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1. Introduction

1.1. The Miyaoka–Yau inequality for projective manifolds

Let X be an n-dimensional complex-projective manifold and let D be any divisor on X . Recall
that X is said to “satisfy the Miyaoka–Yau inequality for D” if the following Chern class inequality
holds, (

2(n +1) · c2(X )−n · c1(X )2) · [D]n−2 ≥ 0.

It is a classic fact that n-dimensional projective manifolds X whose canonical bundles are
ample or trivial satisfy Miyaoka–Yau inequalities. In case of equality, the universal covers are
of particularly simple form.

Theorem 1 (Ball quotients and hyperelliptic varieties). Let X be an n-dimensional complex
projective manifold.

• If KX is ample, then X satisfies the Miyaoka–Yau inequality for KX . In case of equality, the
universal cover of X is the unit the ball Bn .

• If KX is trivial and D is any ample divisor, then X satisfies the Miyaoka–Yau inequality for
D. In case of equality, the universal cover of X is the affine space Cn .

We refer the reader to [24] for a full discussion and references to the original literature.
In the Fano case, where −KX is ample, the situation is more complicated, due to the fact

that the tangent bundle TX and the canonical extension EX need not be semistable1. If EX is
semistable, then analogous results hold, see [21, Thm. 1.3], as well as further references given
there.

Theorem 2 (Projective space). Let X be an n-dimensional projective manifold. If −KX is ample
and if the canonical extension is semistable with respect to −KX , then X satisfies the Miyaoka–Yau
inequality for −KX . In case of equality, X is isomorphic to the projective space Pn .

In each of the three settings, the equality cases are characterized topologically: if M is any
projective manifold homeomorphic to a ball quotient, a finite étale quotient of an Abelian variety
or the projective space, then M itself is biholomorphic to a ball quotient, to a finite étale quotient
of an Abelian variety, or to the projective space. For ball quotients, this is a theorem of Siu [40].
The torus case is due to Catanese [6], whereas the Fano case is due to Hirzebruch–Kodaira [27]
and Yau [44].

1.2. Spaces with MMP singularities

In general, it is rarely the case that the canonical bundle of a projective variety has a definite
“sign”. Minimal model theory offers a solution to this problem, at the expense of introducing
singularities. It is therefore natural to extend our study from projective manifolds to projective
varieties with Kawamata log terminal (= klt) singularities. For klt varieties whose canonical
sheaves are ample, trivial or negative, analogues of Theorems 1 and 2 have been found in the last
few years. We refer the reader to [23, Thm. 1.5] for a characterization of singular ball quotients
among projective varieties with klt singularities (see Definition 8 for the notion of singular ball
quotients). Characterizations of torus quotients and quotients of the projective space can be
found in [33], [20, Thm. 1.2] and [21, Thm. 1.3]. In each case, we find it striking that the Chern
class equalities imply that the underlying space has no worse than quotient singularities.

1Recall that the canonical extension EX is defined as the middle term of the exact sequence 0 →OX → EX →TX → 0
whose extension class equals c1(X ) ∈ H1(

X ,Ω1
X

)
.
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1.3. Main results of this paper

This paper asks whether the topological characterizations of ball quotients, Abelian varieties
and the projective spaces have analogues in the klt settings. Section 2 establishes a topological
characterization of singular ball quotients. The main result of this section, Theorem 10, can be
seen as a direct analogue of Siu’s rigidity theorems.

Theorem 3 (Rigidity in the klt setting, see Theorem 10). Let X be a singular quotient of
an irreducible bounded symmetric domain and let M be a normal projective variety that is
homeomorphic to X . If dim X ≥ 2, then, M is biholomorphic or conjugate-biholomorphic to X .

Using somewhat different methods, Section 3 generalizes Catanese’s result to the klt setting.

Theorem 4 (Varieties homeomorphic to torus quotients, see Theorem 18). Let M be a compact
complex space with klt singularities. Assume that M is bimeromorphic to a Kähler manifold. If M
is homeomorphic to a singular torus quotient, then M is a singular torus quotient.

In both cases, we find that certain Chern classes equalities are invariant under homeomor-
phisms.

Varieties homeomorphic to projective spaces are harder to investigate. Section 4 gives a full
topological characterization of P3, but cannot fully solve the characterization problem in higher
dimensions.

Theorem 5 (TopologicalP3, see Theorem 40). Let X be a projective klt variety that is homeomor-
phic to P3. Then, X ∼=P3.

However, we present some partial results that severely restrict the geometry of potential exotic
varieties homeomorphic to Pn . These allow us to show the following.

Theorem 6 (Q-Fanos in dimension 4 and 5, see Theorem 41). Let X be a projective klt variety
that is homeomorphic to Pn with n = 4 or n = 5. Then, X ∼=Pn , unless KX is ample.

Dedication

We dedicate this paper to the memory of Jean-Pierre Demailly. His passing is a tremendous loss
to the mathematical community and to all who knew him.

Greb

When I was a PhD student, Jean-Pierre’s book “Complex Analytic and Differential Geometry”
was a revelation for me, as it connected the classical concepts of Complex Analysis with those
of modern Complex Differential Geometry and Algebraic Geometry. This greatly shaped my
mathematical interests and still influences me today. When I later got to know him during several
“Komplexe Analysis” Oberwolfach meetings, I was deeply impressed by his vast knowledge of
the field that he shared generously and in his kind and gentle manner, especially with younger
people.

Kebekus

I first met Jean-Pierre in the late 90s, when he graciously invited me to Grenoble for my first
extended research stay abroad. From the moment I arrived, I was struck by his relaxed and
positive air, and by his can-do attitude towards the hardest problems. Over the years, I tried and
tested his legendary patience, when he generously shared his vast knowledge with newcomers
to the field, myself included. Jean-Pierre’s unparalleled clarity made even the most challenging
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mathematical concepts accessible, and I cherished our discussions on a wide range of topics,
from free software to the intricacies of French labour laws2.

Peternell

Since the late 1980s I had an invaluable close scientific and personal contact with Jean-Pierre,
with various mutual joint visits in Bayreuth and Grenoble. I will always commemorate Jean-
Pierre’s scientific wisdom and his great personality.
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After finishing the paper we were informed by Haidong Liu that, using the recent preprint
“Kawamata–Miyaoka type inequality for canonical Q-Fano varieties” [31], instead of Ou’s result
cited in Proposition 4.19, Theorem 4.21 can be shown to hold also in dimensions 6 and 7.

2. Mostow Rigidity for singular quotients of symmetric domains

Consider a compact Kähler manifold X whose universal cover is a bounded symmetric domain.
Siu has shown in [40, Thm. 4] and [41, Main Theorem] that any compact Kähler manifold M which
is homotopy equivalent to X is biholomorphic or conjugate-biholomorphic3 to X . We show an
analogous result for homeomorphisms between singular varieties M and X . The following notion
will be used.

Definition 7 (Quasi-étale cover). A finite, surjective morphism between normal, irreducible
complex spaces is called quasi-étale cover if it is unbranched in codimension one.

Definition 8 (Singular quotient of bounded symmetric domtain). Let Ω be an irreducible
bounded symmetric domain. A normal projective variety X is called a singular quotient of Ω if
there exists a quasi-étale cover X̂ → X , where X̂ is a smooth variety whose universal cover is Ω.

Remark 9 (Singular quotients are quotients). Let X be a singular quotient of an irreducible
bounded symmetric domainΩ. Passing to a suitable Galois closure, one finds a quasi-étale Galois
cover X̂ → X , where X̂ is a smooth variety whose universal cover is Ω. In particular, it follows
that X is a quotient variety and that it has quotient singularities. Moreover, it can be shown as
in [22, §9] that X is actually a quotient ofΩ by the fundamental group of Xreg, which acts properly
discontinously on Ω. In addition, the action is free in codimension one.

Theorem 10 (Mostow rigidity in the klt setting). Let X be a singular quotient of an irreducible
bounded symmetric domain and let M be a normal projective variety that is homeomorphic to X .
If dim X ≥ 2, then, M is biholomorphic or conjugate-biholomorphic to X .

Remark 11 (Varieties conjugate-biholomorphic to ball quotients). We are particularly inter-
ested in the case where the bounded symmetric domain of Theorem 10 is the unit ball. For this,
observe that the set of (singular) ball quotients is invariant under conjugation. It follows that if
the variety M of Theorem 10 is biholomorphic or conjugate-biholomorphic to a (singular) ball
quotient X , then M is itself a (singular) ball quotient.

2Solidarity strike = no food on campus because train drivers demand better working conditions
3See also [7, §7] and [1, Chapt. 5 and 6] as general references for the main ideas behind Siu’s results and for related

topics.
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Before proving Theorem 10 in Sections 2.1–2.3 below, we note a first application: the Miyaoka–
Yau Equality is a topological property. The symbols ĉ•(X ) in Corollary 12 are theQ-Chern classes
of the klt space X , as defined and discussed for instance [22, §3.7].

Corollary 12 (Topological invariance of the Miyaoka–Yau equality). Let X be a projective klt
variety with KX ample. Assume that the Miyaoka–Yau equality holds:(

2(n +1) · ĉ2(TX )−n · ĉ1(TX )2) · [KX ]n−2 = 0.

Let M be a normal projective variety homeomorphic to X . Then M is klt, KM is ample and(
2(n +1) · ĉ2(TM )−n · ĉ1(TM )2) · [KM ]n−2 = 0.

Proof. Since the Miyaoka–Yau Equality holds on X , there is a quasi-étale cover X̃ → X such that
the universal cover of X̃ is the ball, [22]. By Theorem 10, there is a quasi-étale cover M̃ → M
such that M̃ ∼= X̃ biholomorphically or conjugate-biholomorphically. Hence, the universal cover
of M̃ is the ball. It follows that M is klt, KM is ample, and that the Miyaoka–Yau Equality holds
on M . □

2.1. Preparation for the proof of Theorem 10

The following lemma of independent interest might be well-known. We include a full proof for
lack of a good reference.

Lemma 13. Let X be a normal complex space. Then, the set Xsing,top ⊂ X of topological singulari-
ties is a complex-analytic set.

Proof. Recall from [16, Thm. on p. 43] that X admits a Whitney stratification where all strata
are locally closed complex-analytic submanifolds of X . Recall from [32, Chapt. IV.8] that the
closures of the strata are complex-analytic subsets of X . Since Whitney stratifications are locally
topologically trivial along the strata4, it follows that Xsing,top is locally the union of finitely many
strata. The additional observation that the set of topologically smooth points, X \Xsing,top, is open
in the Euclidean topology implies that Xsing,top is locally the union of the closures of finitely many
strata, hence analytic. □

2.2. Proof of Theorem 10 if X is smooth

We maintain the notation of Theorem 10 in this section and assume additionally that X is
smooth. To begin, fix a homeomorphism f : M → X and choose a resolution of singularities,
say π : M̃ → M . The composed map g = f ◦π is continuous and induces an isomorphism

g∗ : H2n
(
M̃ , Z

)→ H2n
(
X , Z

)
. (1)

Hence, by Siu’s general rigidity result [40, Thm. 6] in combination with the curvature compu-
tations for the classical, respectively exceptional Hermitian symmetric domains done in [40, 41],
the continuous map g is homotopic to a holomorphic or conjugate-holomorphic map g̃ : M̃ → X .
Replacing the complex structure on X by the conjugate complex structure, if necessary, we may
assume without loss of generality that g̃ is holomorphic and hence in particular algebraic. The
isomorphism (1) maps the fundamental class of M̃ to the fundamental class of X , and g̃ is hence
birational.

We claim that the bimeromorphic morphism g̃ factors via π. To begin, observe that since g
contracts the fibres of π and since g̃ is homotopic to g , the map g̃ contracts the fibres of π as well.

4See [16, Part I, §1.4] for a detailed discussion.
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In fact, given any curve C̃ ⊂ M̃ with π(C̃ ) a point, consider its fundamental class [C̃ ] ∈ H2
(
M̃ , R

)
.

By assumption, we find that

g̃∗
(
[C̃ ]

)= g∗
(
[C̃ ]

)= 0 ∈ H2
(
X , R

)
.

Given that X is projective, this is only possible if g̃ (C̃ ) is a point. Since M is normal and since g̃
contracts the (connected) fibres of the resolution map π, we obtain the desired factorisation of g̃ ,
as follows

M̃ M X .π

g̃

∃! f̃

We claim that the birational map f̃ is biholomorphic.5 By Zariski’s Main Theorem, [25,
V Thm. 5.2], it suffices to verify that it does not contract any curve C ⊂ M . Aiming for a
contradiction, assume that there exists a curve C̃ ⊂ M̃ whose image C := π(C̃ ) is a curve in M ,
while g̃ (C̃ ) = f̃ (C ) = (∗) is a point in X . Let d > 0 be the degree of the restricted map π|C̃ : C̃ →C .
Then, on the one hand,

f∗
(
d · [C ]

)= f∗
(
π∗[C̃ ]

)= g∗[C̃ ] = g̃∗[C̃ ] = 0 ∈ H2
(
X , R

)
.

On the other hand, projectivity of M implies that d · [C ] is a non-trivial element of H2
(
M , R

)
,

which therefore must be mapped to a non-trivial element of H2
(
X , R

)
, since f is assumed to be a

homeomorphism. This finishes the proof of Theorem 10 in the case where X is smooth.

2.3. Proof of Theorem 10 in general

Maintain the setting of Theorem 10.

Step 1: Setup

By assumption, there exists a bounded symmetric domain Ω and a quasi-étale cover τX :
X̂ → X such that the universal cover of X̂ is Ω. Choose a homeomorphism f : M → X and let
M̂ := X̂ ×X M be the topological fibre product. The situation is summarized in the following
commutative diagram,

M̂ M

X̂ X ,

τM

≃ f≃

τX , quasi-étale

(2)

in which the vertical maps are homeomorphisms and the horizontal maps are surjective with
finite fibres.

Step 2: A complex structure on M̂

The spaces M , X̂ and X all carry complex structures. We aim to equip M̂ with a structure so
that all horizontal arrows in (2) become holomorphic.

Claim 14. There exists a normal complex structure on M̂ that makes τM a finite, holomorphic,
and quasi-étale cover.

Proof of Claim 14. Let X0 be the smooth locus of X , set M0 := f −1(X0) and M̂0 := τ−1
M (M0). The

map τM |M̂0
being a local homeomorphism, there is a uniquely determined complex structure on

M̂0 such that τM |M̂0
: M̂0 → M0 is a finite holomorphic cover. Since X has quotient singularities,

5Cf. [7, Rem. 86(2)]
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the topological and holomorphic singularities agree, Xsing,top = Xsing. Hence, f being a homeo-
morphism, we note that

Msing,top = f −1 (
Xsing

)
and M \ M0 = Msing,top.

We have seen in Lemma 13 that Msing,top is an analytic set. Therefore, by [9, Thm. 3.4] and [42,
Satz 1], the complex structure on M̂0 uniquely extends to a normal complex structure on the
topological manifold M̂ , making τM holomorphic and finite. The branch locus of τM has the
same topological dimension as the branch locus of τX , so that τM is quasi-étale, as claimed. □

Note that as a finite cover of the projective variety M , the normal complex space M̂ is again
projective.

Step 3: M̂ as a quotient of Ω

The homeomorphic varieties X̂ and M̂ reproduce the assumptions of Theorem 10. The partial
results of Section 2.2 therefore apply to show that the complex spaces M̂ and X̂ are biholomorphic
or conjugate-biholomorphic. Replacing the complex structures on M and M̂ by their conjugates,
if necessary, we assume without loss of generality for the remainder of this proof that M̂ and X̂
are biholomorphic. This has two consequences.

(1) The projective variety M̂ is smooth. The universal cover of M̂ is biholomorphic to Ω.
(2) Its quotient M is a singular quotient of Ω and has only quotient singularities.

Recalling that quotient singularities are not topologically smooth, Item (2) implies that the
homeomorphism f : M → X restricts to a homeomorphism between the smooth loci, Xreg and
Mreg. The situation is summarized in the following commutative diagram,

Ω M̂ M Mreg

Ω X̂ X Xreg,

uX , univ. cover

≃

τM , quasi-étale

≃ f≃

inclusion

f |Xreg≃

uM , univ. cover τX , quasi-étale inclusion

where all horizontal maps are holomorphic, and all vertical maps are homeomorphic.
The description of M as a singular quotient of Ω can be made precise. The argument in [22,

§9.1] shows that the fundamental groupπ1(Mreg) acts properly discontinously onΩwith quotient
M . In particular, we have an injective homomorphism from π1(Mreg) into the holomorphic
automorphism group Aut(Ω) of Ω, with image a discrete cocompact subgroup ΓM ⊆ Aut(Ω).

The same reasoning also applies to X and presents X as a quotient X = Ω/π1(Xreg), where
π1(Xreg) again acts via an injective homomorphism π1(Xreg) ,→ Aut(Ω), with image a cocompact,
discrete subgroup ΓX of Aut(Ω).

As we have seen above, f induces a homeomorphism from Mreg to Xred, from which we obtain
an abstract group isomorphism θ : ΓM → ΓX .

Step 4: End of proof

In the remainder of the proof we will show that not only M̂ and X̂ are (conjugate-)-
biholomorphic, but that this actually holds for M and X . This will be a consequence of Mostow’s
rigidity theorem for lattices in connected semisimple real Lie groups. As the groups appearing in
our situation are not necessarily connected, we have to do some work to reduce to the connected
case6.

Given that Ω is an irreducible Hermitian symmetric domain of dimension greater than one,
the identity component Aut◦(Ω) ⊆ Aut(Ω) coincides with the identity component I ◦(Ω) of the

6Alternatively, one could trace the finite group actions through the proof of the results used in Section 2.2.
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isometry group I (Ω) of the Riemannian symmetric space Ω, [26, VIII.Lem. 4.3]7, which is a non-
compact simple Lie group without non-trivial proper compact normal subgroups and with trivial
centre, [10, Prop. 2.1.1 and bottom of p. 379]. We also note that a Bergman-metric argument
shows that Aut(Ω) is contained in I (Ω). Furthermore, both Lie groups have only finitely many
connected components.

Claim 15. There exists an isometry F ∈ I (Ω) such that

F ◦γ= θ(γ)◦F, for every γ ∈ ΓM . (3)

Proof of Claim 15. If the rank of Ω is equal to one, then Ω ∼= Bn , the unit ball in Bn , see [26,
§X.6.3/4]. Consequently, the group Aut(Ω) is connected, and we may apply [34, Thm. A′ on p. 4]
to obtain an automorphism of real Lie groups, Θ : Aut(Ω) → Aut(Ω) such that Θ|ΓM = θ. The
desired isometry is then produced by an application of [10, Prop. 3.9.11].

We consider the case rank(Ω) ≥ 2 for the remainder of the present proof, where the automor-
phism group may be non-connected. To deal with this slight difficulty, we proceed as in [10,
p. 379]: as Aut(Ω) has finitely many connected components, we may assume that the subgroups
ΓM̂ ⊆ ΓM and ΓX̂ ⊆ ΓX corresponding to the deck transformation groups of uM and uX , respec-
tively, are contained in the identity component I ◦(Ω) = Aut◦(Ω). Again, apply [34, Thm. A′ on
p. 4] to obtain an automorphism of real Lie groups Θ : I ◦(Ω) → I ◦(Ω) such that Θ|ΓM̂

= θ|ΓM̂
and

then [10, Prop. 3.9.11] to obtain an isometry F ∈ I (Ω) such that

F ◦ g =Θ(g )◦F, for every g ∈ I ◦(Ω).

This in particular yields (3) for all γ contained in the finite index subgroup ΓM̂ of ΓM . This is not
yet enough.

However, noticing that for any finite index subgroup Γ′M < ΓM , every Γ′M -periodic vector in the
sense of [10, Def. 4.5.13] by definition is also ΓM -periodic, we see with the argument given in [10,
p. 379], which uses essentially the same notation as we have introduced here, that the set of ΓM -
periodic vectors is dense in the unit sphere bundle SΩ of Ω. The subsequent argument in [10,
bottom of p. 379 and upper part of p. 380] then applies verbatim to yield the desired relation (3)
for all γ ∈ ΓM ; this is [10, equation (5) on p. 380]. □

Now, since the Hermitian symmetric domainΩ is assumed to be irreducible, the Γ-equivariant
isometry F ∈ I (Ω) is either holomorphic or conjugate-holomorphic, as follows for example
from [5] together with [26, VIII.Prop. 4.2]. By the universal property of the quotient map π with
respect to Γ-invariant holomorphic maps, F hence descends to a holomorphic or conjugate-
holomorphic isomorphism from M to X . This completes the proof of Theorem 10.

3. Topological characterization of torus quotients

In line with the results of Section 2, we show that a Kähler space with klt singularities is a singular
torus quotient if and only if it is homeomorphic to a singular torus quotient. In the smooth
case, this was shown by Catanese [6], but see also [3, Thm. 2.2]. The following notion is a direct
analogue of Definition 8 above.

Definition 16 (Singular torus quotient). A normal complex space X is called a singular torus
quotient if there exists a quasi-étale cover X̂ → X , where X̂ is a compact complex torus.

Remark 17 (Singular torus quotients are quotients). Let X be a singular torus quotient. Passing
to a suitable Galois closure, one finds a quasi-étale Galois cover X̂ → X , where X̂ is a compact
torus.

7As Ω is irreducible, the compatible Riemannian metric on Ω is unique up to a positive real multiple that does not
change the isometry group.
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Theorem 18 (Varieties homeomorphic to torus quotients). Let M be a compact complex space
with klt singularities. Assume that M is bimeromorphic to a Kähler manifold. If M is homeomor-
phic to a singular torus quotient, then M is a singular torus quotient.

Theorem 18 will be shown in Sections 3.1–3.2 below. In analogy to Corollary 12 above, we note
that vanishing of Q-Chern classes is a topological property among compact Kähler spaces with
klt singularities.

Corollary 19 (Topological invariance of vanishing Chern classes). Let X be a compact Kähler
space with klt singularities. Assume that the canonical class vanishes numerically, KX ≡ 0, and
that the secondQ-Chern class of TX satisfies

ĉ2(TX ) ·α1 . . .αdim X−2 = 0,

for every (dim X − 2)-tuple of Kähler classes on X . If M is any compact Kähler space with klt
singularities that is homeomorphic to X , then KM ≡ 0, and the secondQ-Chern class of TM satisfies

ĉ2(TM ) ·β1 . . .βdim M−2 = 0,

for every (dim X −2)-tuple of Kähler classes on M.

Proof. The characterization of singular torus quotients in terms of Chern classes by Claudon,
Graf and Guenancia, [8, Cor. 1.7], guarantees that X is a torus quotient8. By Theorem 18, then so
is M . □

3.1. Proof of Theorem 18 if M is homeomorphic to a torus

As before, we prove Theorem 18 first in case where the (potentially singular) space M is home-
omorphic to a torus. Recalling that klt singularities are rational, see [30, Thm. 5.22] for the al-
gebraic case and [11, Thm. 3.12] (together with the vanishing theorems proven in [12]) for the
analytic case, we show the following, slightly stronger statement.

Proposition 20. Let M be a compact complex space with rational singularities. Assume that M is
bimeromorphic to a Kähler manifold. If M is homotopy equivalent to a compact torus, then M is a
compact torus.

Proof. We follow the arguments of Catanese, [6, Thm. 4.8], and choose a resolution of singular-
ities, π : M̃ → M , which owing to the assumptions on M we may assume to be a compact Kähler
manifold. Using the assumption that M has rational singularities together with the push-forward
of the exponential sequence, we observe that the pull-back map H 1

(
M , Z

)→ H 1
(
M̃ , Z

)
is an iso-

morphism. In particular, first Betti numbers of M and M̃ agree. As a next step, consider the Al-
banese map of M̃ , observing that M̃ is bimeromorphic to a Kähler manifold since M is. Again
using that M has rational singularities, recall from [38, Prop. 2.3] that the Albanese factors via M ,

M̃ Alb.

M

alb

π, resolution
α

Since the pull-back morphisms

alb∗ = π∗ ◦α∗ : H 1
(
Alb, Z

) → H 1
(
M̃ , Z

)
π∗ : H 1

(
M , Z

) → H 1
(
M̃ , Z

)
8See [33, Thm. 1.2] for the projective case and see [19, Thm. 1.17] for the case where X is projective and smooth in

codimension two.
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are both isomorphic, we find that α∗ : H 1
(
Alb, Z

)→ H 1
(
M , Z

)
must likewise be an isomorphism.

There is more that we can say. Since the topological cohomology ring of a torus is an exterior
algebra,

H∗(
Alb, Z

)=∧∗H 1(Alb, Z
)

and H∗(
M , Z

)=∧∗H 1(M , Z
)
,

we find that all pull-back morphisms are isomorphisms,

α∗ : H q (
Alb, Z

) ∼=−→ H q (
M , Z

)
, for every 0 ≤ q ≤ 2 ·dim M .

Applying this to q = 2 ·dim M , we see α is surjective of degree one, hence birational. Again, more
is true: if α failed to be isomorphic, Zariski’s Main Theorem would guarantee that α contracts a
positive-dimensional subvariety, so b2(M) > b2(Alb). But we have seen above that equality holds
and hence reached a contradiction. □

3.2. Proof of Theorem 18 in general

By assumption, there exists a homeomorphism f : M → X , where X is a singular torus quotient.
Choose a quasi-étale cover τX : X̂ → X , where X̂ is a complex torus, and proceed as in the proof of
Theorem 10, in order to construct a diagram of continuous mappings between normal complex
spaces,

M̂ M

X̂ X ,

τM , quasi-étale

∼= f∼=

τX , quasi-étale

where

• the vertical maps are homeomorphisms, and
• the horizontal maps are holomorphic, surjective, and finite.

Since M is bimeromorphic to a Kähler manifold, so is M̂ . Recalling from [30, Prop. 5.20] that also
M̂ has no worse than klt singularities, Proposition 20 will then guarantee that M̂ is a complex
torus, as claimed.

4. Rigidity results for projective spaces

Recall the classical theorem of Hirzebruch–Kodaira, which asserts that the projective space
carries a unique structure as a Kähler manifold.

Theorem 21 (Rigidity of the projective space, [27, p. 367]). Let X be a compact Kähler manifold.
If X is homeomorphic to Pn , then X is biholomorphic to Pn .

Remark 22. Strictly speaking, Hirzebruch–Kodaira proved a somewhat weaker result: X is
biholomorphic toPn if either n is odd, or if n is even and c1(X ) ̸= −(n+1)·g , where g is a generator
of H 2

(
X , Z

)
and the fundamental class of a Kähler metric on X . The second case was later ruled

out by Yau’s solution to the Calabi conjecture, which implies that then the universal cover of X is
the ball, contradicting π1(X ) = 0.

Since the topological invariance of the Pontrjagin classes, [35], was not known at that time,
Hirzebruch–Kodaira also had to assume that X is diffeomorphic to Pn rather than merely home-
omorphic.

We ask whether an analogue of Hirzebruch–Kodaira’s theorem remains true in the context of
minimal model theory.

Question 23. Let X be a projective variety with klt singularities. Assume that X is homeomorphic
to Pn . Is X then biholomorphic to Pn?
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4.1. Varieties homeomorphic to projective space

We do not have a full answer to Question 23. The following proposition will, however, restrict
the geometry of potential varieties substantially. It will later be used to answer Question 23 in a
number of special settings.

Proposition 24 (Varieties homeomorphic to Pn ). Let X be a projective klt variety. If X is
homeomorphic to Pn , then the following holds.

(1) We have H q
(
X , OX

)= 0 for every 1 ≤ q.
(2) The Chern class map c1 : Pic(X ) → H 2(X ,Z) ∼=Z is an isomorphism.
(3) The variety X is smooth in codimension two.
(4) The maps rq : H q

(
X , Z

) → H q
(
Xreg, Z

)
are isomorphic, for every 0 ≤ q ≤ 4. The same

statement holds for Z2 coefficients.
(5) Every Weil divisor on X is Cartier, i.e., X is factorial. In particular, X is Gorenstein.
(6) The canonical divisor KX is ample or anti-ample.

Proof. We prove the items of Proposition 24 separately.

Item (1). This is a consequence of the rationality of the singularities of X and the isomorphisms
H q

(
X , C

)≃ H q
(
Pn , C

)
. In fact, since X has rational singularities, the morphisms

ϕq : H q (
X , C

)→ H q (
X , OX

)
induced by the canonical inclusionC→OX , are surjective, [29, Thm. 12.3]. If q is odd, this already
implies that H q (X ,OX ) = 0. If q is even, it suffices to note that ϕq has a non-trivial kernel. For
this, choose an ample line bundle L ∈ Pic(X ) and observe that

ϕq
(
c1(L )q/2)= 0 ∈ H q (

X , OX
)
.

To prove the observation, pass to a desingularisation and use the Hodge decomposition there.

Item (2). The description of c1 follows from (1) and the exponential sequence.

Item (3). Recall that klt varieties have quotient singularities in codimension two, [18, Prop. 9.3].
Smoothness follows because quotient singularities have non-trivial local fundamental groups
and are hence not topologically smooth.

Item (4). We describe the relevant cohomology groups in terms of Borel-Moore homology, [4],
and also refer to the reader to [15, §19.1] for a summary of the relevant facts (over Z). The
assumption that X is homeomorphic to an oriented, connected, real manifold implies that
singular cohomology and Borel-Moore homology agree, [4, Thm. 7.6] and [15, p. 371]. The same
holds for the non-compact manifold Xreg, i.e., for R =Z,Z2 we have

H q (
X , R

)= H B M
2·n−q

(
X , R

)
and H q (

Xreg, R
)= H B M

2·n−q

(
Xreg, R

)
, for every q.

The isomorphisms identify the restriction maps rq with the pull-back maps for Borel-Moore
homology. These feature in the localization sequence for Borel-Moore homology, [4, Thm.3.8],

· · ·→ H B M
2·n−q

(
Xsing, R

)→ H B M
2·n−q

(
X , R

) rq−→ H B M
2·n−q

(
Xreg, R

)→ H B M
2·n−q−1

(
Xsing, R

)→ . . .

Recalling from [15, Lem. 19.1.1] that H B M
i

(
Xsing, Z

) = 0 for every i > 2 ·dimC Xsing and noticing
that the inductive argument employed in the proof also works for Z2-coefficients, the claim of
Item (4) thus follows from smoothness in codimension two, Item (3).
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Item (5). Remaining in the analytic category, writing down the exponential sequences for X and
Xreg,

H 1
(
X , Z

)
H 1

(
X , OX

)
Pic(X ) H 2

(
X , Z

)
H 2

(
X , OX

)
H 1

(
Xreg, Z

)
H 1

(
Xreg, OXreg

)
Pic

(
Xreg

)
H 2

(
Xreg, Z

)
H 2

(
Xreg, OXreg

)
,

r1

c1

r2

c1

and filling in what we already know, we find a commutative diagram with exact rows, as follows,

0 0 Pic(X ) H 2
(
X , Z

)
0

0 H 1
(
Xreg, OXreg

)
Pic(Xreg) H 2

(
Xreg, Z

)
0.

c1, iso.

r2, iso.

c1

The snake lemma now asserts that

H 1(Xreg, OXreg

)∼= Pic(Xreg)
/

Pic(X ). (4)

We claim that H 1
(
Xreg, OXreg

)
vanishes. For this, recall that the singularities of X are rational, so

every local ring OX ,x of the (holomorphic) structure sheaf has depth equal to n. Since the singular
set of X has codimension at least 3 in X by Item (3), we may apply [39, §5, Korollar after Satz III]
or alternatively [2, Chap. II, Cor. 3.9 and Thm. 3.6] to see that the restriction homomorphism

H 1(X , OX
)→ H 1(Xreg, OXreg

)
is bijective. However, the cohomology group on the left side was shown to vanish in Item (1)
above.

In summary, we find that every invertible sheaf on Xreg extends to an invertible sheaf on X . If
D ∈ Div(X ) is any Weil divisor, the invertible sheaf OXreg (D) will therefore extend to an invertible
sheaf on X , which necessarily equals the (reflexive) Weil divisorial sheaf OX (D). It follows that D
is Cartier. This applies in particular to the canonical divisor, so X is Q-Gorenstein of index one.
Since X is Cohen–Macaulay, we conclude that X is Gorenstein.

Item (6). Given that Pic(X ) = Z, every line bundle is ample, anti-ample, or trivial; we need to
exclude the case that KX is trivial. But if KX were trivial, use that X is Gorenstein and apply Serre
duality to find

hn(
X , OX

)= h0(X ,ωX
)= h0(X , OX

)= 1.

This contradicts Item (1) above. □

Notation 25 (Line bundles on varieties homeomorphic to Pn ). If X is a projective klt variety
that is homeomorphic to Pn , Item (2) shows the existence of a unique ample line bundle that
generates Pic(X ) ∼= Z. We refer to this line bundle as OX (1). Item (5) equips us with a unique
number r ∈N and such that ωX

∼=OX (r ). Item (6) guarantees that r ̸= 0.

Remark 26 (Pull-back of line bundles). The cohomology rings of X and Pn are isomorphic.
If φ : X → Pn is any homeomorphism, then φ∗c1

(
OPn (1)

) = c1
(
OX (±1)

)
. The cup products

c1
(
OX (1)

)q generate the groups H 2q
(
X , Z

)∼=Z.

4.2. Characteristic classes

We have seen in Proposition 24 that X is smooth away from a closed set of codimension ≥ 3. This
allows defining a number of characteristic classes.
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Notation 27 (Chern classes on varieties homeomorphic to Pn ). If X is a projective klt variety
that is homeomorphic to Pn , Item (4) allows defining first and second Chern classes, as well as a
first Pontrjagin class and a second Stiefel–Whitney class

c1(X ) = r−1
2 c1(Xreg) ∈ H 2(X , Z

)
c2(X ) = r−1

4 c2(Xreg) ∈ H 4(X , Z
)

p1(X ) = r−1
4 p1(Xreg) ∈ H 4(X , Z

)
w2(X ) = r−1

2 w2(Xreg) ∈ H 2(X , Z2
)
.

Remark 28 (Pontrjagin and Chern classes). If X be a projective klt variety that is homeomorphic
to Pn , the restriction maps r• : H•(X , Z

)→ H•(Xreg, Z
)

commute with the cup products on X and
Xreg, which implies in particular that

p1(X ) = r−1
4 p1(Xreg) = r−1

4

(
c1(Xreg)2 −2 · c2(Xreg)

)
= c1(X )2 −2 · c2(X ) ∈ H 4(X , Z

)
.

Remark 29 (Stiefel–Whitney class and first Chern class). By definition and the well-known
relation in the smooth case, we have

w2(X ) = c1(X ) mod 2.

Novikov’s result on the topological invariance of Pontrjagin classes extends to the generalized
Pontrjagin class defined in Notation 27.

Proposition 30 (Topological invariance of Pontrjagin classes). Let X be a projective klt variety.
If φ : X →Pn is any homeomorphism, then φ∗p1(Pn) = p1(X ) in H 4

(
X , Z

)
.

Proof. Consider the open set Pn
reg := φ(Xreg) and the restricted homeomorphism φreg : Xreg →

Pn
reg. Recalling from Item (4) of Propositions 24 that the restriction maps

r4 : H 4(X , Z
)→ H 4(Xreg, Z

)
and r4 : H 4(Pn , Z

)→ H 4(Pn
reg, Z

)
are isomorphic, it suffices to show that the restricted classes in rational cohomology agree. More
precisely,

φ∗p1(Pn) = p1(X ) in H 4(X , Z
)

⇐⇒ r4φ
∗p1(Pn) = r4p1(X ) in H 4(Xreg, Z

)
, since r4’s are iso.

⇐⇒ φ∗
regp1(Pn

reg) = p1(Xreg) in H 4(Xreg, Z
)
, definition, functoriality

⇐⇒ φ∗
regp1(Pn

reg) = p1(Xreg) in H 4(Xreg,Q
)
, since H 4(Xreg, Z

)=Z
The last equation is Novikov’s famous topological invariance of Pontrjagin classes, [35]9. □

Corollary 31 (Relation between Chern classes on varieties homeomorphic to Pn ). If X is a
projective klt variety that is homeomorphic to Pn , then

2 · c2(X ) = [
r 2 − (n +1)

] · c1
(
OX (1)

)2 in H 4(X , Z
)
.

Proof. Choose a homeomorphism φ : X → Pn , in order to compare the Pontrjagin class of Pn

with that of X .

p1(Pn) = (n +1) · c1
(
OPn (1)

)2 in H 4(Pn , Z
)

⇐⇒ φ∗p1(Pn) = (n +1) ·φ∗c1
(
OPn (1)

)2 in H 4(X , Z
)

⇐⇒ p1(X ) = (n +1) · c1
(
OX (±1)

)2 Prop. 30 and Rem. 26

⇐⇒ c1
(
OX (r )

)2 −2 · c2(X ) = (n +1) · c1
(
OX (1)

)2 Rem. 28

The claim thus follows. □

9See [17, Thm. 0] for the precise result used here and see [37, Appendix] for a history of the result. Igor Belegradek
explains on MathOverflow (https://mathoverflow.net/q/442025) why compactness assumptions are not required.

https://mathoverflow.net/q/442025
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Corollary 31 allows reformulating the Q-Miyaoka–Yau inequality and Q-Bogomolov–Gieseker
inequality as inequalities between the index r and the dimension n. The first remark will be
relevant for varieties of general type, whereas the second one will be used for Fano varieties.

Remark 32 (Reformulation of theQ-Miyaoka–Yau inequality). Let X be a projective klt variety
that is homeomorphic to Pn . Since X is smooth in codimension two, the Miyaoka–Yau inequality
forQ-Chern classes,(

2(n +1) · ĉ2(X )−n · ĉ1(X )2) · [H ]n−2 ≥ 0, for one ample H ,

is equivalent to the assertion that there exists a non-negative constant c ∈R≥0 such that(
2(n +1) · c2(X )−n · c1(X )2)≥ c · c1

(
OX (1)

)2 in H 4(X , Z
)

⇐⇒ (
(n +1)(r 2 − (n +1))−n · r 2) · c1

(
OX (1)

)2 ≥ c · c1
(
OX (1)

)2 Cor. 31

⇐⇒ (
r 2 − (n +1)2) · c1

(
OX (1)

)2 ≥ c · c1
(
OX (1)

)2

⇐⇒ |r | ≥ n +1.

The Miyaoka–Yau inequality is an equality if and only if |r | = n +1.

Remark 33 (Reformulation of theQ-Bogomolov–Gieseker inequality). Let X be a projective klt
variety that is homeomorphic to Pn . Since X is smooth in codimension two, the Bogomolov–
Gieseker inequality forQ-Chern classes,(

2n · ĉ2(X )− (n −1) · ĉ1(X )2) · [H ]n−2 ≥ 0, for one (equiv. every) ample H ,

is equivalent to the assertion that |r | > n.

We will also need the topological invariance of the second Stiefel–Whitney class w2.

Proposition 34 (Topological invariance of the second Stiefel–Whitney class). Let X be a projec-
tive klt variety. If φ : X →Pn is any homeomorphism, then φ∗w2(Pn) = w2(X ) in H 2

(
X , Z/2Z

)
.

Proof. We can argue as in the proof of Proposition 30, replacing Novikov’s Theorem by the
corresponding invariance result for Stiefel–Whitney classes due to Thom, [43, Thm. III.8]. □

Corollary 35 (Parity of the first Chern class of varieties homeomorphic to Pn ). If X is a
projective klt variety that is homeomorphic to Pn , then r − (n +1) is even.

Proof. This follows from the topological invariance established just above together with Re-
mark 29 and the relation ϕ∗(c1(OPn (1))) = c1(OX (±1)). □

4.3. Partial answers to Question 23

We conclude the present Section 4 with three partial answers to Question 23: for threefolds, we
answer Question 23 in the affirmative. In dimension four and five, we give an affirmative answer
for Fano manifolds. In higher dimensions, we can at least describe and restrict the geometry of
potential exotic klt varieties homeomorphic to Pn .

Proposition 36 (Topological Pn with ample canonical bundle). Let X be a projective klt variety
that is homeomorphic to Pn . If KX is ample, then r > n +1.

Proof. Recall from [22, Thm. 1.1] that X satisfies the Q-Miyaoka–Yau inequality. We have seen
in Remark 32 that this implies r = |r | ≥ n + 1, with r = n + 1 if and only if equality holds in Q-
Miyaoka–Yau inequality. In the latter case, recall from [22, Thm. 1.2] that X has no worse than
quotient singularities. Since quotient singularities are not topologically smooth, it turns out that
X cannot have any singularities at all. By Yau’s theorem (or again by [22, Thm. 1.2]), X must then
be a smooth ball quotient, contradicting π1(X ) =π1(Pn) = {1}. □
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Proposition 37 (Topological Pn with ample anti-canonical bundle). Let X be a projective klt
variety that is homeomorphic to Pn . If −KX is ample, then either X ∼=Pn or TX is unstable.

Remark 38. Recall from [28, Cor. 32] that Fano varieties with unstable tangent bundles admit
natural sequences of rationally connected foliations. These might be used to study their geome-
try further. If in the situation of Proposition 37 we additionally assume that the index is one, i.e.,
that r =−1, thenΩ[1]

X is always semistable: if S ⊊Ω[1]
X was destabilizing, then detS ⊆Ω[rankS ]

X is
either trivial (hence violating the non-existence of reflexive forms, [45, Thm. 1] and [18, Thm. 5.1])
or ample (hence violating the Bogomolov–Sommese vanishing theorem for klt varieties, [18,
Thm. 7.2]).

Proof of Proposition 37. If TX is semistable, then the Q-Bogomolov–Gieseker inequality holds,
and we have seen in Remark 33 that −r = |r | > n. Fujita’s singular version of the Kobayashi–Ochiai
theorem, [13, Thm. 1], will then apply to show that X ∼=Pn . □

While the Bogomolov–Gieseker inequality does not necessarily hold on a Fano variety with
unstable tangent sheaf, we still get some restriction on the index from the following result.

Proposition 39. Let X be a projective klt variety that is homeomorphic to Pn . If −KX is ample,
then r 2 ≥ n +1. In particular, if n ≥ 4, then r ≥ 3.

Proof. Since X is factorial by Proposition 24(5) and non-singular in codimension two by Propo-
sition 24(3), we may apply [36, Cor. 1.5] to obtain the bound c2(X ) · c1(OX (1))n−2 ≥ 0. Then, we
conclude by Corollary 31. □

In dimension three we can now fully answer Question 23.

Theorem 40 (TopologicalP3). Let X be a projective klt variety that is homeomorphic to P3. Then,
X ∼=P3.

Proof. Since X is a threefold with isolated, rational Gorenstein singularities, Riemann–Roch
takes a particularly simple form:

1
Prop. 24(1)= χ(OX ) = 1

24
· [−KX ] · c2(X ).

With Corollary 31, this reads
−48 = r · (r 2 −4).

This equation has only one real solution: r = −4; in particular, −KX is ample. As before, Fujita’s
theorem [13, Thm. 1] applies to show that X ∼=Pn . □

Finally, in dimensions four and five we show the following.

Theorem 41 (Q-Fano 4- and 5-folds homeomorphic to projective spaces). Let X be a projective
klt variety homeomorphic to Pn , with n = 4 or 5. Assume that KX is not ample. Then, X ∼=Pn .

Proof. Recall that X is a Gorenstein Fano variety of index i = −r , with canonical singularities,
smooth in codimension two. By [13, Thm. 1 and 2], we may assume that i ≤ dim X −1. Further,
from Proposition 39, we see that i ≥ 3. These cases have to be excluded.

If i = dim X − 1, then by [14], X is a hypersurface of weighted degree 6 embedded in the
smooth part of the weighted projective space P(3,2,1n). Smooth such hypersurfaces have
semistable tangent bundle by [21, Prop. 6.15]; in particular, they satisfy the Bogomolov–Gieseker
inequality. Since X is smooth in codimension two, the “principle of conservation of numbers”,
[15, Thm. 10.2], implies that X satisfies the Bogomolov–Gieseker inequality as well, which in turn
contradicts Remark 33.

The remaining case, n = 5 and i = 3, is ruled out by Corollary 35, which implies that i =−r has
to be even. □



156 Daniel Greb, Stefan Kebekus and Thomas Peternell

References

[1] J. Amorós, M. Burger, K. Corlette, D. Kotschick and D. Toledo, Fundamental groups of
compact Kähler manifolds, American Mathematical Society, 1996.
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