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Abstract. In this short article we show that if (X,B) is a compact Kihler kit pair of maximal Albanese
dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction ¢ : X --» X’ such
that Kxs + B’ is semi-ample.

Résumé. Dans ce court article, nous montrons que si (X, B) est une paire kdhlérienne compacte kit de di-
mension d’Albanese maximale, (X, B) admet un bon modéle minimal, c’est-a-dire qu’il existe une contrac-
tion biméromorphe ¢ : X --» X’ telle que K/ + B’ est semi-ample.
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1. Introduction

The main result of this paper is the following

Theorem 1. Let (X, B) be a compact Kéhler kit pair of maximal Albanese dimension. Then (X, B)
has a good minimal model.
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This generalizes the main result of [6] from the projective case to the Kdhler case. The main
idea is to observe that replacing X by an appropriate resolution, then the Albanese morphism
X — A is projective and so by [5] and [7] we may run the relative MMP over A. Thus we may
assume that Kx + B is nef over A. If X is projective and Kx + B is not nef, then by the cone theorem,
X must contain a Kx + B negative rational curve C. Since A contains no rational curves, then C is
vertical over A, contradicting the fact that Kx + B is nef over A [6]. Unluckily the cone theorem is
not known for Kahler varieties and so we pursue a different argument. It would be interesting to
find an alternative proof based on the approach of [3].

2. Preliminaries

An analytic variety or simply a variety is a reduced irreducible complex space. Let X be a compact
Kédhler manifold and Alb(X) is the Albanese torus (not necessarily an Abelian variety). Then by
a: X — Alb(X) we will denote the Albanese morphism. This morphism can also be characterized
via the following universal property: a : X — Alb(X) is the Albanese morphism if for every
morphism b : X — T to a complex torus T there is a unique morphism ¢ : Alb(X) — T such
thatb=¢oa.

The Albanese dimension of X is defined as dima(X). We say that X has maximal Albanese
dimension if dima(X) = dimX or equivalently, the Albanese morphism a : X — Alb(X) is
generically finite onto its image. For the definition of singular Kdhler space see [4] or [11].

A compact analytic variety X is said to be in Fujiki’s class € if X is bimeromorphic to a compact
Kéahler manifold Y. In particular, there is a resolution of singularities f: Y — X such that Y is a
compact Kdhler manifold.

Definition 2. Let X be a compact analytic variety in Fujiki’s class €. Assume that X has rational
singularities. Choose a resolution of singularities u: Y — X such that Y is a Kédhler manifold and
let ay : Y — Alb(Y) be the Albanese morphism of Y. Then from the proof of [12, Lemma 8.1] it
follows that ay o u™' : X --» Alb(Y) extends to a unique morphism a: X — Alb(X) := Alb(Y). We
call this morphism the Albanese morphism of X. Observe that a: X — Alb(X) satisfies the universal
property stated above. The Albanese dimension of X is defined as above. Note that if X is a compact
analytic variety with rational singularities, bimeromorphic to a complex torus A, then A= Alb(X)
and X — A is a bimeromorphic morphism.

The following result is well known, however, for a lack of an appropriate reference and for the
convenience of the reader we give a complete proof here.

Lemma 3. Let A be a complex torus and X c A is an analytic subvariety. Then for any resolution
of singularitiespu: Y — X, HO(Y,wy) # {0}.

Proof. Let pi: Y — X be aresolution of singularities of X. If d = dim X, then the map p*Q4 — Q¢
is generically surjective. Since Qi is a trivial vector bundle, it is globally generated and hence
there is a non-zero section in the image of u* : HO(Qﬁ) — HY (Q@). U

Corollary 4. Let X be a compact analytic variety in Fujiki’s class € with canonical singularities.
If X has maximal Albanese dimension, then k(X) = 0.

Proof. First note thatif f: W — X is a proper bimeromorphic morphism, then x(X) = 0 if and
only if k(W) = 0, since X has canonical singularities. Now let a : X — Alb(X) be the Albanese
morphism, Y := a(X), and n : Z — Y is a resolution of singularities of Y. Then x(Z) = 0 by
Lemma 3. Note that there is a generically finite meromorphic map ¢ : X --+ Z; resolving the
graph of ¢) we may assume that X is smooth and ¢: X — Z is a morphism. Then Kx = ¢* Kz + E,
where E = 0 is an effective divisor. Therefore x(X) = 0, since x(Z) = 0. O
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2.1. Fourier-Mukai transform

Let T be a complex torus of dimension g and T = Pic’(T) its dual torus. Let py: TxT — T
and p; : T x T — T be the projections, and & the normalized Poincaré line bundle on T x T so
that 2|74 = O and 2| o1 = 0. Let S be the functor from the category of O'r-sheaves to the
category of 0;-sheaves, defined by

S(P):=pj . (p3F 8 P),
where .% is a sheaf of Or-modules. Similarly, S is a functor from the category of 0;-sheaves to
the category of O'r-sheaves, defined as

S(4) = pr,« (p}g ® ),

where ¢ is a sheaf of 0;-modules.
The corresponding derived functors are

RS(-):= Rp; . (p7(-)® ) and RS(-) :=Rpr,. (p*T(-) ® ).
Recall the following fundamental result of Mukai [13, Theorem 2.2, and (3.8)], [14, Theorem 13.1]

Theorem 5. With notations and hypothesis as above, there are isomorphisms of functors (on the
bounded derived category of coherent sheaves)

RSoRS=(-D%l-gl, RSoRS=(-Dj[-gl,
A7oRS=((~17)" oRSoA;)[-gI.
Recall that A7 (-) := R#Zom(-,07)[g] is the dualizing functor.

Definition 6. Let A be a complex torus. Forac€ A, lett, : A — A be the usual translation morphism
defined by a. A vector bundle & on A is called homogeneous, if t;& = & foralla € A.

Remark 7. Let A be a complex torus, A the dual torus and dim A = dim A = g. Then from the
proof of [13, Example 3.2] it follows that RE S gives an equivalence of categories

H, := {Homogeneous vector bundles on A},
and Cg := {Coherent sheaves on A supported at finitely many points}.

Note that in [13] the results are all stated for abelian varieties, however, we observe that in the
proof of [13, Example 3.2] the main arguments follow from Theorem 5 and the isomorphisms
in [13, (3.1), p. 158], both of which hold for complex tori. In particular, [13, Example 3.2] holds for
complex tori.

We will need the following result on the rational singularity of (log) canonical models of klt
pairs.

Proposition 8. Let (X, B) be a klt pair, where X is a compact analytic variety in Fujiki’s class 6.

Assume that the Kodaira dimensionx (X, Kx +B) = 0. Then R(X,Kx +B) := @ =0 H* (X, m(Kx +B))
is a finitely generated C-algebra and

Z =ProjR(X,Kx + B)
has rational singularities.
Proof. The finite generation of R(X, Kx + B) follows from [5, Theorem 1.3] and [6, Theorem 5.1].
Let f: X --» Z be the litaka fibration of Kx + B. Resolving Z, f and X, we may assume that X

is a compact Kédhler manifold, B has SNC support, Z is a smooth projective variety and f is a
morphism. Then from the proof of [6, Theorem 5.1] it follows that there is a smooth projective
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variety Z’ which is birational to Z and an effective Q-divisor By = 0 such that (Z’, B) is Kkit,
K7 + By is big and the following holds

RX,Kx+B) @ =R(Z Ky + B4,

where the superscripts d and d’ represent the corresponding d and d’-Veronese subrings.

Thus Z = ProjR(X,Kx + B) = ProjR(Z',Kz + By) is the log-canonical model of (Z', B). If
(Z",Bzn) is a minimal model of (Z', By/) as in [2, Theorem 1.2 (2)], then by the base-point free
theorem, there is a birational morphism ¢ : Z" — Z such that Kz» + Byn = ¢* (K7 + B3), where
B :=¢+«Bzn 2 0. Thus (Z, B3) is a klt pair, and hence Z has rational singularities. U

3. Main Theorem

In this section we will prove our main theorem. We begin with some preparation.

Definition 9. Let X be a smooth compact analytic variety. Then the m-th plurigenera of X is
defined as

Pp(X) :=dime H (X, 0').

The next result is one of our main tools in the proof of the main theorem, it is also of
independent interest. It follows immediately from the main results of [14].

Theorem 10. Let X be a compact Kéihler variety with terminal singularities. Assume that X has
maximal Albanese dimension and x(X) = 0. Then X is bimeromorphic to a torus. Additionally, if
Kx is also nef, then X is isomorphic to a torus.

Remark 11. Note that the above result holds if we simply assume that X is in Fujiki’s class 4.
Indeed, if X' — X is a resolution of singularities such that X' is Kihler, then x(X') = 0 and so
X' — Alb(X’) is bimeromorphic, and hence so is X — Alb(X’). Note also that if X is a complex
manifold of maximal Albanese dimension, then X is automatically in Fujiki’s class €. To see this,
consider the Stein factorization X — Y — A. Then Y — A is finite and so Y is also Kihler (see [15,
Proposition 1.3.1 (v) and (vi), p. 24]). Let X' — X be a resolution of sungularities such that X' — Y
is projective, then X' is Kihler and so X is in Fujiki’s class €.

Proof of Theorem 10. Since X is terminal, it has rational singularities, and thus by Definition 2
the Albanese morphism a : X — Alb(X) exists. Let 7 : X — X be a resolution of singularities of
X. Then aom: X — Alb(X) is the Albanese morphism of X. Moreover, since X has terminal
singularities, x(X) = x(X) = 0. Thus replacing X by X, we may assume that X is a compact
Kéhler manifold. Let d = dim X and pick a general element © € HO (QZ), where A = Alb(X). Then
0# a*® e H'(Q%) and so P;(X) > 0. It follows that Px(X) = h’(X,w%) > 0 for all k > 0. Since
x(X) =0, we have P;(X) = P»(X) = 1. Thus by [14, Theorem 19.1], X — A is surjective, and hence
dim X = dim A = h"9(X). Thus by [14, Theorem B], X is bimeromorphic to a complex torus and
so a: X — Ais (surjective and) bimeromorphic.

Assume now that X has terminal singularities and Kx is nef. Let a: X — A be the Albanese
morphism. By what we have seen above, this morphism is bimeromorphic. Thus Kx = a*Ko+E =
E, where E = 0 is an effective Cartier divisor such that Supp(E) = Ex(a) (since A is smooth). By
the negativity lemma (see [16, Lemma 1.3]) we have E = 0, and hence a is an isomorphism. O

Corollary 12. Let (X,B) be a compact Kéihler kit pair. Assume that X has maximal Albanese
dimension andx (X, Kx + B) =0. Then X is bimeromorphic to a torus. Additionally, if Kx + B ~g 0,
then X is isomorphic to a torus.
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Proof. Passing to a terminalization by running an appropriate MMP over X (using [5, Theo-
rem 1.4]) we may assume that (X, B) has Q-factorial terminal singularities. Now since x (X) = 0 by
Corollary 4, x (X, Kx + B) = 0 implies that x (X, Kx) = 0. Thus by Theorem 10, a: X — A:= Alb(X)
is a surjective bimeromorphic morphism. Now assume that Kx + B ~¢ 0. Then Kx + B =
a*Ky+E+B ~g B+ E, where E = 0 is an effective Cartier divisor such that Supp(E) = Ex(a),
since A is smooth. Thus (B+E) ~¢ 0, as Kx + B ~¢ 0, and hence B = E = 0 (as X is Kéhler). In
particular, a: X — Ais an isomorphism. U

Now we are ready to prove our main theorem.

Proof of Theorem 1. Let a: X — A be the Albanese morphism. Since X has maximal Albanese
dimension, a is generically finite over its image a(X). By the relative Chow lemma (see [10,
Corollary 2] and [4, Theorem 2.16]) there is a log resolution y : X’ — X of (X, B) such that the
Albanese morphism a’ = aopu : X' — Ais projective. Let Kx'+B' = u*(Kx +B)+F, where F = 0 such
that Supp(F) = Ex(u), and (X', B') has kit singularities. Note that if (X', B’) has a good minimal
model ¥ : X' --» X", then y contracts every component of F and the induced bimeromorphic
map X --+ X™ is a good minimal model of (X, B) (see [9, Lemmas 2.5 and 2.4] and their proofs).
Thus, we may replace (X, B) by (X', B') and assume that (X, B) is a log smooth pair and X — A is
a projective morphism. From Corollary 4 it follows that x (X) = 0. In particular, (X, Kx + B) = 0.
Now we split the proof into two parts. In Step 1 we deal with the x (X, Kx + B) = 0 case, and the
remaining cases are dealt with in Step 2.

Step 1. Suppose that (X, Kx + B) = 0. Then by Theorem 10, the Albanese morphism a : X —
A:=Alb(X) is bimeromorphic. Let D be an irreducible component of the unique effective divisor
G € |m(Kx + B)| for m > 0 sufficiently divisible. We make the following claim.

Claim 13. D is a-exceptional; in particular, G is a-exceptional.

Proof. First passing to a higher model of X we may assume that D has SNC support. Consider
the short exact sequence
O—»wX —>wx(D) —> WwWp — 0.

Let VO(wp) := {P € Pic®(A) | h°(D,wp ® a* P) # 0}. If dim V°(wp) > 0, then it contains a subvariety
K + P, where P is torsion in Pic’(A) and K is a subtorus of Pic®(A) with dimK > 0 (see [14,
Corollary 17.1]). Since a : X — A is surjective and bimeromorphic, we have H'(X,a*Q) =
H(A,Q) = 0 for any G, # Q € Pic’(A); in particular, H'(X,wx ® a*Q) = H" (X,a*Q"HV =0,
where n = dimX. Thus H°(X,wx (D) ® a*Q) — H°(D,wp ® a*Q) is surjective for all G4 # Q €
Pic%(A), and so h°(X,wx (D) ® a*Q) > 0forall G4 # Q € P+ K. Since P is torsion, P = 0 for some
¢ > 0. Consider the morphism

|[Kx +D+P+Qq|x---x|Kx+D+P+Qyl — |¢(Kx +D)|, (1)

where Q; € K such that Zle Q;=0.

Since dimK > 0, for ¢ = 2, the Qy,...,Q, vary in the subvariety # c K*! defined by the
equation Zle Q; =0. Thusdim A = ¢-(dimK)-1= ¢ -1 = 1. Therefore dim|¢(Kx + D)| > 0,
i.e. h%(X,¢(Kx + D)) > 1. Since D is contained in the support of G, we have (r — £)G = ¢D for
some r > 0. Then h%(X, rm(Kx + B)) = h°(X, ¢(Kx + D)) > 1, which is a contradiction. Therefore,
dim V%(wp) < 0. By [14, Theorem A], a.wp is a GV sheaf so that RSA 4(a.wp) = ROSA 4(a.wp).
If dim V%(wp) = 0, then RO§(A ala.wp)) is an Artinian sheaf of modules on A, and hence by
Theorem 5 and Remark 7

Aa(@.wp) = (~14)"RSRSA4(a.wp))[g] = (=14)"RS(R*SA a(a: wp))[g]
is a shift of a homogeneous vector bundle which we denote by & (see Remark 7). But then

a,wp =Ax(Aa(aswp)) =&
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is also a homogeneous vector bundle and hence its support is either empty or entire A. The lat-
ter is clearly impossible, since Supp(a.wp) # A, and hence V%wp) = @. Thus by [14, Proposi-
tion 13.6 (b)], a.wp = 0; in particular D is a-exceptional. O

Now by [5, Theorem 1.4] and [7, Theorem 1.1] we can run the relative minimal model program
over A and hence may assume that Kx + B is nef over A. From our claim above we know that
Kx + B ~g E = 0 for some effective a-exceptional divisor E = 0. Then by the negativity lemma we
have E = 0; thus Ox (m(Kx + B)) = O for sufficiently divisible m > 0, and hence we have a good
minimal model.

Step 2. Suppose now that x(X,Kx + B) = 1 and let f : X --» Z be the litaka fibration. Note that
the ring R(X,Kx + B) := & m=0HY(X,0x(lm(Kx + B)])) is a finitely generated C-algebra by [5,
Theorem 1.3]. Define Z := ProjR(X,Kx + B). Then Z --» Z is a birational map of projective
varieties. Resolving the graph of Z --» Z we may assume that Z is a smooth projective variety
and v: Z — Z is a birational morphism. Then passing to a resolution of X we may assume that
f is a morphism and (X, B) is a log smooth pair. Write Kr + Br = (Kx + B)|r, where F is a very
general fiber of f, so that x(F, K¢ + Br) = 0. Note that a|r is also generically finite (as F is a very
general fiber of f) and thus F has maximal Albanese dimension. In particular, (F, Br) has a good
minimal model by Step 1. Let ¢ : F --» F' be this minimal model; then Kz + B ~¢ 0. Thus by
Corollary 12, F' is a torus and B = 0; in particular, ¢ : F — F' is the Albanese morphism. Thus
alg : F — A factors through v : F — F'; let a : F' — A be the induced morphism. Let K := a(F');
then K is a torus, and «a is étale over K, as F' and K are both homogeneous varieties. Now
since A contains at most countably many subtori and F is a very general fiber, K is independent
of the very general points z € Z, and hence so is F'. Define A’ := A/K, then A’ is again a
torus. Since the composite morphism X — A’ contracts F and dim F = dim K, from the rigidity
lemma (see [1, Lemma 4.1.13]) and dimension count it follows that there is a meromorphic map
Z --» A generically finite onto its image. Since Z is smooth, we may assume that Z — A’ is a
morphism (see [12, Lemma 8.1]). Similarly, since Z has rational singularities by Proposition 8,
again from [12, Lemma 8.1] it follows that Z—Aisa morphism.

Since Z = ProjR(X, Kx + B), we may choose an ample Q-divisor H on Z such that if Hy is its
pull-back to X, then Kx + B ~g Hx + E and | k(Kx + B)| = |k Hx| + kE for any sufficiently large and
divisible integer k > 0, where E = 0 is effective (it suffices to pick k so that k(Kx + B) and kHyx are
Cartier and R(X, Kx + B) is generated in degree k).

Now let A:= Z x 4 A. Observe that there is a unique morphism @ : X — A determined by the
universal property of fiber products. We claim that E is exceptional over A. If not, then let D be
a component of E which is not exceptional over A. Let : X — Z be the composite morphism
X — Z — Z and W := h(D). Choose a sufficiently divisible and large positive integer s > 0 such
that sH is very ample, r(Kx + B) is Cartier, rE = D and |r (Kx + B)| = [r Hx|+1E, where r = (n+1)s
and n =dim X.

Ky A— > A @

Claim 14. |Kp+ (n+1)sHp|# @, where Hp = Hx|p.
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Proof. Let D; = G; n...N G; be the intersection of general divisors Gy, ..., Gy, € |sHpl, where
0<i<m:=dimW and Dy := D. Let M := Kp+(n+1)sHp, then we have the short exact sequences

0 — Op,(M - Gj4+1) — Op,(M) — Op,,, (M) — 0.
Recall that : X — Z is the given morphism; let h; := h|p,. Then
(M -Gi1)lp; ~ (Kp +nsHp)|p,

- (KD+]Z;G]- +(n— i)sHD))Di

~Kp, + (n—1i)sHp;,

~Kp, +h}(n- i)sH,
where Hp, := Hx|p,. By [8, Theorem 3.1 (i)] the only associated subvarieties of

R'h;.Op,(M - Giy1) = R' by «Op, (Kp,) 8 O5((n— i) sH)
are W; := h(D;) c Z, i.e. R! h; «Op,(M—G;41) is a torsion free sheaf on W;. Therefore, the induced
homomorphism h; .@p,,, (M) — R'h; .Op,(M - G;41) is zero and we have the following exact
sequence
0 — h;+Op,(M - Gj+1) — h;+Op,(M) — h; .Op,,, (M) — 0.
By [8, Theorem 3.1 (ii)] we have
HY(Z, i +Op,(M - Gi11)) = H'(Z, hi . Op,(Kp,) ® Oz((n—i)sH)) =0,
and thus we have the following surjections
H°(D,0p(M)) — H°(Dy,0p, (Mp,)) — --- — H*(Din,0p,, (Mp,,)) — H"(G,0(Mlg)), (3)

where G is a connected (and hence irreducible, as D, is smooth) component of D;,. Note that G
is a general fiber of D — W, since Hp is a pullback from W and m =dim W.

Let w := h(G) € W c Z. Then G — G := a(G) is generically finite (as so is D — a(D) by
our assumption), and G — a(G) is an isomorphism, since A,, — K c A is an isomorphism, as
Aw = (Ax g Z)w = Ax g4 {w} = K. In particular, G has maximal Albanese dimension, and hence
ho(G, Kg) > 0 by Lemma 3. Now since M| ~ Kg, from the surjections in (3) it follows that

|IM|=|Kp+ (n+1)sHp| # @, and hence the claim follows. O

Now consider the short exact sequence
0 —wx() — wx(L+D) — wp(l) —0,

where L = r Hx. Then by [8, Theorem 3.1 ()], R'h.wx (L) = R' h,wx ® O5(r H) is torsion free, and
hence h.wx(L+ D) — h.wp(L) is surjective. Again by [8, Theorem 3.1 (ii)], HY(Z, howx(L) =
HY(Z,h.wx ® 67(rH)) = 0, and so H*(X,wx(L+ D)) — H°(D,wp(L)) is surjective. Since |Kp +
L|p| # 0 by Claim 14, D is not contained in the base locus of |[Kx + L+ D|. Let 0 < b:=multp(B) < 1
and e:= multp(E) >0. ThencE+B—D =0 and multp(cE+B—D) =0 foro = l;eb > 0. We may
assume that o < r (as r is sufficiently large and divisible). Adding rE + B — D to a general divisor
G € |Kx + L+ D| we get

I':'=rE+B-D+G~g (r+1)(Kx+B) ~¢ (r+1)(Hx + E).
Then for any sufficiently divisible m > 0 we have
multp(mI') = m(r —o)multp (E) < m(r + 1)multp (E),

which is a contradiction to the fact that |k(Kx + B)| = |kHx| + kE for sufficiently divisible k =
m(r +1) > 0. Thus D is exceptional over A.

Let n = dim X. We will run a relative (Kx + B+ (2n+3)sHx)-MMP over A. Note that since |(2n+
3)sHx| is a base-point free linear system on a smooth compact variety X, by Sard’s theorem there
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is an effective Q-divisor H' = 0 such that (2n +3)sHx ~¢ H' and (X, B + H') has kit singularities.
Thus Kx + B+ (2n+3)sHx ~g Kx + B+ H' and we canrun a (Kx + B+ (2n+3)sHx)-MMP over A
by [5, Theorem 1.4], and obtain X --+ X’ so that Kx» + B’ + (2n+3)sHy' ~g (2n+3)s+1)Hy + E’
is nef over A. Note that if R is a (Kx + B + (2n + 3)sHx)-negative extremal ray over A, then it is
also (Kx + B)-negative and so it is spanned by a rational curve C such that0> (Kx+B)-C=-2n
(see [5, Theorem 2.46]). But then C is vertical over Z, otherwise (Kx + B+ (2n+3)sHy)-C >0,
as Hy is the pullback of an ample divisor H on Z, this is a contradiction. Thus it follows that

every step of this MMP is also a step of an MMP over Z, and hence there is an induced morphism
w: X' — A:=Z x 4 A. It follows that
Ky +B' ~qu"Hz+E ~ 7E' 20,
where H is the pullback of the ample divisor H by the projection A — Z.
Then E’ is nef and exceptional over A, and hence by the negativity lemma, E' = 0. But then
Ky + B' ~g u* Hz and since Hy is semi-ample, so is Kx' + B’ O

Corollary 15. Let (X, B) be a compact Kdhler klt pair of maximal Albanese dimension such that
a: X — A:=Alb(X) is a projective morphism. Then we can run a (Kx + B)-Minimal Model Program
which ends with a good minimal model.

Proof. Note thatsince a: X — Ais generically finite over image, Kx + B is relatively big over a(X).
Thus by [5, Theorem 1.4] and [7, Theorem 1.8], we can run a (Kx + B)-Minimal Model Program
over A. Notice that each step of this MMP is also a step of the (Kx + B)-MMP. Therefore, we may
assume that Kx + B is nef over A and we must check that it is indeed nef on X. Let (X, B) be a
good minimal model of (X, B), which exists by Theorem 1. By what we have seen, (X, B) is also
a minimal model over A. But then ¢ : (X, B) --» (X, B) is an isomorphism in codimension 1. If
p:Y — X and g: Y — X is a common resolution, then p*(Kx + B) — q* (Kx + B) is exceptional
over X (resp. X) and nef over X (resp. anti-nef over X). From the negativity lemma, it follows that
p*(Kx +B) = q*(Kx + B). In particular, p* (Kx + B) is semi-ample, and hence so is Ky + B. Thus
(X, B) is a good minimal model. O
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