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Abstract. We revisit a result of Gratz and Stevenson on the universal space that carries supports for objects of
a triangulated category, in the absence of a tensor product.

Résumé. Nous revisitons un résultat de Gratz et Stevenson au sujet de l’espace universel équipé de supports
pour les objets d’une catégorie triangulée, en l’absence d’un produit tensoriel.
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Throughout, T denotes an essentially small triangulated category. In [2], it was established
that if T is moreover a tensor-triangulated category then there exists a universal (final) space X
carrying a support datum for objects of T . In that context, a support datum on T consists of
closed subsets σ(a) ⊆ X for every object a in T satisfying

(SD 1) σ(0) =;,

(SD 2) σ(a ⊕b) =σ(a)∪σ(b) for all objects a,b ∈T ,

(SD 3) σ(Σa) =σ(a) for all objects a ∈T ,

(SD 4) σ(a) ⊆σ(b)∪σ(c) for every distinguished triangle a → b → c →Σa of T ,

(SD 5) σ(1⊗) = X ,

(SD 6) σ(a ⊗b) =σ(a)∩σ(b) for all objects a,b ∈T .

This universal space, denoted Spc(T ) and called the tt-spectrum of T , has become the basis of
tensor-triangular geometry. An early theorem in that field is that Spc(T ) can be used to describe
the lattice of thick ⊗-ideal subcategories of T . (We say “thick” to abbreviate “triangulated and
thick”.)

In view of this result, Buan–Krause–Solberg [1] and Kock–Pitsch [5] argued that lattice theory
should play the primordial role in this story. However Brüning [3] showed early on that, without
tensor, the lattice of thick subcategories is simply not distributive in general, already for the
derived category of the A2 quiver. Stevenson also pointed out that the same issue occurs in
algebraic geometry, e.g. for the projective line.
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Leaving lattices aside, we can return to the original motivation and ask for a universal space
carrying supports for objects of T without the tensor-related axioms (SD 5) and (SD 6). And if
such a universal space exists, we can ask whether it recovers the lattice of thick subcategories.
After answering these questions, we realized that Gratz and Stevenson [4] implicitly provide a
solution, namely by combining their Proposition 5.3.3 and their Subsection 5.4. We hope there is
some didactic value in spelling out our answer.

Definition 1. A support datum on T is a pair (X ,σ) where X is a topological space and σ :
Obj(T ) → Closed(X ) associates to every object a ∈ T a closed subset σ(a) ⊆ X satisfying Condi-
tions (SD 1)–(SD 4). A morphism of support data f : (X ,σ) → (Y ,τ) is a continuous map f : X → Y
such that σ(a) = f −1(τ(a)) for all objects a ∈T .

The good news is: The universal support theory always exists.

Theorem 2. Every essentially small triangulated category T admits a final support datum.

Proof. Now comes the bad news. Define the set Sp(T ) as follows

Sp(T ) = {
J ⊆T

∣∣J thick subcategory of T
}

(1)

together with the subsets sup(a) = {J ∈ Sp(T ) |a ∉J } for every object a ∈T . These give a final
support datum on T if we define a topology on Sp(T ) as having {sup(a)}a∈T as basis of closed
subsets. Let (X ,σ) be a support datum on T . Define f : X → Sp(T ) by

f (x) = {a ∈T |x ∉σ(a)}

for every x ∈ X . From σ being a support datum one checks that f (x) is a thick subcategory, so f
is well-defined. By definition of sup(−) and of f we have for every a ∈T

f −1(sup(a)) = {
x ∈ X

∣∣ f (x) ∈ sup(a)
}= {

x ∈ X
∣∣a ∉ f (x)

}= {x ∈ X |x ∈σ(a)} =σ(a).

This implies that f : X → Sp(T ) is continuous, and a morphism of support data. For uniqueness,
note that if g : (X ,σ) → (Sp(T ),sup) is another such morphism then we have

g (x) = {
a ∈T

∣∣a ∈ g (x)
}= {

a ∈T
∣∣g (x) ∉ sup(a)

}
= {

a ∈T
∣∣x ∉ g−1(sup(a))

}= {a ∈T |x ∉σ(a)} = f (x)

for all x ∈ X , using the definitions of sup and of f , together with g−1(sup(a)) =σ(a). □

Remark 3. The space Sp(T ) does “classify” all thick subcategories of T but in an extremely
dull way: It is itself the whole lattice. Unfortunately, the compression of information that prime
ideals allow in the tensor setting does not happen anymore. And this is not because of whimsical
choices in the construction (1). Being the solution to a universal problem, the space Sp(T ) does
not involve any choice. It is what it is.
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