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Abstract. We introduce a variant of the Erdős–Rényi random graph where the number of vertices is random
and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz
exploration is made of independent Poisson increments. Using a vanilla Poisson counting process, this
enables us to give very short proofs of classical results such as the phase transition for the giant component
or the connectedness for the standard Erdős–Rényi model.

Résumé. On introduit une variante du graphe d’Erdős–Rényi où le nombre de sommets est aléatoire et
suit une loi de Poisson. Une propriété de Markov du graphe montre que le chemin de Lukasiewicz a des
incréments indépendants. Cela permet de retrouver des résultats classiques comme la transition de phase
pour l’existence de la composante géante en utilisant simplement des propriétés standards des processus de
comptage de Poisson.
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1. The GPoi (α, p) model and its exploration

Fix α > 0 and let N ∼ P (α) be a random variable following a Poisson law of expectation α. We
consider the random graph GPoi (α, p), which conditionally on N is made of a classical Erdős–
Rényi G(N , p) random graph (i.e. N vertices where all

(N
2

)
edges are independent and present

with probability p) that we call the core, together with an infinite stack of vertices; each pair of
core and stack vertices are connected by an edge with probability p independently. There are no
edges between vertices of the stack. See Figure 1.

1.1. Markov property

A step of exploration in GPoi(α, p) is the following: Fix a vertex ρ of the stack (independently of
the core) and reveal its neighbors y1, . . . , yK with K ⩾ 0 inside the core. Then, see those vertices
y1, . . . , yK as new vertices of the stack, in particular erase all possible edges between y1, . . . , yk

and between y1, . . . , yk and other vertices of the stack. Denote by Explo(GPoi(α, p)) the resulting
random graph. The key observation is the following:
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Lemma 1 (Markov property of GPoi (α, p)). Let K ⩾ 0 be the number of neighbors in the
core of GPoi(α, p) of the stack vertex ρ. Then K ∼ P (αp) and conditionally on K , the graph
Explo(GPoi(α, p)) has law GPoi (α(1−p), p).

Proof. It is an instance of Poisson thinning. Call N ′ = N −K the remaining number of vertices
after the revelation of the K neighbors of ρ in the G(N , p) part. Then remark the following
factorization:

P
(
K = k and N ′ = n

)= e−α
αn+k

(n +k)!
·
(

n +k

k

)
pk (1−p)n

=
(

e−α(1−p)

(
α(1−p)

)n

n!

)
·
(

e−αp (αp)k

k !

)
.

After removing all possible edges between any of the K neighbors of ρ and the former vertices
of the stack, the statement follows, since conditionally on the status of the vertices (being in the
stack, or in the remaining part), all remaining possible edges are i.i.d. present with probability p.

G(P(α), p)

P(α · p)

G(P(α(1− p)), p)

GPoi(α, p) Explo(GPoi(α, p))

Figure 1. Exploration in the Poissonized version of the Erdős-Rényi random graph. The
stack is made of the white vertices on the left part while the core is represented by the gray
part. After one step of exploration, the explored vertex (in red) is deleted as well as the edges
linking the discovered vertices between each other or to the former stack. The resulting
graph has law GPoi (α(1−p), p). □

1.2. Lukasiewicz exploration

In particular, successive explorations in GPoi (α, p) yields a sequence of independent Poisson
random variables with expectation αp,αp(1 − p), . . . , αp(1 − p)k , . . . whose total sum is just a
Poisson variable of parameter αp

∑
i ⩾0(1− p)i = α, recovering the total number of vertices N

in the core as expected.
In the rest of the note, we shall focus on a specific exploration of the graph: we shall assume

that iteratively, the discovered vertices are placed on top of the stack and that we successively
explore the first vertex of the stack. We get the so-called Lukasiewicz exploration of the graph
GPoi (α, p), see Figure 2. We encode it in a process (Sk : k ⩾ 0), the Lukasiewicz walk, defined by
S0 = 0 and where ∆Sk = Sk −Sk−1 is the number of neighbors discovered at step k minus one.
Using Lemma 1 we can write simultaneously for all k ⩾ 0

Sk = (
P (αp)−1

)+ (
P (αp(1−p))−1

)+·· ·+
(
P

(
αp

(
1−p

)k−1
)
−1

)
=N

(
αp ·

k−1∑
i=0

(1−p)i

)
−k =N

(
α

(
1− (1−p)k

))
−k,

(1)
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where all the Poisson random variables written above are independent and where (N (t ) : t ⩾ 0)
is a standard unit-rate Poisson counting process on R+. We shall only use the following standard
limit theorems on the Poisson counting process

N (t )

t
a.s.−−−−→

t →∞ 1, and
(N (tn)− tn)p

n
(d)−−−−→

n→∞ (Bt : t ⩾ 0), (2)

where (Bt : t ⩾ 0) is a standard linear Brownian motion. The left-hand side follows from the law
of large numbers and the right-hand side from Donsker’s invariance principle.
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Figure 2. Lukasiewicz exploration of the graph GPoi (α, p): the numbering reflects the order
in which the vertices have been explored. The thick edges are kept whereas the thin red
edges are discarded in the exploration. The thick (and very thick) edges form FPoi (α, p) and
the very thick ones form F′

Poi(α, p). The processS on the right is obtained by concatenating
the successive number of neighbors −1.

1.3. Relation to components

Since GPoi(α, p) has an infinite stack of vertices linked to each vertex of the core independently
with probability p, as soon as p > 0, the graph is connected and in fact all vertices of the core have
infinite degree almost surely. However, if we only consider the edges that are not discarded in the
Lukasiewicz exploration we obtain a spanning forest

FPoi(α, p) ⊂ GPoi(α, p),

whose Lukasiewciz walk is precisely S, see Figure 2. In particular, new minimal records of S
correspond to the discovery of a new tree component in FPoi(α, p). If we further remove all
vertices of the initial stack (together with the adjacent edges) we split FPoi(α, p) into a finer forest
F′

Poi(α, p) which spans the core and we can check the following graph inclusions

F′
Poi(α, p) ⊂G(N , p)︸ ︷︷ ︸

Core

⊂ FPoi(α, p) ⊂ GPoi(α,n). (3)

2. Phase transition for the giant

Let us use the Lukasiewicz exploration of the Poissonized version of the Erdős–Rényi random
graph to give a straightforward proof of the well-known phase transition for the size of the largest
connected component in G(n, p).
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2.1. Existence of the giant component

Fix c > 0. Let α = n and p ≡ pn = c
n and denote by S(n) the resulting Lukasiewicz walk to

emphasize the dependence in n. Since we have (1− c
n )[nt ] → e−ct as n →∞ uniformly over t ∈R+,

using (1) and the law of large numbers (2) we immediately deduce:

Proposition 2 (Fluid limit). We have the following convergence in probability

sup
t ⩾0

∥∥∥(
n−1 ·S(n)

[nt ]

)
− (

1−e−ct − t
)∥∥∥ (P)−−−−→

n→∞ 0.

Figure 3. Graphs of the functions (1−e−ct −t )t ⩾0 for different of values of c: in blue c = 1/2,
in orange c = 1, in green c = 2 and in red c = 3. Notice the root β(c) satisfying 1−β(c) =
e−cβ(c).

When c > 1 we write β(c) for the first positive root of the function t 7→ 1−e−ct − t , and when
c ⩽ 1 there is no such root and we set β(c) = 0, see Figure 3. In the rest of the note, for random
variables Xn and a sequence f (n) we write Xn = oP( f (n)) if we have Xn/ f (n) → 0 in probability
and Xn =OP( f (n)) if (Xn/ f (n) : n ⩾ 1) is tight.

Corollary 3 (Phase transition for G(P (n), c
n )). Let N ∼P (n). If c < 1 then the largest connected

components in the core G(N ,c/n) has size oP(n), whereas if c > 1 it contains a unique giant
component of size β(c)n +oP(n), and the second largest component has size oP(n).

Proof. Using the sandwiching of (3) it suffices to prove the similar statements for FPoi and F′
Poi.

The size of the connected components in FPoi (n, c
n ) are given by the lengths of the excursions of

S(n) above its running infimum process S(n)
k := inf{S(n)

j : 0 ⩽ j ⩽ k}. We denote by (L(n)
i : i ⩾ 1)

those excursion lengths ranked in decreasing order. Notice that the excursion lengths above the
running infimum of the function t 7→ 1−e−ct − t are given by (β(c),0,0, . . . ). A moment’s thought
using Proposition 2 shows that (

L(n)
i

n
: i ⩾ 1

)
(P)−−−−→

n→∞ (β(c),0,0, . . . )

for the ℓ∞ norm. This proves the statement of the corollary for the random graph FPoi (n,c/n).
In the case c ⩽ 1, since F′

Poi ⊂ FPoi and β(c) = 0 there is nothing more to prove. However, when
c > 1 the removal of the initial stack vertices may split the giant component of FPoi (n,c/n) of size
β(c)n +oP(n) into several components but a moment’s though using the Lukasiewicz walk and
Proposition 2 again shows that one component of size β(c)n +oP(n) must remain. □
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2.2. Back to the G(n, p) model

The analogous statement in the case of G(n, p), where n is fixed, can easily be deduced. As usual,
the idea for the depoissonization being that P (n) is concentrated around the value n with

p
n

fluctuations. Indeed, if we let N− ∼P (n −n7/12) and N+ ∼P (n +n7/12) then we have the natural
inclusions

G
(
N−, p

)⊂G(n, p) ⊂G
(
N+, p

)
, (4)

which hold with high probability when n → ∞ because P(P (n −n7/12) ⩽ n) → 1 and P(P (n +
n7/12)⩾ n) → 1 as n →∞ (notice that we only coupled the cores of GPoi and not their stacks). By
Corollary 3, with high probability, both random graphs on the left-hand side and right-hand side
of the last display have a unique component of size ≈ β(c)n, all others being of size negligible in
front of n. We can then conclude that the same is true for the graph G(n, p) sandwhiched between
those two, and this is a classical result of Gilbert–Erdős–Rényi [3, 4].

2.3. Refined estimates

Let us turn to refined estimates on the cluster sizes still in the case α= n and p ≡ pn = c
n for c > 0,

using the Brownian limit in (2). Getting from those results the analogs for the fixed-size Erdős–
Rényi via depoissonization is however more involved and we leave it open for further research.
We start with the critical case c = 1.

2.3.1. Critical case and Aldous’s limit

In the critical case p = 1
n we can give an analog of a result of Aldous in the case of the standard

fixed-size Erdős-Rényi [1] indicating that the size of the clusters in the near critical regime is of
order n2/3:

Proposition 4 (Near critical case). Fix λ ∈ R. For p ≡ pn = 1
n + λ

n4/3 with λ ∈ R, the Lukasiewicz
walk of GPoi (n, pn) satisfies

(
n−1/3 ·S(n)

[n2/3t]

)
t ⩾0

(d)−−−−→
n→∞

(
Bt +λt − t 2

2

)
t ⩾0

,

where the convergence holds in distribution for the uniform norm over every compact of R+.

Proof. Fix A > 0. Putting k = [n2/3t ] for t ∈ [0, A] in the equation (1), we have

n

(
1−

(
1− 1

n
− λ

n4/3

)[
n2/3t

])
= tn2/3 +λtn1/3 − t 2

2
n1/3 +o

(
n1/3) , (5)

as n → ∞ and where the little o is uniform in t ∈ [0, A]. The second item of (2) together with
Skorokhod representation theorem show that on a common probability space we can build for
each m ⩾ 1 a Poisson counting process N (m) and a Brownian motion B so that we have the
almost sure convergence: (

N (m)(tm)− tm
)

p
m

a.s.−−−−→
m→∞ (Bt : t ⩾ 0) (6)
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for the uniform norm over every compact of R+. Recalling (1) those observations yield for
m = [n2/3]S(n)

[n2/3t]
n1/3


0⩽ t ⩽A

(d)=
for each n


N (m)

(
n

(
1−

(
1− 1

n − λ
n4/3

)[n2/3t ]
))

− [n2/3t ]

n1/3


0⩽ t ⩽A

=
(5)

N (m)
(
tm +λt

p
m − t 2

2

p
m +o

(p
m

))− tm +o
(p

m
)

p
m +o(1)


0⩽ t ⩽A

a.s.−−−−→
n→∞

(6)

(
Bt +λt − t 2

2

)
0⩽ t ⩽A

,

and this proves the proposition. □

2.3.2. CLT for the giant

We now suppose that we are in the supercritical regime c > 1 and establish a central limit
theorem of the size of the largest component in FPoi (n,c/n):

Proposition 5. The size L(n) of the largest component in FPoi (n,c/n) satisfies

L(n)
1 −β(c)np

n
(d)−−−−→

n→∞
Bβ(c)

1− c∗
, where c∗ = c(1−β(c)),

where B is the Brownian motion appearing in (2).

Remark. In the case of the the Erdős–Rényi G(n, c
n ) for c > 1 the central limit theorem of the size

of the giant makes a variance β(c)(1−β(c))/(1− c∗)2 appear, see [2, 5]. The additional (1−β(c))
factor should be explained by the conditioning of our model to have a core of size n +o(

p
n), but

we leave the depoissonization open.

Proof. We already know from the proof of Corollary 3 that the giant component in FPoi (n,c/n)
comes from the only macroscopic excursion of S(n) over its running infimum between times
0 ⩽ I (n) < J (n) with I (n)/n → 0 and J (n)/n →β(c) in probability. Specifically, since c > 1 we can fix
ε ∈ (0,β(c)/2) and those times are defined by

I (n) = inf

{
i ⩽ εn :S(n)

i = inf
1⩽ j ⩽εn

S
(n)
j

}
and J (n) = inf

{
i ⩾ I (n) :S(n)

i =S(n)
I (n) −1

}
,

so that S(n) performs an excursion above is running infimum over the time interval [I (n), J (n)].
We will then study the finer asymptotic of those times I (n) and J (n). For fixed k ⩾ 0 we have
n(1− (1− c

n )k ) → ck as n →∞, using (1) we deduce the following convergence in distribution(
S

(n)
k : k ⩾ 0

)
(d)−−−−→

n→∞ (N (c ·k)−k : k ⩾ 0) .

When c > 1, using (2) it is not hard to see that for every ε> 0 we can find Aε > 0 so that (S(n)
k : k ⩾ 0)

is positive over [Aε,β(c)n/2] with probability at least 1−ε. We deduce from the last two remarks
the convergence in law of the time I (n) towards I := argmin{N (c · k)− k : k ⩾ 0} which is an
almost surely finite random variable since c > 1 by (2). In particular (I (n) : n ⩾ 1) is tight. On the
other hand, the time J (n) can be further estimated. Put k = [β(c)n + x

p
n] for x ∈ R, then as long

as x ≡ xn is negligible in front of
p

n we have

n

(
1−

(
1− c

n

)[β(c)n+x
p

n]
)
= nβ(c)+ c

(
1−β(c)

)
x
p

n +o
(
(|x|+1)

p
n

)
.
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Using the same coupling as in (6) for m = n we can write simultaneously for all k = [β(c)n+x
p

n]
x such that x = o(

p
n),

S
(n)
k

(d)=
for each n,∀k

N (n)
(
n

(
1−

(
1− c

n

)k
))

−k

=N (n) (nβ(c)+ c(1−β(c))x
p

n +o
(
(|x|+1)

p
n

))−nβ(c)−x
p

n

=
(6)

p
n

(
Bβ(c) +x

(
c(1−β(c))−1

)+oP(1+|x|)) .

where (Bt : t ⩾ 0) is the Brownian motion appearing in (6). Since (c(1−β(c))−1) < 0 when c > 1,
the last display is positive when x is very negative, whereas it is negative when x is very positive.
We easily deduce that the time J (n) ≈ β(c)n at which the last display crosses zero at the scale

p
n

satisfies

J (n) −β(c)np
n

(d)−−−−→
n→∞

Bβ(c)

1− c∗
, where c∗ = c(1−β(c)). (7)

Since I (n) converge in law, the variable L(n) = J (n) − I (n) satisfies the same central limit behavior.
□

3. Connectedness

As another application of our Poissonization technique, let us give a short proof of the sharp
phase transition for connectedness in the fixed-size Erdős–Rényi [3, 4]:

Proposition 6. For c ∈R we have

P

(
G

(
n,

logn + c

n

)
is connected

)
−−−−→
n→∞ e−e−c

.

Proof. Let p ≡ pn = logn+c
n . We shall first prove the convergence of the proposition when the

number N of vertices of the Erdős–Rényi graph is random and distributed according to one plus
a Poisson law of expectation n. Connectedness of this graph is equivalent to the fact FPoi (n, p) has
only one non-trivial component (the others being isolated vertices of the stack), or equivalently
that the Lukasiewicz walk (S(n)) starts with a (large) excursion and once it has reached level −1,
it makes only jumps of −1 forever. Using (1) and (2), it is easy to see that the first hitting time τ(n)

−1
of −1 by the process S(n) is concentrated around n and more precisely using similar calculations
as in Proposition 5 we have

τ(n)
−1 −np

n
(d)−−−−→

n→∞ B1. (8)

Besides, since the increments ofS(n) are Poisson and independent, by the Markov property of the
exploration we have that

P
(
ρ∪G(N , p) is connected

)=P(
∆S(n)

i =−1,∀ i ⩾ τ(n)
−1

)
= E

[
P

(
∆S(n)

i =−1,∀ i ⩾ τ(n)
−1

∣∣∣τ(n)
−1

)]
= E

[
P

(
P

(
n

(
1−pn

)τ(n)
−1

)
= 0

)]
= E

[
exp

(
−n

(
1− logn + c

n

)τ(n)
−1

)]
,

and by (8) the random variable inside the expectation converges in probability to e−e−c
since

τ(n)
−1 = n +OP(

p
n). The desired statement follows. To come back to the fixed-size G(n, p) model,

notice that the function φ(n, p) = P(G(n, p) is connected) is increasing in p for n fixed, but the
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monotonicity in n is not clear. However, the natural inclusion G(n, p) ⊂ G(n + 1, p) enables to
write

φ(n +1, p)

⩾P(G(n, p) is connected and the (n +1)th vertex is connected to one of the first n vertices)

⩾φ(n, p)−P
(
Bin(n, p) = 0

)
⩾φ(n, p)−e−np .

Recalling that pn = logn+c
n we deduce that if 0⩽ kn = o(n) then we have φ(n+kn , pn)⩾φ(n, pn)+

o(1). With the notation of (4) this shows that

P
(
G

(
N−, pn

)
is connected

)−o(1)⩽P
(
G

(
n, pn

)
is connected

)
⩽P

(
G

(
N+, pn

)
is connected

)+o(1),

and by sandwhiching, the middle term does converge to e−e−c
. □

Comments

There is no doubt that the Poissonnized model GPoi can be used to recover other estimates
on the standard G(n, p) model such as the number of components, the logarithmic size of
the components in the subcritical regime. . . However, it is not clear to us how to adapt the
Poissonnized model for other random graphs such as the configuration model or rank-1 random
graphs.
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