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Abstract. The essential dimension edk (Sn ) of the symmetric group Sn is the minimal integer d such that
the general polynomial xn + a1xn−1 + ·· · + an can be reduced to a d-parameter form by a Tschirnhaus
transformation. Finding this number is a long-standing open problem, originating in the work of Felix
Klein, long before essential dimension of a finite group was formally defined. We now know that edk (Sn )
lies between ⌊n/2⌋ and n − 3 for each n Ê 5 and any field k of characteristic different from 2. Moreover,
if char(k) = 0, then edk (Sn ) Ê ⌊(n + 1)/2⌋ for any n Ê 7. The value of edk (Sn ) is not known for any n Ê 8
and any field k, though it is widely believed that edk (Sn ) should be n − 3 for every n Ê 5, at least in
characteristic 0. In this paper we show that for every prime p there are infinitely many positive integers n
such that edFp (Sn ) É n −4.

Résumé. La dimension essentielle edk (Sn ) du groupe symétrique Sn est le plus petit entier d permettant
de réduire le polynôme général xn + a1xn−1 + ·· · + an à une forme comportant d paramètres par une
transformation de Tschirnhaus. La détermination de cette valeur est un problème ouvert depuis longtemps,
remontant aux recherches de Felix Klein, bien avant que la dimension essentielle d’un groupe fini ne soit
formellement définie. Nous savons que edk (Sn ) se situe entre ⌊n/2⌋ et n−3 pour tout entier n Ê 5 et tout corps
k de caractéristique autre que 2. De plus, si char(k) = 0, on sait que edk (Sn ) Ê ⌊(n +1)/2⌋ pour tout n Ê 7. La
valeur de edk (Sn ) est inconnue dès que n Ê 8 ceci quelque soit le corps k ; bien qu’on estime généralement
que edk (Sn ) devrait être n−3 pour tout n Ê 5, au moins en caractéristique 0. Nous démontrons que pour tout
nombre premier p, il existe une infinité d’entiers positifs n tels que edFp (Sn ) É n −4.
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positive characteristic.
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1. Introduction

The essential dimension edk (Sn) of the symmetric group Sn is the smallest integer d such that the
general polynomial xn +a1xn−1+·· ·+an can be reduced to a d-parameter form by a Tschirnhaus
transformation. The geometric definition of essential dimension and some background material
can be found in Section 2; for a comprehensive overview, see [10, 12].

Finding edk (Sn) is a long-standing open problem, which goes back to F. Klein [8]; cf. also
N. Chebotarev [14]. Essential dimension of a finite group was formally defined by J. Buhler and
the second author in [5], where the inequalities

edk (Sn) Ê ⌊n/2⌋ and edk (Sn) É n −3 (n Ê 5) (1)

were proved. The field k was assumed to be of characteristic 0 in [5], but the proof of the first
inequality in (1) given there goes through for any field k of characteristic different from 2. The
second inequality is valid over an arbitrary field k. A. Duncan [6] subsequently showed that in
characteristic 0, edk (Sn) Ê ⌊(n +1)/2⌋ for any n Ê 7. The exact value of edk (Sn) is open for each
n Ê 8 and any field k, though it is widely believed that edk (Sn) should be n −3 for every n Ê 5, at
least in characteristic 0.

The purpose of this paper is to show that edk (Sn) can be É n −4 in prime characteristic. Our
main result is as follows.

Theorem 1. Let k be a field of characteristic p > 0 and let n be a positive integer whose binary
presentation is n = 2m1 + 2m2 + ·· · + 2mr , where m1 > m2 > ·· · > mr Ê 0. Assume that one of the
following conditions holds:

(a) p is odd, p divides n and r Ê 4. If r = 4, assume further that k contains Fp2 , a field of p2

elements.
(b) p = 2, 4 divides n, and r Ê 2.

Then edk (Sn) É n −4.

Remark 2.

(a) If k ⊂ k ′ is a field extension, then edk (Sn) Ê edk ′ (Sn). In particular, Theorem 1(a) is
equivalent to edFp (Sn) É n − 4 if r Ê 5 and edFp2 (Sn) É n − 4 if r = 4 (assuming p |n).
Theorem 1(b) is equivalent to edF2 (Sn) É n −4 when n is divisible by 4 and r ≥ 2.

(b) It may be possible to weaken the assumptions on p and n in the statement of Theorem 1.
Note, however, that these assumptions cannot be dropped entirely. Indeed, edk (S5) = 2
and edk (S6) = 3 for any field k of characteristic ̸= 2; see (1). If char(k) = 2, we still have
edk (S5) = 2. Here the inequality edk (S5) É 2 follows from (1), and the opposite inequality
from [9, Proposition 7]. We do not know whether edk (S6) is 2 or 3 in characteristic 2.

(c) Suppose l is a field of characteristic 0 and k is a field of characteristic p > 0 containing an
algebraic closure of Fp . Then edl (Sn) Ê edk (Sn) for any n Ê 5; see [4, Corollary 3.4(b)].

(d) The smallest n covered by Theorem 1(a) is n = 23 + 22 + 21 + 20 = 15 (here p = 3 or 5).
The smallest n covered by Theorem 1(b) is n = 23 +22 = 12. For a fixed p, the density of
integers n Ê 1 to which Theorem 1 applies is positive (1/p if p is odd, and 1/4 if p = 2).

The remainder of this paper will be devoted to proving Theorem 1. In Section 2 we collect
the background material on essential dimension that is needed for the proof. In Section 3
we introduce the Sn-invariant subvariety X1,2 of An . In Section 4 we show that under the
assumptions of Theorem 1, the Sn-action on X1,2 has maximal possible essential dimension:
edk (X1,2;Sn) = edk (Sn). Finally, in Section 5 we complete the proof of Theorem 1 by showing
that edk (X1,2,Sn) É n −4.
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2. Preliminaries on essential dimension

Throughout this paper k denotes an arbitrary base field, k denotes an algebraic closure of k, and
G denotes an abstract finite group. Unless otherwise specified, algebraic varieties, morphisms,
rational maps, group actions, etc., are assumed to be defined over k. We refer to a variety X with
an action of G as a G-variety. We say that the G-action on X (or equivalently, the G-variety X ) is

• faithful, if the induced group homomorphism G → Aut(X ) is injective,
• primitive, if G transitively permutes the irreducible components of Xk ,

• generically free, if there exists a dense open subset U ⊂ X such that for every k-point
u ∈U , the stabilizer StabG (u) of u in G is trivial.

A generically free action is clearly faithful. The converse holds if X is irreducible, but not in
general. For example, the natural permutation action of Sn on the set of n points is primitive and
faithful but not generically free. Note also that the term “primitive” is sometimes used in other
ways in related contexts, in particular, in finite group theory (see, e.g., [15, §I.8]) and in algebraic
dynamics (see, e.g., [16]). In this paper we will only use it in the sense defined above.

Let X be a generically free primitive G-variety. We will refer to a G-equivariant dominant
rational map X 99K Y as a G-compression, if the G-action on Y is also generically free. The
minimal dimension of Y , taken over all G-compressions X 99K Y is called the essential dimension
of X and is denoted by edk (X ;G). The largest value of edk (X ;G), as X ranges over all generically
free primitive G-varieties defined over k, is called the essential dimension of G over k and is
denoted by edk (G).

We now recall two results about essential dimension that will be needed in the proof of
Theorem 1. Note that Proposition 3 shows, in particular, that edk (G) <∞ for any G and k.

Proposition 3. Let G ,→ GL(V ) be a faithful finite-dimensional representation of G. Denote the
underlying affine space by A(V ). Then edk (G) = edk (A(V );G).

For a proof, see [5, Theorem 3.1] or [1, Proposition 4.11] or [10, Propositions 3.1 and 3.11].
Following [4], we will say that a finite group G is weakly tame over a field k of characteristic

p Ê 0 if G has no normal p-subgroups, other than the trivial subgroup {1G }. If p = 0 (or if p does
not divide |G|), then G is always weakly tame over k.

Proposition 4. Suppose that a finite group G is weakly tame over a field k. Let X and Y be
generically free primitive G-varieties over k. Assume that there exists a (not necessarily dominant)
G-equivariant rational map f : Y 99K X sm, where X sm denotes the smooth locus of X . Then
edk (X ) Ê edk (Y ).

Note that a rational map Y 99K X sm is the same thing as a rational map Y 99K X , with the
additional assumption that no component of Y maps to the singular locus of X . For a proof of
Proposition 4 we refer the reader to [13, Theorem 1.6].

3. Preliminaries on the affine quadric X1,2

Let X1,2 be the closed Sn-invariant subvariety of An given by

s1(x1, . . . , xn) = s2(x1, . . . , xn) = 0,

where si is the i th elementary symmetric polynomial and Sn acts on An by permuting the
variables in the natural way. If char(k) ̸= 2, then equivalently,

X1,2 := {
(x1, . . . , xn) ∈An ∣∣x1 +·· ·+xn = x2

1 +·· ·+x2
n = 0

}
. (2)
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Let ∆ be the discriminant locus in An , i.e., the union of the hyperplanes xi = x j taken over all
pairs (i , j ), where 1 É i < j É n. Note that the symmetric group Sn acts freely (i.e., with trivial
stabilizers) on An \∆.

Lemma 5. Assume n Ê 5. Then

(a) the singular locus of X1,2 is X1,2 ∩ D, where D is the small diagonal in An given by
x1 = ·· · = xn .

(b) X1,2 is absolutely irreducible. In particular, the Sn-action on X1,2 is primitive.
(c) X1,2 \∆ is a dense open subset of X1,2. In particular, the Sn-action on X1,2 is generically free.

Proof. By definition X1,2 is the affine cone over the projective variety P(X1,2) ⊂Pn−1 given by

s1(x1, . . . , xn) = s2(x1, . . . , xn) = 0. (3)

Thus it suffices to show that (a) the singular locus of P(X1,2) is P(∆), (b) P(X1,2) is absolutely
irreducible, and (c) P(X1,2) is not contained in P(∆). If char(k) ̸= 2, then X1,2 is cut out by (2),
and these assertions are proved in [3, Lemma 2.1(b), (c) and (f), respectively].

In fact, the arguments [3, Lemma 2.1] work in any characteristic. The Jacobian matrix of the
system (3) is (

1 1 . . . 1
s1 −x1 s1 −x2 . . . s1 −xn

)
.

This matrix has rank É 1 if and only if x1 = ·· · = xn . This proves (a). Parts (b) and (c) are deduced
from (a) in the same way as in the proof of [3, Lemma 2.1]. □

4. Reduction to X1,2

The purpose of this section is to prove the following.

Proposition 6. Assume k and n are as in the statement of Theorem 1. Then

edk (X1,2;Sn) = edk (Sn).

The essential dimension ed(X1,2;Sn) is well defined because the Sn-action on X1,2 is primitive
and generically free by Lemma 5. Note that Lemma 5 applies here because our assumptions on
n force it to be at least 12; see Remark 2(d).

Our proof of Proposition 6 will be based on the following.

Lemma 7. Assume k and n are as in the statement of Theorem 1. Let F be a field containing
k and E/F be an n-dimensional étale algebra. Then there exists an element α ∈ E \ F such that
s1(α) = s2(α) = 0. Here (−1)i si (α) denotes the coefficient of λn−i in the characteristic polynomial
NE/F (λ ·1F −α) of α.

Recall that an étale algebra E over F is a direct product E1 × ·· · × Es , where each Ei is a
finite separable field extension of F . The norm function NE/F : E → F is defined as the product
NE/F (α) = NE1/F (α1) · NE2/F (α2) · . . . · NEs /F (αs ) for any α = (α1, . . . ,αs ) ∈ E . For background
material on étale algebras, see [2, §6].

Proof of Lemma 7. Let E 0 be the kernel of the trace map s1 : E → F . It is an (n −1)-dimensional
F -vector subspace of E . Since n is divisible by p = char(k) = char(F ), F is contained in E 0.
Consider the quadratic form s2 : E 0 → F . Substitutingα+t ·1F in place ofα into the characteristic
polynomial NE/F (λ ·1F −α), we obtain

s2(α+ t ·1F ) = s2(α)+ (n −1)t s1(α)+
(

n

2

)
t 2.
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For any α ∈ E 0 we have s1(α) = 0. Moreover, the assumptions on n and p = char(k) imply that(n
2

) = 0 in k, in either part (a) or part (b). We conclude that s2(α+ t · 1F ) = s2(α) for any α ∈ E 0

and t ∈ F . In other words, the quadratic form s2 descends from E 0 to a quadratic form s2 on the
(n −2)-dimensional quotient space E 0 = E 0/(F ·1).

Elementsα ∈ E such that s1(α) = s2(α) = 0 are precisely the isotropic vectors of s2 in E 0. We are
looking for an element α ∈ E 0 \ F whose image in E 0 is an isotropic vector for s2. In other words,
the lemma is equivalent to the assertion that the quadratic form s2 : E 0 → F is isotropic.

To show that s2 is isotropic, we appeal to Springer’s theorem: If F ′/F is a field extension of odd
degree, then s2 is isotropic in E 0 if and only if it becomes isotropic over F ′. Note that Springer’s
Theorem is valid in arbitrary characteristic; see [7, Corollary 18.5]. By [3, Proposition 5.1] we can
choose F ′/F so that [F ′ : F ] is odd and E ′ = E ⊗F F ′ is an étale algebra of degree n over F ′ of the
form E ′ = E1 ×E2 ×·· ·×Er , where Ei is an étale algebra of degree 2mi over F ′ for each i = 1, . . . ,r .
After replacing F by F ′ and E by E ′, we may assume without loss of generality that, in fact,

E = E1 ×E2 ×·· ·×Er ,

where Ei is an 2mi -dimensional étale algebra over F for each i = 1, . . . ,r . Now observe that on the
r -dimensional F -subalgebra of E ,

F ×·· ·×F (r times) ⊂ E1 ×·· ·×Er = E ,

s1 and s2 are quite transparent: s1(c1, . . . ,cr ) = 2m1 c1 +·· ·+2mr cr and

s2(c1, . . . ,cr ) = ∑
1Éi< jÉr

2mi+m j ci c j +
r∑

i=1

(
2mi

2

)
c2

i

for any c1, . . . ,cr ∈ F . We would like to show that s2 has an isotropic vector in V /F , where

V = {
(c1, . . . ,cr ) ∈ F ×·· ·×F

∣∣ s1(c1, . . . ,cr ) = 0
}
.

Equivalently, we would like to show that s2 has an isotropic vector in V ∩ H , where H is a F -
hyperplane in F ×·· ·×F (r times) which does not contain the unit element (1, . . . ,1). For example,
we can take H to be the hyperplane cr = 0. Explicitly, we are looking for a non-trivial solution to
the system {

2m1 c1 +·· ·+2mr−1 cr−1 = 0∑
1Éi< jÉr−1 2mi+m j ci c j +∑r−1

i=1

(2mi

2

)
c2

i = 0
(4)

(a) Note that all the coefficients in the system (4) are integers; thus we may look for solutions
in the finite field Fp . By a theorem of Chevalley [11, Theorem 5.2.1], finite fields have
property C1. Consequently, the system (4) of two polynomials in the variables c1, . . . ,cr−1

of degree 1 and 2, respectively, has a non-trivial solution over Fp , as long as r −1 > 1+2.
This completes the proof of part (a) for r Ê 5.

If r = 4, then we may or may not be able to find a non-trivial solution of the system (4)
over Fp , but there is certainly one over some quadratic extension of Fp . Since Fp has a
unique quadratic extension, Fp2 , and we are assuming that k contains a copy of Fp2 , the
system (4) has a non-trivial solution over k and hence, over F . This completes the proof
of part (a) for r = 4.

(b) Now suppose char(k) = 2. By our assumption, n is divisible by 4. Hence, m1 > ·· · >
mr−1 > mr Ê 2, and all of the coefficients of the system (4) are 0. Consequently, the
system (4) has a non-trivial solution, e.g., (c1, . . . ,cr−1) = (1,0, . . . ,0), whenever r −1 Ê 1,
i.e., r Ê 2. □

In the proof of Proposition 6 below, we will apply Lemma 7 to the general field extension Ln/Kn

defined as follows: Kn = k(a1, . . . , an), where a1, . . . , an are independent variables and Ln is an
extension of Kn obtained by adjoining a root of the “general polynomial” f (x) = xn + a1xn−1 +



644 Oakley Edens and Zinovy Reichstein

· · · + an of degree n. Note that f (x) is irreducible over Kn by the Eisentstein criterion. Hence,
Ln = Kn[x]/( f (x)).

Remark 8. Lemma 7 may be viewed as a “bad characteristic variant” of [3, Corollary 10.1(c)].
When char(k) does not divide n (i.e., in “good characteristic”), Corollary 10.1(c) asserts that every
étale algebra E/F has an element α satisfying TrE/F (α) = TrE/F (α2) = 0 if and only if

2m1 c1 +·· ·+2mr cr = 2m1 c2
1 +·· ·+2mr c2

r = 0.

for some (0, . . . ,0) ̸= (c1, . . . ,cr ) ∈ kr . Here n = 2m1 +2m2 +·· ·+2mr is the binary presentation of n,
as in Theorem 1. When k is algebraically closed, this system has a non-trivial solution if and only
if r Ê 3. Note that in good characteristic the condition that TrE/F (α) = 0 automatically implies that
α ̸∈ F . That is, E 0 ∩F = {0}. In bad characteristic F ⊂ E 0. This complicates the proof of Lemma 7,
compared to the argument in [3], and necessitates the assumption that r Ê 4 in part (a).

Remark 9. If F is an infinite field, one can always choose α in Lemma 7 so that it generates E
over F , i.e., F [α] = E . This follows from the fact that if an absolutely irreducible quadric Q defined
over K has a smooth K -point, then Q is rational over K (via stereographic projection) and hence,
K -points are dense in Q. Since we will not use this assertion, we leave the details of this proof as
an exercise for the reader. Note also that we will only use Lemma 7 in the special case, where E/F
is the general field extension Ln/Kn defined above. Since there are no intermediate fields, strictly
between Ln and Kn , in this case Kn[α] = Ln is automatic for any α ∈ Ln \ Kn .

Proof of Proposition 6. Denote the roots of the general polynomial f (x) = xn +a1xn−1 +·· ·+a0

by x1, . . . , xn . Then ai = (−1)i si (x1, . . . , xn), where si denotes the i th symmetric polynomial. Since
a1, . . . , an are algebraically independent over k, so are x1, . . . , xn . Identify Kn with k(x1, . . . , xn)Sn

and Ln with Kn(x1) = k(x1, . . . , xn)Sn−1 , where Sn naturally permutes x1, . . . , xn and Sn−1 is the
stabilizer of x1 in Sn .

It is well known that elements of Ln are in bijective correspondence with Sn-equivariant
rational maps φ : An 99K An . Indeed, write φ(x1, . . . , xn) = (

φ1(x1, . . . , xn), . . . ,φn(x1, . . . , xn)
)
. A

priori the components φ1, . . . ,φn of φ lie in k(x1, . . . , xn); however, since φ is Sn-equivariant, φ1

actually lies in k(x1, . . . , xn)Sn−1 = Ln . The components φ1, . . . ,φn are then the Sn-translates of φ1.
Conversely, given α ∈ Ln , we can define φ : An 99KAn by

φ(x) = (
α1(x1, . . . , xn), . . . ,αn(x1, . . . , xn)

)
, (5)

where α1, . . . ,αn are the Sn-translates of α = α1 ∈ Ln . Note that there are exactly n distinct Sn-
translates if α does not lie in Kn . If α lies in Kn , then α1 = ·· · =αn .

Now choose α ∈ Ln as in Lemma 7, and let φ : An 99KAn be the rational Sn-equivariant map
given by (5). The condition that s1(α) = s2(α) = 0 is equivalent to the image of φ being contained
in X1,2 ⊂An . Since α ̸∈ Kn , the general point ofAn maps to X1,2 \D , where D is the small diagonal
in An given by x1 = ·· · = xn , as in Lemma 5(c). In other words, we may think of φ as an Sn-
equivariant map An 99K X1,2 \ D . Now recall that since An is an affine space with a linear action
of Sn ,

edk (An ;Sn) = edk (Sn) Ê edk (X1,2;Sn); (6)

see Proposition 3. On the other hand, by Proposition 4,

edk (An ;Sn) É edk (X1,2; Sn). (7)

Proposition 4 applies here because X1,2 is an irreducible generically free Sn-variety, X1,2 \ D is
smooth (see Lemma 5), and the symmetric group Sn is weakly tame at any prime. (Once again,
here n Ê 12; see Remark 2(d).)

Combining (6) and (7), we obtain the desired equality, edk (Sn) = edk (X1,2;Sn). □
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5. Conclusion of the proof of Theorem 1

In this section we complete the proof of Theorem 1 by establishing the following.

Proposition 10. Let k be a base field of characteristic p > 0. Assume that n Ê 5 and p divides n. If
p = 2, assume further that 4 divides n. Then edk (X1,2;Sn) É n −4.

Note that the assumptions of Theorem 1 that r Ê 4 and r Ê 2 in parts (a) and (b), respectively,
are not needed here.

Before proceeding with the proof of Proposition 10, we briefly outline our overall strategy.
Our goal is to show the existence of an Sn-compression π : X1,2 99K Y defined over k, where
dim(Y ) É n −4. Key to our construction is the observation that X1,2 admits an action of a certain
2-dimensional linear algebraic group B , which commutes with the Sn-action. This B-action is a
characteristic p phenomenon, it only exists when char(k) divides both n and

(n
2

)
; see Remark 12.

The idea is then to define π as the quotient map for this action. The remainder of this section will
be devoted to working out the details of this construction.

We begin by introducing the 2-dimensional algebraic group B : it is the group of upper-

triangular matrices in PGL2, i.e., the group of matrices of the form
(
α β
0 1

)
. Note that B is a Borel

subgroup of PGL2; this is why we chose the letter “B”. Consider the natural action of B on An by(
α β

0 1

)
: (x1, . . . , xn) → (αx1 +β, . . . ,αxn +β).

Lemma 11. Assume p = char(k) divides n. If p = 2, assume further that 4 divides n. Then

(a) X1,2 ⊂An is invariant under the action of B defined above.
(b) The stabilizer in B of a point a = (a1, . . . , an) ∈ X1,2 \∆ is trivial.

Proof.

(a). For a = (a1, . . . , an) ∈ An(k), let si (a) be the i th elementary symmetric polynomial in
a1, . . . , an . By definition, a lies on X1,2 if and only if s1(a) = s2(a) = 0. Thus we need to check
that s1(a) = s2(a) = 0 implies s1(g · a) = s2(g · a) = 0, for any a = (a1, . . . , an) ∈ An(k) and any

g =
(
α β
0 1

)
∈ B . Indeed, assume that s1(a) = s2(a) = 0. Under our assumptions on p = char(k)

and n,

s1(g ·a) = s1(αa1 +β, . . . ,αan +β) =αs1(a)+nβ= 0+0 = 0 (8)

and

s2(g ·a) = s2(αa1 +β, . . . ,αan +β) =α2s2(a)+αβ(n −1)s1(a)+
(

n

2

)
β2 = 0+0+0 = 0, (9)

as desired.

(b). The stabilizer of any point a = (a1, . . . , an) ∈An(k) is the group subscheme of B cut out by the
equations 

αa1 +β= a1,

. . .

αan +β= an .

(10)

Here a1, . . . , an ∈ k are fixed, and α and β are coordinate functions on B . Rewriting this system in
matrix form, we obtain

(α−1, β) ·
(

a1 a2 . . . an

1 1 . . . 1

)
= (

0 . . . 0
)

.
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If a ̸∈ D ⊂ ∆, i.e., at least two of the elements a1, . . . , an of k are distinct, then the 2×n matrix(a1 a2 ... an
1 1 ... 1

)
has rank 2. Hence, the kernel of this matrix is trivial. We conclude that the (scheme-

theoretic) solution set to the system (10) consists of a single point, (α,β) = (1,0). In other words,
the stabilizer of a in B is trivial. □

Remark 12. For an arbitrary field k, formulas (8) and (9) tell us that X1,2 is invariant under the
action of B if and only if nβ = (n

2

)
β2 = 0 for every β ∈ k. This condition is satisfied if and only if

either p = char(k) is odd and p divides n or p = 2 and 4 divides n.

We now define the Sn-equivariant morphism π : (X1,2 \∆) →An(n−1)(n−2) by

π : a = (x1, . . . , xn) 7→
( xr −xs

xr −xt

)
(r,s,t )

where the subscript (r, s, t ) ranges over the n(n − 1)(n − 2) ordered triples of distinct integers in
{1,2, . . . ,n}, and Sn acts on these triples in the natural way. Clearly, each xr −xs

xr −xt
is a regular function

on X1,2 \∆. Letting Y be the Zariski closure of the image of π inAn(n−1)(n−2), we may view π as an
Sn-equivariant dominant rational map X1,2 99K Y . The following lemma completes the proof of
Proposition 10.

Lemma 13. Assume n Ê 5, p = char(k) divides n. If p = 2, assume further that 4 divides n. Then

(a) Sn acts faithfully on Y , and
(b) dim(Y ) É n −4.

Proof.

(a). Assume the contrary. The kernel N of this action is a non-trivial normal subgroup of Sn .
Since n Ê 5, N is either the alternating group An or the full symmetric group Sn . In both cases An

acts trivially on π(a) for every a = (a1, . . . , an) ∈ X1,2 \∆. In particular, the 3-cycle σ= (2, 4, 5) ∈ An

preserves π(a). That is,
a1 −a2

a1 −a3
=σ · a1 −a2

a1 −a3
= a1 −a4

a1 −a3
. (11)

This implies a2 = a4, which contradicts our assumption that a ̸∈∆.

(b). Note that π sends every B-orbit to a point. By Lemma 11(b), a general orbit of B in X1,2 is
2-dimensional. Hence, a general fiber of π is of dimension Ê 2. By the Fiber Dimension Theorem,
dim(Y ) É dim(X1,2)−2 = n −4. □

Remark 14. As we suggested at the beginning of this section, π is, in fact, a rational quotient for
the B-action on X1,2. We do not need to know this though; the explicit formula in (11) suffices for
the purpose of proving Proposition 10.
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