1
)

.

Thus, we deduce that

r1,k (A,n) ≥ k s−5 − r

> m

k5tℓ+1
− (kg +1)

≥ n − r

k5ta (kg +1)
− (

kg +1
)

≥ n

k5ta (kg +2)
− (

kg +1
)

.

Case II. k s tℓ ≤ m < k s tℓ+k s−4. For any

k s−1 (tℓ− tℓ−1)+k s−5 + r < q ≤ k s−1 (tℓ− tℓ−2) ,

it can be seen that
m −kq + r ∈ [

k s tℓ−2,k s tℓ−1
)⊆ A

and
kg−1m +q ∈ [

k s+g−1tℓ,k s+g−1tℓ+1
)⊆ A,

where the latter inclusion relation comes from the observation that [k s+g−1tℓ,k s+g−1tℓ+1) con-
tains in A made previously and the facts that

kg−1m +q < kg−1 (
k s tℓ+k s−4)+k s−1 (tℓ− tℓ−2) ≤ k s+g−1tℓ+1

since kg > T ≥ 2(tℓ− tℓ−2). Note that

n = (m −kq + r )+k
(
kg−1m +q

)
for all these q , from which we conclude that

r1,k (A,n) ≥ k s−1(tℓ− tℓ−2)−k s−1(tℓ− tℓ−1)−k s−5 − r

≥ 1

2
k s−1 − r
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≥ n − r

2kta (kg +1)
− (

kg +1
)

≥ n

2kta (kg +2)
− (

kg +1
)

.

Case III. k s tℓ+1 −k s−4 ≤ m < k s tℓ+1. It can be verified directly that

m +kq + r ∈ [
k s tℓ+2,k s tℓ+3

)⊆ A

and
kg−1m −q ∈ [

k s+g−1tℓ,k s+g−1tℓ+1
)⊆ A,

for any
k s−1 (tℓ+2 − tℓ+1)+k s−5 ≤ q ≤ k s−1 (tℓ+3 − tℓ+1)− r

via similar arguments in Case II. In fact,

kg−1m −q ≥ kg−1 (
k s tℓ+1 −k s−4)−k s−1 (tℓ+3 − tℓ+1) ≥ k s+g−1tℓ

since kg > T ≥ 2(tℓ+3 − tℓ+1). Note that

n = (m +kq + r )+k
(
kg−1m −q

)
for all these q , from which we conclude that

r1,k (A,n) ≥ k s−1(tℓ+3 − tℓ+1)−k s−1 (tℓ+2 − tℓ+1)−k s−5 − r

≥ 1

2
k s−1 − r

≥ n − r

2kta (kg +1)
− (

kg +1
)

≥ n

2kta (kg +2)
− (

kg +1
)

.

This completes the proof of Theorem 2. □
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