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Abstract. In this short article we show that if (X ,B) is a compact Kähler klt pair of maximal Albanese
dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction φ : X 99K X ′ such
that KX ′ +B ′ is semi-ample.

Résumé. Dans ce court article, nous montrons que si (X ,B) est une paire kählérienne compacte klt de di-
mension d’Albanese maximale, (X ,B) admet un bon modèle minimal, c’est-à-dire qu’il existe une contrac-
tion biméromorphe φ : X 99K X ′ telle que KX ′ +B ′ est semi-ample.
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1. Introduction

The main result of this paper is the following

Theorem 1. Let (X ,B) be a compact Kähler klt pair of maximal Albanese dimension. Then (X ,B)
has a good minimal model.
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This generalizes the main result of [6] from the projective case to the Kähler case. The main
idea is to observe that replacing X by an appropriate resolution, then the Albanese morphism
X → A is projective and so by [5] and [7] we may run the relative MMP over A. Thus we may
assume that KX +B is nef over A. If X is projective and KX +B is not nef, then by the cone theorem,
X must contain a KX +B negative rational curve C . Since A contains no rational curves, then C is
vertical over A, contradicting the fact that KX +B is nef over A [6]. Unluckily the cone theorem is
not known for Kähler varieties and so we pursue a different argument. It would be interesting to
find an alternative proof based on the approach of [3].

2. Preliminaries

An analytic variety or simply a variety is a reduced irreducible complex space. Let X be a compact
Kähler manifold and Alb(X ) is the Albanese torus (not necessarily an Abelian variety). Then by
a : X → Alb(X ) we will denote the Albanese morphism. This morphism can also be characterized
via the following universal property: a : X → Alb(X ) is the Albanese morphism if for every
morphism b : X → T to a complex torus T there is a unique morphism φ : Alb(X ) → T such
that b =φ◦a.

The Albanese dimension of X is defined as dim a(X ). We say that X has maximal Albanese
dimension if dim a(X ) = dim X or equivalently, the Albanese morphism a : X → Alb(X ) is
generically finite onto its image. For the definition of singular Kähler space see [4] or [11].

A compact analytic variety X is said to be in Fujiki’s class C if X is bimeromorphic to a compact
Kähler manifold Y . In particular, there is a resolution of singularities f : Y → X such that Y is a
compact Kähler manifold.

Definition 2. Let X be a compact analytic variety in Fujiki’s class C . Assume that X has rational
singularities. Choose a resolution of singularities µ : Y → X such that Y is a Kähler manifold and
let aY : Y → Alb(Y ) be the Albanese morphism of Y . Then from the proof of [12, Lemma 8.1] it
follows that aY ◦µ−1 : X 99K Alb(Y ) extends to a unique morphism a : X → Alb(X ) := Alb(Y ). We
call this morphism the Albanese morphism of X . Observe that a : X → Alb(X ) satisfies the universal
property stated above. The Albanese dimension of X is defined as above. Note that if X is a compact
analytic variety with rational singularities, bimeromorphic to a complex torus A, then A ∼= Alb(X )
and X → A is a bimeromorphic morphism.

The following result is well known, however, for a lack of an appropriate reference and for the
convenience of the reader we give a complete proof here.

Lemma 3. Let A be a complex torus and X ⊂ A is an analytic subvariety. Then for any resolution
of singularities µ : Y → X , H 0(Y ,ωY ) ̸= {0}.

Proof. Let µ : Y → X be a resolution of singularities of X . If d = dim X , then the map µ∗Ωd
A →Ωd

Y
is generically surjective. Since Ωd

A is a trivial vector bundle, it is globally generated and hence
there is a non-zero section in the image of µ∗ : H 0(Ωd

A) → H 0(Ωd
Y ). □

Corollary 4. Let X be a compact analytic variety in Fujiki’s class C with canonical singularities.
If X has maximal Albanese dimension, then κ(X ) ≥ 0.

Proof. First note that if f : W → X is a proper bimeromorphic morphism, then κ(X ) ≥ 0 if and
only if κ(W ) ≥ 0, since X has canonical singularities. Now let a : X → Alb(X ) be the Albanese
morphism, Y := a(X ), and π : Z → Y is a resolution of singularities of Y . Then κ(Z ) ≥ 0 by
Lemma 3. Note that there is a generically finite meromorphic map φ : X 99K Z ; resolving the
graph of φ we may assume that X is smooth and φ : X → Z is a morphism. Then KX =φ∗KZ +E ,
where E ≥ 0 is an effective divisor. Therefore κ(X ) ≥ 0, since κ(Z ) ≥ 0. □
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2.1. Fourier-Mukai transform

Let T be a complex torus of dimension g and T̂ = Pic0(T ) its dual torus. Let pT : T × T̂ → T
and pT̂ : T × T̂ → T̂ be the projections, and P the normalized Poincaré line bundle on T × T̂ so
that P |T×{0}

∼=OT and P |{0}×T̂
∼=OT̂ . Let Ŝ be the functor from the category of OT -sheaves to the

category of OT̂ -sheaves, defined by

Ŝ(F ) := pT̂ ,∗(p∗
T F ⊗P ),

where F is a sheaf of OT -modules. Similarly, S is a functor from the category of OT̂ -sheaves to
the category of OT -sheaves, defined as

S(G ) := pT,∗(p∗
T̂
G ⊗P ),

where G is a sheaf of OT̂ -modules.
The corresponding derived functors are

RŜ( · ) := RpT̂ ,∗(p∗
T ( · )⊗P ) and RS( · ) := RpT,∗(p∗

T̂
( · )⊗P ).

Recall the following fundamental result of Mukai [13, Theorem 2.2, and (3.8)], [14, Theorem 13.1]

Theorem 5. With notations and hypothesis as above, there are isomorphisms of functors (on the
bounded derived category of coherent sheaves)

RŜ ◦RS ∼= (−1)∗
T̂

[−g ], RS ◦RŜ ∼= (−1)∗T [−g ],

∆T ◦RS = ((−1T )∗ ◦RS ◦∆T̂ )[−g ].

Recall that∆T ( · ) := RH om( · ,OT )[g ] is the dualizing functor.

Definition 6. Let A be a complex torus. For a ∈ A, let ta : A → A be the usual translation morphism
defined by a. A vector bundle E on A is called homogeneous, if t∗a E ∼= E for all a ∈ A.

Remark 7. Let A be a complex torus, Â the dual torus and dim A = dim Â = g . Then from the
proof of [13, Example 3.2] it follows that Rg Ŝ gives an equivalence of categories

HA := {Homogeneous vector bundles on A},

and C f

Â
:= {Coherent sheaves on Â supported at finitely many points}.

Note that in [13] the results are all stated for abelian varieties, however, we observe that in the
proof of [13, Example 3.2] the main arguments follow from Theorem 5 and the isomorphisms
in [13, (3.1), p. 158], both of which hold for complex tori. In particular, [13, Example 3.2] holds for
complex tori.

We will need the following result on the rational singularity of (log) canonical models of klt
pairs.

Proposition 8. Let (X ,B) be a klt pair, where X is a compact analytic variety in Fujiki’s class C .
Assume that the Kodaira dimension κ(X ,KX +B) ≥ 0. Then R(X ,KX +B) :=⊕m≥0H 0(X ,m(KX +B))
is a finitely generated C-algebra and

Z = ProjR(X ,KX +B)

has rational singularities.

Proof. The finite generation of R(X ,KX +B) follows from [5, Theorem 1.3] and [6, Theorem 5.1].
Let f : X 99K Z be the Iitaka fibration of KX +B . Resolving Z , f and X , we may assume that X
is a compact Kähler manifold, B has SNC support, Z is a smooth projective variety and f is a
morphism. Then from the proof of [6, Theorem 5.1] it follows that there is a smooth projective
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variety Z ′ which is birational to Z and an effective Q-divisor BZ ′ ≥ 0 such that (Z ′,BZ ′ ) is klt,
KZ ′ +BZ ′ is big and the following holds

R(X ,KX +B)(d) ∼= R(Z ′,KZ ′ +BZ ′ )(d ′),

where the superscripts d and d ′ represent the corresponding d and d ′-Veronese subrings.
Thus Z = ProjR(X ,KX +B) ∼= ProjR(Z ′,KZ ′ +BZ ′ ) is the log-canonical model of (Z ′,BZ ′ ). If

(Z ′′,BZ ′′ ) is a minimal model of (Z ′,BZ ′ ) as in [2, Theorem 1.2(2)], then by the base-point free
theorem, there is a birational morphism φ : Z ′′ → Z such that KZ ′′ +BZ ′′ = φ∗(KZ +BZ ), where
BZ :=φ∗BZ ′′ ≥ 0. Thus (Z ,BZ ) is a klt pair, and hence Z has rational singularities. □

3. Main Theorem

In this section we will prove our main theorem. We begin with some preparation.

Definition 9. Let X be a smooth compact analytic variety. Then the m-th plurigenera of X is
defined as

Pm(X ) := dimC H 0(X ,ωm
X ).

The next result is one of our main tools in the proof of the main theorem, it is also of
independent interest. It follows immediately from the main results of [14].

Theorem 10. Let X be a compact Kähler variety with terminal singularities. Assume that X has
maximal Albanese dimension and κ(X ) = 0. Then X is bimeromorphic to a torus. Additionally, if
KX is also nef, then X is isomorphic to a torus.

Remark 11. Note that the above result holds if we simply assume that X is in Fujiki’s class C .
Indeed, if X ′ → X is a resolution of singularities such that X ′ is Kähler, then κ(X ′) = 0 and so
X ′ → Alb(X ′) is bimeromorphic, and hence so is X → Alb(X ′). Note also that if X is a complex
manifold of maximal Albanese dimension, then X is automatically in Fujiki’s class C . To see this,
consider the Stein factorization X → Y → A. Then Y → A is finite and so Y is also Kähler (see [15,
Proposition 1.3.1(v) and (vi), p. 24]). Let X ′ → X be a resolution of sungularities such that X ′ → Y
is projective, then X ′ is Kähler and so X is in Fujiki’s class C .

Proof of Theorem 10. Since X is terminal, it has rational singularities, and thus by Definition 2
the Albanese morphism a : X → Alb(X ) exists. Let π : X̃ → X be a resolution of singularities of
X . Then a ◦π : X̃ → Alb(X ) is the Albanese morphism of X̃ . Moreover, since X has terminal
singularities, κ(X̃ ) = κ(X ) = 0. Thus replacing X by X̃ , we may assume that X is a compact
Kähler manifold. Let d = dim X and pick a general element Θ ∈ H 0(Ωd

A), where A = Alb(X ). Then
0 ̸= a∗Θ ∈ H 0(Ωd

X ) and so P1(X ) > 0. It follows that Pk (X ) = h0(X ,ωk
X ) > 0 for all k > 0. Since

κ(X ) = 0, we have P1(X ) = P2(X ) = 1. Thus by [14, Theorem 19.1], X → A is surjective, and hence
dim X = dim A = h1,0(X ). Thus by [14, Theorem B], X is bimeromorphic to a complex torus and
so a : X → A is (surjective and) bimeromorphic.

Assume now that X has terminal singularities and KX is nef. Let a : X → A be the Albanese
morphism. By what we have seen above, this morphism is bimeromorphic. Thus KX ≡ a∗K A+E ≡
E , where E ≥ 0 is an effective Cartier divisor such that Supp(E) = Ex(a) (since A is smooth). By
the negativity lemma (see [16, Lemma 1.3]) we have E = 0, and hence a is an isomorphism. □

Corollary 12. Let (X ,B) be a compact Kähler klt pair. Assume that X has maximal Albanese
dimension and κ(X ,KX +B) = 0. Then X is bimeromorphic to a torus. Additionally, if KX +B ∼Q 0,
then X is isomorphic to a torus.
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Proof. Passing to a terminalization by running an appropriate MMP over X (using [5, Theo-
rem 1.4]) we may assume that (X ,B) hasQ-factorial terminal singularities. Now since κ(X ) ≥ 0 by
Corollary 4, κ(X ,KX +B) = 0 implies that κ(X ,KX ) = 0. Thus by Theorem 10, a : X → A := Alb(X )
is a surjective bimeromorphic morphism. Now assume that KX + B ∼Q 0. Then KX + B =
a∗K A + E +B ∼Q B + E , where E ≥ 0 is an effective Cartier divisor such that Supp(E) = Ex(a),
since A is smooth. Thus (B +E) ∼Q 0, as KX +B ∼Q 0, and hence B = E = 0 (as X is Kähler). In
particular, a : X → A is an isomorphism. □

Now we are ready to prove our main theorem.

Proof of Theorem 1. Let a : X → A be the Albanese morphism. Since X has maximal Albanese
dimension, a is generically finite over its image a(X ). By the relative Chow lemma (see [10,
Corollary 2] and [4, Theorem 2.16]) there is a log resolution µ : X ′ → X of (X ,B) such that the
Albanese morphism a′ = a◦µ : X ′ → A is projective. Let KX ′+B ′ =µ∗(KX +B)+F , where F ≥ 0 such
that Supp(F ) = Ex(µ), and (X ′,B ′) has klt singularities. Note that if (X ′,B ′) has a good minimal
model ψ : X ′ 99K X m , then ψ contracts every component of F and the induced bimeromorphic
map X 99K X m is a good minimal model of (X ,B) (see [9, Lemmas 2.5 and 2.4] and their proofs).
Thus, we may replace (X ,B) by (X ′,B ′) and assume that (X ,B) is a log smooth pair and X → A is
a projective morphism. From Corollary 4 it follows that κ(X ) ≥ 0. In particular, κ(X ,KX +B) ≥ 0.
Now we split the proof into two parts. In Step 1 we deal with the κ(X ,KX +B) = 0 case, and the
remaining cases are dealt with in Step 2.

Step 1. Suppose that κ(X ,KX +B) = 0. Then by Theorem 10, the Albanese morphism a : X →
A := Alb(X ) is bimeromorphic. Let D be an irreducible component of the unique effective divisor
G ∈ |m(KX +B)| for m > 0 sufficiently divisible. We make the following claim.

Claim 13. D is a-exceptional; in particular, G is a-exceptional.

Proof. First passing to a higher model of X we may assume that D has SNC support. Consider
the short exact sequence

0 −→ωX −→ωX (D) −→ωD −→ 0.

Let V 0(ωD ) := {P ∈ Pic0(A) | h0(D,ωD ⊗a∗P ) ̸= 0}. If dimV 0(ωD ) > 0, then it contains a subvariety
K + P , where P is torsion in Pic0(A) and K is a subtorus of Pic0(A) with dimK > 0 (see [14,
Corollary 17.1]). Since a : X → A is surjective and bimeromorphic, we have H i (X , a∗Q) =
H i (A,Q) = 0 for any OA ̸= Q ∈ Pic0(A); in particular, H 1(X ,ωX ⊗ a∗Q) = H n−1(X , a∗Q−1)∨ = 0,
where n = dim X . Thus H 0(X ,ωX (D)⊗ a∗Q) → H 0(D,ωD ⊗ a∗Q) is surjective for all OA ̸= Q ∈
Pic0(A), and so h0(X ,ωX (D)⊗a∗Q) > 0 for all OA ̸=Q ∈ P +K . Since P is torsion, ℓP = 0 for some
ℓ> 0. Consider the morphism

|KX +D +P +Q1|× · · ·× |KX +D +P +Qℓ| −→ |ℓ(KX +D)|, (1)

where Qi ∈ K such that
∑ℓ

i=1 Qi = 0.
Since dimK > 0, for ℓ ≥ 2, the Q1, . . . ,Qℓ vary in the subvariety K ⊂ K ×ℓ defined by the

equation
∑ℓ

i=1 Qi = 0. Thus dimK ≥ ℓ · (dimK )− 1 ≥ ℓ− 1 ≥ 1. Therefore dim |ℓ(KX +D)| > 0,
i.e. h0(X ,ℓ(KX +D)) > 1. Since D is contained in the support of G , we have (r −ℓ)G ≥ ℓD for
some r > 0. Then h0(X ,r m(KX +B)) ≥ h0(X ,ℓ(KX +D)) > 1, which is a contradiction. Therefore,
dimV 0(ωD ) ≤ 0. By [14, Theorem A], a∗ωD is a GV sheaf so that RŜ∆A(a∗ωD ) = R0Ŝ∆A(a∗ωD ).
If dimV 0(ωD ) = 0, then R0Ŝ(∆A(a∗ωD )) is an Artinian sheaf of modules on A, and hence by
Theorem 5 and Remark 7

∆A(a∗ωD ) = (−1A)∗RS(RŜ∆A(a∗ωD ))[g ] = (−1A)∗RS(R0Ŝ∆A(a∗ωD ))[g ]

is a shift of a homogeneous vector bundle which we denote by E (see Remark 7). But then

a∗ωD =∆A(∆A(a∗ωD )) = E∨
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is also a homogeneous vector bundle and hence its support is either empty or entire A. The lat-
ter is clearly impossible, since Supp(a∗ωD ) ̸= A, and hence V 0(ωD ) = ;. Thus by [14, Proposi-
tion 13.6(b)], a∗ωD = 0; in particular D is a-exceptional. □

Now by [5, Theorem 1.4] and [7, Theorem 1.1] we can run the relative minimal model program
over A and hence may assume that KX +B is nef over A. From our claim above we know that
KX +B ∼Q E ≥ 0 for some effective a-exceptional divisor E ≥ 0. Then by the negativity lemma we
have E = 0; thus OX (m(KX +B)) ∼= OX for sufficiently divisible m > 0, and hence we have a good
minimal model.

Step 2. Suppose now that κ(X ,KX +B) ≥ 1 and let f : X 99K Z be the Iitaka fibration. Note that
the ring R(X ,KX + B) := ⊕m≥0H 0(X ,OX (⌊m(KX + B)⌋)) is a finitely generated C-algebra by [5,
Theorem 1.3]. Define Z := ProjR(X ,KX + B). Then Z 99K Z is a birational map of projective
varieties. Resolving the graph of Z 99K Z we may assume that Z is a smooth projective variety
and ν : Z → Z is a birational morphism. Then passing to a resolution of X we may assume that
f is a morphism and (X ,B) is a log smooth pair. Write KF +BF = (KX +B)|F , where F is a very
general fiber of f , so that κ(F,KF +BF ) = 0. Note that a|F is also generically finite (as F is a very
general fiber of f ) and thus F has maximal Albanese dimension. In particular, (F,BF ) has a good
minimal model by Step 1. Let ψ : F 99K F ′ be this minimal model; then KF ′ +BF ′ ∼Q 0. Thus by
Corollary 12, F ′ is a torus and BF ′ = 0; in particular, ψ : F → F ′ is the Albanese morphism. Thus
a|F : F → A factors through ψ : F → F ′; let α : F ′ → A be the induced morphism. Let K := α(F ′);
then K is a torus, and α is étale over K , as F ′ and K are both homogeneous varieties. Now
since A contains at most countably many subtori and F is a very general fiber, K is independent
of the very general points z ∈ Z , and hence so is F ′. Define A′ := A/K , then A′ is again a
torus. Since the composite morphism X → A′ contracts F and dimF = dimK , from the rigidity
lemma (see [1, Lemma 4.1.13]) and dimension count it follows that there is a meromorphic map
Z 99K A′ generically finite onto its image. Since Z is smooth, we may assume that Z → A′ is a
morphism (see [12, Lemma 8.1]). Similarly, since Z has rational singularities by Proposition 8,
again from [12, Lemma 8.1] it follows that Z → A′ is a morphism.

Since Z = ProjR(X ,KX +B), we may choose an ample Q-divisor H on Z such that if HX is its
pull-back to X , then KX +B ∼Q HX +E and |k(KX +B)| = |kHX |+kE for any sufficiently large and
divisible integer k > 0, where E ≥ 0 is effective (it suffices to pick k so that k(KX +B) and kHX are
Cartier and R(X ,KX +B) is generated in degree k).

Now let A := Z ×A′ A. Observe that there is a unique morphism a : X → A determined by the
universal property of fiber products. We claim that E is exceptional over A. If not, then let D be
a component of E which is not exceptional over A. Let h : X → Z be the composite morphism
X → Z → Z and W := h(D). Choose a sufficiently divisible and large positive integer s > 0 such
that sH is very ample, r (KX +B) is Cartier, r E ≥ D and |r (KX +B)| = |r HX |+r E , where r = (n+1)s
and n = dim X .

X

f

��

a %%

a

��
A := Z ×A′ A

��

// A

��
Z // Z // A′ := A/K

(2)

Claim 14. |KD + (n +1)sHD | ̸= ;, where HD = HX |D .
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Proof. Let Di = G1 ∩ . . . ∩Gi be the intersection of general divisors G1, . . . ,Gm ∈ |sHD |, where
0 ≤ i ≤ m := dimW and D0 := D . Let M := KD+(n+1)sHD , then we have the short exact sequences

0 −→ODi (M −Gi+1) −→ODi (M) −→ODi+1 (M) −→ 0.

Recall that h : X → Z is the given morphism; let hi := h|Di . Then

(M −Gi+1)|Di ∼ (KD +nsHD )|Di

∼
(
KD +

i∑
j=1

G j + (n − i )sHD

)∣∣∣
Di

∼ KDi + (n − i )sHDi

∼ KDi +h∗
i (n − i )sH ,

where HDi := HX |Di . By [8, Theorem 3.1(i)] the only associated subvarieties of

R1hi ,∗ODi (M −Gi+1) = R1hi ,∗ODi (KDi )⊗OZ ((n − i )sH)

are Wi := h(Di ) ⊂ Z , i.e. R1hi ,∗ODi (M−Gi+1) is a torsion free sheaf on Wi . Therefore, the induced
homomorphism hi ,∗ODi+1 (M) → R1hi ,∗ODi (M −Gi+1) is zero and we have the following exact
sequence

0 −→ hi ,∗ODi (M −Gi+1) −→ hi ,∗ODi (M) −→ hi ,∗ODi+1 (M) −→ 0.

By [8, Theorem 3.1(ii)] we have

H 1(Z ,hi ,∗ODi (M −Gi+1)) = H 1(Z ,hi ,∗ODi (KDi )⊗OZ ((n − i )sH)) = 0,

and thus we have the following surjections

H 0(D,OD (M)) −→ H 0(D1,OD1 (MD1 )) −→ ·· · −→ H 0(Dm ,ODm (MDm )) −→ H 0(G ,OG (M |G )), (3)

where G is a connected (and hence irreducible, as Dm is smooth) component of Dm . Note that G
is a general fiber of D →W , since HD is a pullback from W and m = dimW .

Let w := h(G) ∈ W ⊂ Z . Then G → G := a(G) is generically finite (as so is D → a(D) by
our assumption), and G → a(G) is an isomorphism, since Aw → K ⊂ A is an isomorphism, as
Aw = (A ×A′ Z )w = A ×A′ {w} ∼= K . In particular, G has maximal Albanese dimension, and hence
h0(G ,KG ) > 0 by Lemma 3. Now since M |G ∼ KG , from the surjections in (3) it follows that
|M | = |KD + (n +1)sHD | ̸= ;, and hence the claim follows. □

Now consider the short exact sequence

0 −→ωX (L) −→ωX (L+D) −→ωD (L) −→ 0,

where L = r HX . Then by [8, Theorem 3.1(i)], R1h∗ωX (L) = R1h∗ωX ⊗OZ (r H) is torsion free, and
hence h∗ωX (L +D) → h∗ωD (L) is surjective. Again by [8, Theorem 3.1(ii)], H 1(Z ,h∗ωX (L)) =
H 1(Z ,h∗ωX ⊗OZ (r H)) = 0, and so H 0(X ,ωX (L +D)) → H 0(D,ωD (L)) is surjective. Since |KD +
L|D | ̸= 0 by Claim 14, D is not contained in the base locus of |KX +L+D|. Let 0 ≤ b := multD (B) < 1
and e := multD (E) > 0. Then σE +B −D ≥ 0 and multD (σE +B −D) = 0 for σ= 1−b

e > 0. We may
assume that σ≤ r (as r is sufficiently large and divisible). Adding r E +B −D to a general divisor
G ∈ |KX +L+D| we get

Γ := r E +B −D +G ∼Q (r +1)(KX +B) ∼Q (r +1)(HX +E).

Then for any sufficiently divisible m > 0 we have

multD (mΓ) = m(r −σ)multD (E) < m(r +1)multD (E),

which is a contradiction to the fact that |k(KX +B)| = |kHX | + kE for sufficiently divisible k =
m(r +1) > 0. Thus D is exceptional over A.

Let n = dim X . We will run a relative (KX +B+(2n+3)sHX )-MMP over A. Note that since |(2n+
3)sHX | is a base-point free linear system on a smooth compact variety X , by Sard’s theorem there
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is an effective Q-divisor H ′ ≥ 0 such that (2n +3)sHX ∼Q H ′ and (X ,B +H ′) has klt singularities.
Thus KX +B + (2n +3)sHX ∼Q KX +B +H ′ and we can run a (KX +B + (2n +3)sHX )-MMP over A
by [5, Theorem 1.4], and obtain X 99K X ′ so that KX ′ +B ′+ (2n+3)sHX ′ ∼Q ((2n+3)s+1)HX ′ +E ′

is nef over A. Note that if R is a (KX +B + (2n + 3)sHX )-negative extremal ray over A, then it is
also (KX +B)-negative and so it is spanned by a rational curve C such that 0 > (KX +B) ·C ≥−2n
(see [5, Theorem 2.46]). But then C is vertical over Z , otherwise (KX +B + (2n + 3)sHX ) ·C > 0,
as HX is the pullback of an ample divisor H on Z , this is a contradiction. Thus it follows that
every step of this MMP is also a step of an MMP over Z , and hence there is an induced morphism
µ : X ′ → A := Z ×A′ A. It follows that

KX ′ +B ′ ∼Q µ∗HA +E ′ ∼
Q,A E ′ ≥ 0,

where HA is the pullback of the ample divisor H by the projection A → Z .
Then E ′ is nef and exceptional over A, and hence by the negativity lemma, E ′ = 0. But then

KX ′ +B ′ ∼Q µ∗HA and since HA is semi-ample, so is KX ′ +B ′. □

Corollary 15. Let (X ,B) be a compact Kähler klt pair of maximal Albanese dimension such that
a : X → A := Alb(X ) is a projective morphism. Then we can run a (KX +B)-Minimal Model Program
which ends with a good minimal model.

Proof. Note that since a : X → A is generically finite over image, KX +B is relatively big over a(X ).
Thus by [5, Theorem 1.4] and [7, Theorem 1.8], we can run a (KX +B)-Minimal Model Program
over A. Notice that each step of this MMP is also a step of the (KX +B)-MMP. Therefore, we may
assume that KX +B is nef over A and we must check that it is indeed nef on X . Let (X ,B) be a
good minimal model of (X ,B), which exists by Theorem 1. By what we have seen, (X ,B) is also
a minimal model over A. But then φ : (X ,B) 99K (X ,B) is an isomorphism in codimension 1. If
p : Y → X and q : Y → X is a common resolution, then p∗(KX +B)− q∗(KX +B) is exceptional
over X (resp. X ) and nef over X (resp. anti-nef over X ). From the negativity lemma, it follows that
p∗(KX +B) = q∗(KX +B). In particular, p∗(KX +B) is semi-ample, and hence so is KX +B . Thus
(X ,B) is a good minimal model. □
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