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Abstract. In this paper, we determine the transversal instability of periodic traveling wave solutions of the
generalized Zakharov–Kuznetsov equation in two space dimensions. Using an adaptation of the arguments
in [F. Rousset et N. Tzvetkov, 2010] in the periodic context, it is possible to prove that all positive and one-
dimensional L−periodic waves are spectrally (transversally) unstable. In addition, when periodic waves that
change their sign exist, we also obtain the same property when the associated projection operator defined in
the zero mean Sobolev space has only one negative eigenvalue.

Résumé. Dans cet article, nous déterminons l’instabilité transversale des solutions périodiques de l’équation
de Zakharov–Kuznetsov généralisée en deux dimensions spatiales. En utilisant l’adaptation des arguments
de [F. Rousset et N. Tzvetkov, 2010] dans le contexte périodique, il est possible de prouver que toutes les
ondes positives et unidimensionnelles L’ sont spectralement (transversalement) instables. En outre, lorsqu’il
existe des ondes périodiques qui changent de signe, nous obtenons également la même propriété lorsque
l’opérateur de projection associé défini dans l’espace de Sobolev à moyenne nulle n’a qu’une seule valeur
propre négative.

2020 Mathematics Subject Classification. 35B10, 35B35, 35Q53.

Funding. F. Natali is partially supported by Fundação Araucária/Brazil (grant 002/2017) and CNPq/Brazil
(grant 303907/2021-5).

Manuscript received 21 March 2023, revised 14 September 2023, accepted 4 October 2023.

1. Introduction

In this paper, we consider the generalized Zahharov–Kuznetsov equation (gZK henceforth)

ut +up ux + (∆u)x = 0 (1)
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posed on TL ×R, that is, the evolution u = u(x, y, t ) is a real-valued function and it is defined in
TL ×R×R. Here, p > 0 and the set TL indicates the L−torus. All functions defined on it may be
seen as periodic functions on the real line with period L > 0.

Let us consider periodic traveling waves propagating only in the first variable and with wave
speed c > 0, that is, suppose that u(x, y, t ) = ϕ(x − ct ) is a solution of (1). Substituting this form
into the equation (1), we obtain after integration the following ODE

−ϕ′′+ cϕ− 1

p +1
ϕp+1 + A = 0, (2)

where A is a constant of integration which we will assume zero, that is, A ≡ 0.
In what follows, we consider the perturbation of the evolution u(x, y, t ) associated to the

equation (1) of the form

u(x, y, t ) = v(x − ct , y, t )−ϕ(x − ct ). (3)

After some computations and neglecting the nonlinear terms, we obtain from the equation (2),
that v satisfies the following linear equation

vt = ∂x

(
L −∂2

y

)
v, (4)

where L is the linearized operator given by

L =−∂2
x + c −ϕp . (5)

Suppose that equation (4) admits a growing mode solution of the form v(x, y, t ) = eλt e i k y w(x),
where w is an L−periodic smooth function. Substituting this form of solution into the equa-
tion (4), we obtain the following spectral problem

∂x
(
L +k2I

)
w =λw. (6)

Problem (6) can be seen in an equivalent form as

∂x
(
QL +k2I

)
w =λw, (7)

where QL is the projection of the operator L in the space L2
per,m([0,L]) constituted by periodic

(classes of) functions in L2
per ([0,L]) with the zero mean property. QL is then defined as

QL =L + 1

L

(
ϕp , ·)L2

per
. (8)

For λ ̸= 0, it is important to notice that we are forced to consider, because of the problem (7),
that w has the zero mean property just by integrating both sides of the equality (7) over the
interval [0,L]. In addition, since the linear operator ∂x : H 1

per,m([0,L]) → L2
per,m([0,L]) is invertible

with bounded inverse ∂−1
x : L2

per,m([0,L]) → H 1
per,m([0,L]), we can also consider the unique U ∈

L2
per,m([0,L]) such that w = ∂−1

x U . This fact enables us to consider the new spectral (and correct)
problem in the periodic context given by,(

∂xQL ∂−1
x +k2I

)
U =λ∂−1

x U , (9)

Therefore, the problem of the transversal stability reduces to a spectral stability problem where
the propagation of the wave is considered just in one direction. More specifically, we have:

Definition 1. The periodic wave ϕ ∈ H 2
per ([0,L]) is said to be transversally spectrally stable if

σ(∂xQL ∂−1
x + k2I ) ⊂ iR in L2

per,m([0,L]) for all k > 0. Otherwise, that is, if σ
(
∂xQL ∂−1

x +k2I
)

in L2
per,m([0,L]) contains a point λ with Re(λ) > 0 for some k > 0, the periodic wave ϕ is said to be

transversally spectrally unstable.
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As far as we can see, the transverse instability of traveling waves associated to the equation (1)
has been determined for both periodic and solitary waves cases. For the case R×R, we see that
the author in [4] determined a geometric condition for the long wavelength transverse instability
of solitary solutions by using the multi-symplectic structure of the equation (1). Using the explicit
form of the solution for the equation (2) with hyperbolic secant profile (that is, A = 0 in equation
(2)), the author derived an index which could be viewed as the Jacobian of a particular map
and whose sign determined the transverse stability of the underlying wave. In [7], the author
derived sufficient conditions for the transverse instability in case TL ×R by using the well-known
result of spectral stability of periodic waves associated to the Korteweg–de Vries equation. The
approach then was effectively used (by considering small values of A in (13)) to conclude the
transversal instability of periodic waves with large periods or waves located in a neighbourhood
of the stationary solution, that is, when the periodic wave is close up to the solitary wave or the
equilibrium solution in the associated phase portrait corresponding to the equation (13).

In [16], the author studied the case R×TL and p = 1 in equation (1). Using the arguments
in [10], it is possible to conclude the transversal stability for L ∈ (0, 2p

5c
] and the transversal

instability when L > 2p
5c

. Here, the value 2p
5c

is associated with the unique negative eigenvalue

of the linearized operator L =−∂2
x +c−2Qc , where Qc is the solitary wave with hyperbolic secant

profile. More specifically, we haveλc =− 5c
4 , where Lχ=λcχ for some smooth non-zero periodic

function χ. In addition, the author establishes orbital (asymptotic) stability and instability results
using the transversal stability and instability previously obtained and jointly with a suitable global
well-posedeness results.

The methods presented in our contribution are based on a adaptation of the approach in [13]
which established a simple criterion for the transversal instability for solitary waves. The spectral
problem in (9) fits in some sense in the framework in [13], but the main problem is that our
operator ∂xQL ∂−1

x +k2I in (9) is not self-adjoint as requested in [13]. To overcome this difficulty,
we prove some facts of spectral theory to guarantee that ∂xQL ∂−1

x + k2I and the self-adjoint
operator QL +k2I have the same spectra. Using some parts of the proof in [13, Theorem 1.1],
it is possible to prove the existence of k0 > 0 such that dim(ker(QL +k2

0 I )) = 1 and since both
subspaces ker((QL +k2

0 I )) and ker(∂xQL ∂−1
x +k2

0 I ) have the same dimension (see Lemma 8), we
obtain that dim(ker(∂xQL ∂−1

x +k2
0 I )) = dim(ker((∂xQL ∂−1

x +k2
0 I )∗)) = 1. The fact 0 is an isolated

eigenvalue of ∂xQL ∂−1
x +k2

0 I enables us to conclude that range(∂xQL ∂−1
x +k2

0 I ) is closed and
thus,

codim
(
range

(
∂xQL ∂−1

x +k2
0 I

))= dim
(
ker

(
∂xQL ∂−1

x +k2
0 I

))= 1,

that is, ∂xQL ∂−1
x +k2

0 I is a Fredholm operator with zero index. This last fact is suitable to prove
the transversal spectral instability of ϕ by using the Lyapunov-Schmidt reduction to study the
eigenvalue problem (9) in the vicinity of ν = 0, k = k0 and U = ψ, where ψ is in the kernel of
∂xQL ∂−1

x +k2
0 I and such that ∥ψ∥L2

per
= 1.

Our result is now established. In order to simplify the notation, we define for k ≥ 0 the
following linear operators

R(k) =QL +k2I (10)

and
P (k) = ∂xQL ∂−1

x +k2I . (11)

Theorem 2. Let ϕ be a positive and periodic solution for the equation (2) with A = 0. There exist
ν> 0, k ̸= 0 and U ∈ H 2

per,m([0,L])\{0} such that the spectral problem

P (k)U = ν∂−1
x U , (12)

is verified. In particular, the periodic traveling wave solution ϕ is transversally (spectrally) unsta-
ble. Moreover, let p be a positive even number and consider ϕ a periodic solution that changes its
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sign for the equation (2) with A = 0. The periodic solutionϕ is transversally unstable provided that
R(0) has only one negative eigenvalue.

Remark 3. It is important to mention that the proof of Theorem 2 is similar to the proof of [13,
Theorem 1.1] but adapted to the periodic context. As we have mentioned above, our operator
P (k) in (11) does not satisfy the self-adjointness requirement as specified in [13]. To overcome
this difficulty, we must establish a suitable characterization of the spectrum of P (k) in terms of
the self-adjoint operator R(k) in (10). Additionally, we need to find a non-zero value of k0 such
that P (k0) is a Fredholm operator with zero index. This last condition is crucial for applying the
Lyapunov–Schmidt reduction and demonstrating the existence of ν > 0, k ̸= 0, and a non-zero
U ∈ H 2

per,m([0,L]) such that the spectral problem (12) is verified. To avoid plagiarism, we will
omit the portions of our work that coincide with the proof of the main result in [13].

Finally, we present some comments concerning the nonlinear instability of the periodic wave
ϕ (see Section 4) that is transversally (spectrally) unstable according to the Theorem 2. To do
so, we need to use the general setting in [6] (see also [12, 14, 15] for additional references). It
is important to mention that the nonlinearity present in the equation (1) is of the form up ux ,
where p > 0. As far as we know, to prove the nonlinear instability, it is suitable to obtain a
convenient global well-posedness result in the energy space X = H 1

per (TL ×R) for the Cauchy
problem associated to the evolution equation. For most values of p > 0, we do not have any
information about the (local) well-posedness result in the energy space X , but global solutions
in time are expected if 1 ≤ p < 2 by using the Gagliardo–Nirenberg inequality applied to the
conservation law E in (22). Regarding our study of spectral stability, we do not need a convenient
well-posedness result since we can consider smooth solutions u of the form (3). In fact, ϕ is
smooth and v is decomposed as a product of exponentials factors in time eλt and in the spatial
variable e i k y , with a smooth solution w depending on x. Function w can be considered smooth
because of a bootstrapping argument applied to the equation (12).

Our paper is organized as follows: Section 2 is devoted to present the existence of periodic
waves via planar analysis. In Section 3, we prove Theorem 2 and present some concrete examples.
In Section 4, we present some remarks concerning the nonlinear instability.

2. Existence of periodic solutions via planar analysis

In this section, we present some basic facts concerning the existence of periodic solutions for the
nonlinear equation (2) for A = 0, that is,

−ϕ′′+ cϕ− 1

p +1
ϕp+1 = 0, (13)

where c > 0 and p > 0 are real numbers.
It is well known that quation (13) is conservative and the eventual periodic solutions are

contained on the level curves of the energy

E (ϕ,ξ) = ξ2

2
− cϕ2

2
+ ϕp+2

(p +1)(p +2)
, (14)

where ξ=ϕ′.
By classical theories of ordinary differential equations (see [5] for further details), we see that

ϕ is a periodic solution of the equation (13) if, and only if, (ϕ,ϕ′) is a periodic orbit of the planar
differential system {

ϕ′ = ξ,
ξ′ = cϕ− 1

p+1ϕ
p+1. (15)
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The periodic orbits for the equation (15) can be determined by considering the energy levels
of the function E defined in (14). This means that the pair (ϕ,ξ) satisfies the equation E (ϕ,ξ) = B .
If p > 0 and B ∈ (B0,0), we obtain periodic orbits which turn round at the equilibrium points

(((p+1)c)1/p ,0). Here, B0 is a negative number defined as B0 =− p(p+1)
2
p c

p+2
p

2(p+2) . In our specific case,
we see that (15) has at least two critical points, being one saddle point at (ϕ,ξ) = (0,0) and one
center point at (ϕ,ξ) = (((p+1)c)1/p ,0). According to the standard theories of ordinary differential
equations, the periodic orbits emanate from the center points to the separatrix curve which is
represented by a smooth solution ϕ̃ : R→ R of (13) satisfying limx→±∞ ϕ̃(n)(x) = 0 for all n ∈ N.
When p is in particular an even integer, we see that the presence of two symmetric center points
(±((p +1)c)1/p ,0) allows to conclude that the periodic orbits which turn around these points can
be negative and positive. Outside the separatrix, we have the existence of periodic solutions that
change their sign. Indeed, if B > 0 we also have periodic orbits and the corresponding periodic
solutions ϕ with the zero mean property, that is, periodic solutions satisfying

∫ L
0 ϕ(x)d x = 0.

Independently of the type of periodic solutions which we are working on, the period L = L(B)
of the solution ϕ can be expressed (formally) by

L = 2
∫ b2

b1

dh√
− 2hp+2

(p+1)(p+2) + ch2 +2B
, (16)

where b1 = min
x∈ [0,L]

ϕ(x) and b2 = max
x∈ [0,L]

ϕ(x).

On the other hand, the energy levels of the first integral E in (14) parametrize the unbounded
set of periodic orbits {ΓB }B which emanate from the separatrix curve. Thus, we can conclude
that the set of smooth periodic solutions of (13) can be expressed by a smooth family ϕ = ϕB

which is parametrized by the value B . Moreover, when B ∈ (B0,0), we see that if B → B0, we have
L →α(c) > 0 (stationary solution), and if B → 0, one has L →+∞ (solitary wave solution). On the
other hand, when B ∈ (0,+∞), we see that if B → 0, we have L →+∞ (solitary wave solution), and
if B →+∞, we obtain L → 0.

3. Transversal spectral instability of periodic waves for gZK

Before proving our main result, we need some basic facts concerning spectral theory. The first
result is now given and establishes a similarity regarding the resolvent set of the operators R(k)
and P (k) for all k ≥ 0.

Lemma 4. Let R(k) and P (k) be the linear operators defined in (10) and (11), respectively. For
all k ≥ 0, we have ρ(R(k)) = ρ(P (k)), where ρ(A ) indicates the resolvent set of certain linear
operator A .

Proof. It suffices to prove the result for the case k = 0 since ∂xQL ∂−1
x +k2I = ∂x (QL +k2I )∂−1

x .
Let λ ∈ ρ(P (0)) be fixed. Thus P (0)−λI is invertible and for each v ∈ L2

per,m([0,L]), there exists a
unique u ∈ H 2

per,m([0,L]) such that (P (0)−λI )u = v . On the other hand, since ∂x : H 1
per,m([0,L]) →

L2
per,m([0,L]) is also invertible, there exists a unique w ∈ H 1

per,m([0,L]) such that v = ∂x w . Since
w = ∂−1

x v , we obtain, from the fact (QL −λI )∂−1
x u = ∂−1

x v that (QL −λI )r = w, where r = ∂−1
x u.

Then, we deduce QL −λI is invertible and since QL −λI is a self-adjoint closed operator with
ker(QL −λI ) = {0} and range(QL −λI ) = L2

per,m([0,L]), we have from the closed graph theorem
λ ∈ ρ(R(0)), that is, ρ(P (0)) ⊂ ρ(R(0).

Next, letλ ∈ ρ(R(0)) be fixed. Since QL −λI is invertible and ∂xQL ∂−1
x −λI = ∂x (QL −λI )∂−1

x ,
we see that ∂xQL ∂−1

x −λI is invertible and (∂xQL ∂−1
x −λI )−1 = ∂x (QL −λI )−1∂−1

x . On the other
hand, the adjoint operator of P (0) is given by P (0)∗ = ∂−1

x QL ∂x and it is defined in L2
per,m([0,L])

with dense domain H 2
per,m([0,L]). Since (∂−1

x QL ∂x )∗ = ∂xQL ∂−1
x is a closed operator with
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ker(∂xQL ∂−1
x −λI ) = {0} and range(∂xQL ∂−1

x −λI ) = L2
per,m([0,L]), we obtain again by the closed

graph theorem that λ ∈ ρ(P (0)), so that ρ(R(0)) ⊂ ρ(P (0)). The lemma is now concluded. □

Remark 5. Lemma 4 enables us to conclude that σ(P (k)) = σ(R(k)) for all k ≥ 0, where σ(A )
denotes the spectrum set of a certain linear operator A . Since σ(R(k)) is also constituted only
by a discrete set of eigenvalues accumulating at the infinity, we obtain that σ(P (k)) is constituted
only by discrete eigenvalues with the same behaviour. As a consequence of this fact is that there
is no essential spectrum associated to the operator P (k).

Lemma 6. Suppose that 0 ∈σ(R(k0)) for some k0 > 0. We have that range(P (k0)) is a closed set in
L2

per,m([0,L]).

Proof. We see that P (k0) is a closed linear operator defined in the Hilbert space L2
per,m([0,L])

with dense domain H 2
per,m([0,L]). Thus, it suffices to prove that 0 is not an accumulation point

of the spectrum σ(P (k0)∗P (k0)) of P (k0)∗P (k0). In fact, we see by hypothesis of the lemma and
Remark 5 that 0 is an isolated eigenvalue of the linear operator P (k0). Since P (k0) is a closed
linear operator, we obtain P (k0)∗∗ = P (k0), so that P (k0)∗P (k0) is self-adjoint. Because of the
compact embeddings H 2

per,m([0,L]) ,→ H 1
per,m([0,L]) ,→ L2

per,m([0,L]), we have for µ > 0 large
enough that the operator P (k0)∗P (k0)+µI is invertible with bounded inverse. Using the spectral
theorem for compact and self-adjoint operators, it follows that the spectrum σ(P (k0)∗P (k0)+µI )
of P (k0)∗P (k0)+µI is constituted only by a discrete set of eigenvalues, so that the same behaviour
occurs for the spectrum σ(P (k0)∗P (k0)) of P (k0)∗P (k0). Thus 0 is an isolated point of the
spectrum σ(P (k0)∗P (k0)) of P (k0)∗P (k0) and range(P (k0)) is closed as requested. □

Remark 7. Lemma 6 guarantees that if 0 ∈σ(R(k0)) for some k0 > 0, we obtain range(P (k0)) is a
closed subspace of L2

per,m([0,L]) and therefore,

codim
(
range(P (k0))

)= dim
(
ker

(
P (k0)∗

))
.

Lemma 8. For all k ≥ 0, we have that dim(ker(P (k)∗)) = dim(ker(P (k))) = dim(ker(R(k))).

Proof. By spectral theorem for compact and self-adjoint operators, it follows that dim(ker(R(k)))
is finite. Let us consider {v1, v2, · · · , vn} a basis for ker(R(k)). We see that {∂x v1,∂x v2, · · · , ∂x vn}
is a basis for ker(P (k)) while {∂−1

x v1,∂−1
x v2, · · · , ∂−1

x vn} is a basis for ker(P (k)∗). In fact, we verify
only the first claim since the second one is similar. Let w be an element in ker(P (k)). Since
(∂xQL ∂−1

x +k2I )w = ∂x (QL +k2)∂−1
x w = 0, we see that (QL +k2)∂−1

x w = 0 and ∂−1
x w belongs

to ker(R(k)). Consequently, w can be written uniquely as a linear combination of the elements
∂x v1,∂x v2, · · · , ∂x vn . Thus, we get that {∂x v1,∂x v2, · · · , ∂x vn} determines a basis for ker(P (k)) and
the proof of the lemma is now completed. □

Proposition 9. The first eigenvalue of R(0) defined in (10) is negative, simple and it can be
considered an even periodic function.

Proof. Let k1 > 0 be a fixed positive integer (large enough) and consider the associated operator
R(k1) =QL +k2

1 I . Define the basic set

C =
{

u ∈C∞
per,m,e ([0,L]); u ≥ 0 in

[
0,

L

4

]}
,

where C∞
per,m,e ([0,L]) denotes the space constituted by smooth even L−periodic functions with

the zero mean property. We see that C is a cone since for all β ≥ 0 and u ∈ C , we have βu ∈ C

and C ∩(−C ) = {0}, where −C is defined as −C = {u ∈C∞
per,m,e ([0,L]); u ≤ 0 in [0, L

4 ]}. The interior
set of C , denoted by C o , is clearly non-empty and then, C is called a solid cone. For k1 > 0 large
enough, we have that R(k1)−1 is defined in L2

per,m,e ([0,L]), it has bounded inverse and R(k1)−1 :
L2

per,m,e ([0,L]) → L2
per,m,e ([0,L]) is a compact operator. Suppose that v ∈ C∞

per,m,e ([0,L]) satisfies
v > 0 in [0, L

4 ]. There is a unique u ∈C∞
per,m,e ([0,L]) such that v = R(k1)u. By an application of the
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maximum principle in the one-dimensional case (see [11, Chapter 1, Theorem 23]), we obtain
u > 0 in [0, L

4 ], that is, R(k1)−1 is totally positive. Using the standard Krein–Rutman Theorem,
we obtain the existence of w ∈ C o such that (QL + k2

1 I )−1w = ϱw, where ϱ > 0 is the spectral
radius of the operator (QL + k2

1 I )−1 with ϱ being a simple isolated eigenvalue. Since k1 > 0 is
large enough, the first eigenvalue of QL is negative and simple. □

Proposition 10. Let L be the operator defined in (5) and suppose that L has only one negative
eigenvalue. Thus R(0) =QL defined in (10) has only one negative eigenvalue.

Proof. According with [1, Theorem 1.1] we see that the kernel of L is simple and generated
by ϕ′. In addition, the case where L has only one negative eigenvalue occurs only when ϕ is
an even positive and periodic solution associated to the equation (13) (see [1, Theorem 1.1 and
Lemma 3.1]). Since the first eigenvalue of R(0) is negative, we see that n(R(0)) ≥ 1, where n(A )
denotes the quantity of negative eigenvalues of a certain linear operator A . The fact that kernel
of L is simple enables us to conclude, by Index Theorem [8, Theorem 5.3.2], that n(R(0)) =
n(L )−n0 − z0, where z0 and n0 are non-negative integers which are related with the quantity
(L −11,1)L2

per
. In fact, if (L −11,1)L2

per
< 0, we have n0 = 1 and z0 = 0, while (L −11,1)L2

per
> 0

implies n0 = z0 = 0 and for (L −11,1)L2
per

= 0, we obtain n0 = 0 and z0 = 1. Since n(R(0)) ≥ 1 and
n(L ) = 1, we deduce z0 = n0 = 0, so that n(R(0)) = 1 as requested. □

Proof of the Theorem 2. The proof of this result is similar to [13, Theorem 1.1] and because
of this, we only give the main steps. We have to notice that if n(R(0)) = 1 gives us exactly
assumption (H4) in [13]. First, according with Remark 5, we see that σ(R(k)) and σ(P (k)) are
constituted only by a discrete set of eigenvalues of R(k) and P (k), respectively. Second, in
terms of the inner product of L2

per ([0,L]), we see that if k1 ≥ k2 ≥ 0, we have R(k1) ≥ R(k2).
In addition, suppose the existence of k > 0 and U ̸= 0, such that R(k)U = 0. Clearly, we have
(R ′(k)U ,U )L2

per
= 2k(U ,U )L2

per
> 0. The two last facts are exactly assumptions (H2) and (H3)

of [13] concerning the linear and self-adjoint operator R(k). Next, we establish the existence of
k0 > 0 such that ker(R(k0)) is one-dimensional. In fact, we define

f (k) = inf
∥u∥L2

per
=1

(R(k)u,u)L2
per

. (17)

In any case, that is, if ϕ positive1 or a periodic solution that changes its for (13), we have that
R(0) has only one negative eigenvalue which is simple. Thus, there exists a unique β > 0 and an
associated χβ ∈ H 2

per,m([0,L])\{0} such that R(0)χβ =QLχβ =−βχβ and ∥χβ∥L2
per

= 1. Thus

f (0) = inf
∥u∥L2

per
=1

(R(0)u,u)L2
per

≤ (−βχβ,χβ
)

L2
per

=−β< 0.

On the other hand, since R(0) has only one negative eigenvalue, we obtain for a large k > 0 that
R(k) = R(0)+k2I is a positive operator, so that f (k) > 0 for large values of k > 0. The intermediate
value theorem then implies the existence of k0 > 0 such that f (k0) = 0, where f (k) < 0 for all
k ∈ [0,k0). Using the same arguments as in [13, Theorem 1.1], we obtain that dim(ker(R(k0))) = 1.

In addition, since R(k0) is a self-adjoint closed operator, we can use again Lemma 6 to
conclude that range(R(k0)) is a closed subspace contained in L2

per,m([0,L]). Thus, it follows that

codim
(
range(R(k0))

)= dim
(

ker(R(k0))
)= 1. (18)

Thus, by Remark 7, Lemma 8, and (18), we have

codim
(
range(P (k0))

)= dim
(

ker(P (k0)∗)
)= dim

(
ker(P (k0))

)= 1. (19)

1For positive and periodic solutions see Proposition 10
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To finish, we see by Remark 5 that σ(P (k0)) is constituted by a discrete set of isolated eigen-
values and by (19) it follows that P (k0) is a Fredholm operator with zero index. We then use the
Lyapunov–Schmidt method to study the eigenvalue problem (12) in the vicinity of ν = 0, k = k0

and U =ψ, where ψ is in the kernel of P (k0) and such that ∥ψ∥L2
per

= 1. In fact, we want to find

W =ψ+V , where V ∈ {ψ}⊥ and our intention is to solve G(V ,k,ν) = 0 with ν> 0, where

G(V ,k,ν) = P (k)ψ+P (k)V −ν∂−1
x ψ−ν∂−1

x V , V ∈ {ψ}⊥.

The reminder of the proof is similar as the final of the proof of [13, Theorem 1.1] and because of
this, we omit the details. □

3.1. Examples

We present some examples to show the effectiveness of our result.

a) Positive periodic waves. Let p > 0 be fixed. According with facts presented in Section 2, we
obtain positive and periodic waves with turns around the equilibrium point (((p+1)c)1/p ,0) in the
phase portrait and goes to the homoclinic wave for large periods. According with [1, Theorem 1.1
and Lemma 3.1], we see that L has only one negative eigenvalue which is simple and therefore,
by Theorem 2 we have that all positive and periodic waves are transversally (spectrally) unstable.

b) Periodic waves that change their sign. Let p be a positive even integer. By the arguments
in Section 2, we see that equation (13) has two symmetric equilibrium points (±((p +1)c)1/p ,0)
and, consequently, positive and negative periodic waves appear in the corresponding phase-
portrait. Since both of them converges to the corresponding homoclinic waves for large periods,
we obtain two symmetric solitary waves (which are positive and negative smooth functions).
Turning around both solitary waves, we obtain periodic waves that change their sign with the zero
mean property. Again by [1, Theorem 1.1 and Lemma 3.1], we deduce that n(L ) = 2 and thus, we
can not decide if n(R(0)) is one or two using directly Proposition 10. In order to guarantee that
n(R(0)) = 1, we need to use the Index Theorem in [8, Theorem 5.3.2] to get a convenient formula
to calculate n(R(0)) as n(R(0)) = n(L )−n0 − z0. As we have already mentioned in the proof of
Proposition 9, quantities z0 and n0 are non-negative integers which are related with the quantity
(L −11,1)L2

per
. If (L −11,1)L2

per
< 0, we have n0 = 1 and z0 = 0, while (L −11,1)L2

per
> 0 implies

n0 = z0 = 0 and for (L −11,1)L2
per

= 0, we obtain n0 = 0 and z0 = 1. To apply Theorem 2, we need

to prove that (L −11,1)L2
per

≤ 0 because in this case, we have n(R(0)) = n(L )−n0 − z0 = 1. This
fact is not so simple to obtain in general and in fact, it is possible to prove in a specific case
that (L −11,1)L2

per
≤ 0 for some values of c depending on L and (L −11,1)L2

per
> 0 for other values

of c. For instance, when p = 2, we have periodic waves that change their sign as determined
in [2, 3]. Let L0 > 0 be fixed. In [3] the authors calculated a threshold value c∗ depending on the
period L0 where for c ∈ (0,c∗], we have (L −11,1)L2

per
≤ 0, so that n(R(0)) = 1 and the periodic

wave that changes its ϕ is transversally unstable. For c > c∗ we obtain, since (L −11,1)L2
per

> 0,
that n(R(0)) = 2 and Theorem 2 can not be applied. The value of c∗ can be explicitly determined
as c∗ ≈ 56.277

L2
0

. Next, we can obtain a similar result when p = 4. In this case, we also have a

threshold value c# such that for c ∈ (0,c#] the periodic wave that changes its ϕ is transversally
unstable since (L −11,1)L2

per
≤ 0. The value of c# can be explicitly computed as c# ≈ 43.665

L2
0

(see [9]

for further details).

Remark 11. If p = 2 or p = 4, we can determine the transversal (spectral) instability of the
periodic wave ϕ that changes its sign in the case n(R(0)) = 2. As we have already mentioned in
Example b), [13, Theorem 1.2] can not be applied since P (k0) is not a Fredholm operator with zero
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index. To prove the transversal instability in both cases, we need to use the spectral instabilities
results in [2, 9] for the modified and critical KdV, respectively. In fact, in both cases the spectral
problem to study is similar but we need to consider k = 0 in (7), that is, we need to consider
the spectral problem ∂xQL w = λw , where w is a smooth real periodic function with the zero
mean property. For p = 2 and c > c∗, we obtain (L −11,1)L2

per
> 0 and since d

dc

∫ L
0 ϕ(x)2d x > 0,

we conclude by [2, Theorem 4.2] that the spectrum of ∂xQL has a complex eigenvalue with
positive real part. By continuity, we then deduce, for k1 > 0 small enough, that the spectrum
of ∂x (QL + k2

1) has the same property and the wave is transversally unstable according to the
Definition 1. In the case p = 4 and c > c#, we have the same scenario as in the case p = 2 by
using [9, Theorem 1.1-b].

4. Remarks on the nonlinear instability

In this section, we present some remarks concerning the nonlinear instability of the periodic
wave ϕ that is transversally (spectrally) unstable according to the Theorem 2. As we have already
mentioned in the introduction, we need to start by assuming the following hypothesis in order
to cover all possible cases of well-posedness results in the energy space X = H 1(TL ×R) of the
Cauchy problem associated to the equation (1).

(H1) The Cauchy problem associated to the gZK equation{
ut +up ux + (∆u)x = 0, (x, y, t ) ∈TL ×R×R+,
u(x, y,0) = u0(x, y), (x, y) ∈TL ×R,

(20)

is globally well-posed in X . In other words, if u0 ∈ X there is a unique mild solution
u ∈C ([0,T ]; X ), for all T > 0. The data-solution map associated to the problem (20),

Υ : X →C ([0,T ]; X )
u0 7→Υ(u0) = uu0 ,

(21)

is smooth. In addition, associated to the equation (20), we have the following conserved
quantities,

F (u) = 1

2

∫
TL×R

u2d xd y and E(u) = 1

2

∫
TL×R

|∇u|2 − 2

(p +1)(p +2)
up+2d xd y. (22)

Remark 12. In general, local well-posedness results in X for the problem (20) is obtained by us-
ing fixed point arguments. Global results in time are then obtained from the conserved quantity
E(u) = 1

2

∫
TL×R |∇u|2 − 2

(p+1)(p+2) up+2d xd y and the standard Gagliardo–Nirenberg inequality. As
far as we know, this would happen when 1 ≤ p < 2. The smoothness of the data-solution map Υ
given by (21) is determined by using the implicit function theorem.

Some considerations deserve to be mentioned before talking about nonlinear stability. Since
equation (1) is invariant under translations, that is, if u(x, t ) is a solution then u(x + r, t ) is also a
solution for every r ∈ R, we obtain that the one-parameter group of unitary operators {S(r )}r∈R
defined by S(r ) f (·) = f (·+ r ) determines the ϕ-orbit

Ωϕ = {
S(y)ϕ; y ∈R}

.

Then, we say that Ωϕ is stable in the Hilbert space X by the flow of equation (1), if for all ε > 0
there is δ > 0 such that if ∥u0 −ϕ∥X < δ and u(t ) is the global solution of (1) with initial data
u(x, y,0) = u0(x, y), then

inf
r ∈R

∥∥u(t )−S(r )ϕ
∥∥

X < ε, for all t ∈R.

Otherwise, the orbit is said to be orbitally unstable in X . More specifically, there exists η> 0 such
that for every δ> 0, there exists uδ

0 and a time tδ > 0 such that ∥uδ
0 −ϕ∥X < δ and the solution uδ

of (20) with initial value uδ
0 satisfies infr∈R ∥uδ(tδ)−S(r )ϕ∥ ≥ η. This fact would be expected if the
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solution u of the problem (20) has a blow-up in finite time. In our model, this fact is expected if
p ≥ 2 and for arbitrary initial data u0 ∈ X .

The following result links the nonlinear instability and the transversal (spectral) instability.

Proposition 13. Let Y be a Banach space and O ⊂ Y an open set containing 0. Suppose that
T : O → Y is a map satisfying T (0) = 0. In addition, suppose that for some q > 1, there exists
a continuous linear operator S with spectral radius r (S ) > 1 such that ∥T (w) −S (w)∥Y =
O(∥w∥q

Y ) as w → 0. Then 0 is unstable as a fixed point of T .

Proof. See [6]. □

Remark 14. By Proposition 13, we may estimate the direction in which points move away from
0 under successive applications of T . Choose any positive integer m and any µ such that
0 <µ< 1p

2
. Define the cone

Σ=Σ(m,µ) = {
w ∈ Y ;

∥∥S m(w)
∥∥

Y ≤µ[r (S )]m∥w∥Y
}

.

If 0 < q < (1/
p

2−µ)/(µ+ r (S )−m∥S m∥Y ), there exists aq > 0 such that: given any a ∈ (0, aq ],
arbitrarily small ε0 > 0 and arbitrarily large N0 > 0, there exist N > N0 and w ∈ Y such that ∥w∥ ≤
ε0, ∥T n(w)∥Y ≤ a for 0 < n ≤ N and d(T N (w),Σ) ≥ qa. In particular, we have ∥T N (w)∥Y ≥ qa.

Corollary 15. Let W : O ⊂ Y → Y be a C 2 map defined in an open neighbourhood of a fixed point
φ. If there exists µ ∈σ(W ′(φ)) such that |µ| > 1, then φ is an unstable fixed point of W .

Proof. For w ∈ U ≡ {v −φ; v ∈ O }, let us consider T (w) ≡ W (w +φ) −φ. Since φ is a fixed
point of W , we have T (0) = W (φ) −φ = 0 with 1 < |µ| ≤ r (W ′(φ)). By Taylor’s formula, we
obtain T (w) = T (0)+T ′(0)w +O(∥w∥2

Y ) = W ′(φ)(w)+O(∥w∥2
Y ) for all ∥w∥Y << 1. Therefore,

by Remark 14, there exists ε0 > 0 such that for all η > 0 and a large enough N0 ∈ N, there exists
N > N0 and v ∈ B(φ;η) such that ∥W N (v)−φ∥Y ≥ ε0. This finishes the proof. □

Proposition 16. The periodic solution ϕ that is transversally (spectrally) unstable according to
Theorem 2 is nonlinearly unstable.

Proof. By equation (1), we see that u(x − ct , y, t ) is a solution of the equation

ut − cuξ+up uξ+ (∆u)ξ = 0, (23)

where ξ = x − ct . In addition, the periodic wave ϕ obtained in Section 2 is now an equilibrium
solution of the equation (23). Consider G(u) = E(u)+ cF (u), where E and F are given by (22). We
have that (23) can be rewritten as

ut = JG ′(u), (24)

where J = ∂x . Moreover, from (24) the linearized equation at the equilibrium point ϕ is vt =
J (L −∂2

y )v , where L is the linear operator given by (5). Let us consider v(x, y, t ) = e i k y w(x, t ) in
the linearized equation to obtain wt = J (L +k2)w .

Define W : X → X as W (u0) = uu0 (1), where uu0 (t ) is the solution of (23) with initial data
u(x, y,0) = u0(x, y) at t = 1. For each T > 0, function Υ : X →C ([0,T ]; X ) is the data-solution map
related to the equation (23) and by assumption (H1), Υ is smooth. Again by (H1), the uniqueness
of solutions for the Cauchy problem (20) gives us that W (ϕ) =ϕ and W is a C 2 map defined in a
neighbourhood ofϕ (this fact follows from the translation in x as a linear continuous map defined
X ). Moreover, for h(x, y) = e i k y g (x) ∈ X we have W ′(ϕ)h = wh(1), where wh(1) is the solution of
the linear initial value problem {

wt = J
(
L +k2

)
w

w(0) = h,
(25)

evaluated at t = 1. Then, using Theorem 2, we obtain the existence of ν> 0, k ̸= 0 and U ∈ X \{0}
such that J (L +k2)U = νU . Hence, for wU (t ) = eνtU and α = eν, we obtain W ′(ϕ)U = wU (1) =
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αU , that is, α ∈σ(W ′(ϕ)). By Corollary 15, we obtain the nonlinear instability in Y of the periodic
solution ϕ that is transversally (spectrally) unstable according to the Theorem 2. □
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