

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Omprokash Das and Christopher Hacon

Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension

Volume 362, Special Issue S1 (2024), p. 83-91

Online since: 6 June 2024 Issue date: 6 June 2024

Part of Special Issue: Complex algebraic geometry, in memory of Jean-Pierre Demailly **Guest editor:** Claire Voisin (CNRS, Institut de Mathématiques de Jussieu-Paris rive gauche, France)

https://doi.org/10.5802/crmath.581

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

The Comptes Rendus. Mathématique are a member of the Mersenne Center for open scientific publishing www.centre-mersenne.org — e-ISSN : 1778-3569

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Research article / *Article de recherche* Algebraic geometry / *Géométrie algébrique*

Complex algebraic geometry, in memory of Jean-Pierre Demailly / *Géométrie algébrique complexe, en mémoire de Jean-Pierre Demailly*

Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension

Existence d'un bon modèle minimal pour les variétés kählériennes de dimension d'Albanese maximale

Omprokash Das^{*a*} and Christopher Hacon^{*, *b*}

 a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005

^b Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah 84112, USA *E-mails*: omdas@math.tifr.res.in, omprokash@gmail.com, hacon@math.utah.edu

Abstract. In this short article we show that if (X, B) is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi : X \dashrightarrow X'$ such that $K_{X'} + B'$ is semi-ample.

Résumé. Dans ce court article, nous montrons que si (X, B) est une paire kählérienne compacte klt de dimension d'Albanese maximale, (X, B) admet un bon modèle minimal, c'est-à-dire qu'il existe une contraction biméromorphe $\phi : X \longrightarrow X'$ telle que $K_{X'} + B'$ est semi-ample.

Funding. Omprokash Das is supported by the Start–Up Research Grant (SRG), Grant No. # SRG/2020/000348 of the Science and Engineering Research Board (SERB), Govt. Of India. Christopher Hacon was partially supported by the NSF research grants no: DMS-1952522, DMS-1801851, DMS-2301374 and by a grant from the Simons Foundation; Award Number: 256202.

Manuscript received 6 December 2022, accepted 18 July 2023.

1. Introduction

The main result of this paper is the following

Theorem 1. Let (X, B) be a compact Kähler klt pair of maximal Albanese dimension. Then (X, B) has a good minimal model.

^{*} Corresponding author

This generalizes the main result of [6] from the projective case to the Kähler case. The main idea is to observe that replacing X by an appropriate resolution, then the Albanese morphism $X \rightarrow A$ is projective and so by [5] and [7] we may run the relative MMP over A. Thus we may assume that $K_X + B$ is nef over A. If X is projective and $K_X + B$ is not nef, then by the cone theorem, X must contain a $K_X + B$ negative rational curve C. Since A contains no rational curves, then C is vertical over A, contradicting the fact that $K_X + B$ is nef over A [6]. Unluckily the cone theorem is not known for Kähler varieties and so we pursue a different argument. It would be interesting to find an alternative proof based on the approach of [3].

2. Preliminaries

An *analytic variety* or simply a *variety* is a reduced irreducible complex space. Let *X* be a compact Kähler manifold and Alb(*X*) is the *Albanese torus* (not necessarily an Abelian variety). Then by $a: X \to Alb(X)$ we will denote the *Albanese morphism*. This morphism can also be characterized via the following universal property: $a: X \to Alb(X)$ is the Albanese morphism if for every morphism $b: X \to T$ to a complex torus *T* there is a unique morphism $\phi : Alb(X) \to T$ such that $b = \phi \circ a$.

The Albanese dimension of *X* is defined as dim a(X). We say that *X* has maximal Albanese dimension if dim $a(X) = \dim X$ or equivalently, the Albanese morphism $a : X \to Alb(X)$ is *generically finite* onto its image. For the definition of *singular* Kähler space see [4] or [11].

A compact analytic variety *X* is said to be in *Fujiki's class* \mathscr{C} if *X* is bimeromorphic to a compact Kähler manifold *Y*. In particular, there is a resolution of singularities $f : Y \to X$ such that *Y* is a compact Kähler manifold.

Definition 2. Let X be a compact analytic variety in Fujiki's class \mathcal{C} . Assume that X has rational singularities. Choose a resolution of singularities $\mu : Y \to X$ such that Y is a Kähler manifold and let $a_Y : Y \to Alb(Y)$ be the Albanese morphism of Y. Then from the proof of [12, Lemma 8.1] it follows that $a_Y \circ \mu^{-1} : X \dashrightarrow Alb(Y)$ extends to a unique morphism $a : X \to Alb(X) := Alb(Y)$. We call this morphism the Albanese morphism of X. Observe that $a : X \to Alb(X)$ satisfies the universal property stated above. The Albanese dimension of X is defined as above. Note that if X is a compact analytic variety with rational singularities, bimeromorphic to a complex torus A, then $A \cong Alb(X)$ and $X \to A$ is a bimeromorphic morphism.

The following result is well known, however, for a lack of an appropriate reference and for the convenience of the reader we give a complete proof here.

Lemma 3. Let A be a complex torus and $X \subset A$ is an analytic subvariety. Then for any resolution of singularities $\mu: Y \to X$, $H^0(Y, \omega_Y) \neq \{0\}$.

Proof. Let $\mu: Y \to X$ be a resolution of singularities of *X*. If $d = \dim X$, then the map $\mu^* \Omega^d_A \to \Omega^d_Y$ is generically surjective. Since Ω^d_A is a trivial vector bundle, it is globally generated and hence there is a non-zero section in the image of $\mu^*: H^0(\Omega^d_A) \to H^0(\Omega^d_Y)$.

Corollary 4. Let X be a compact analytic variety in Fujiki's class \mathscr{C} with canonical singularities. If X has maximal Albanese dimension, then $\kappa(X) \ge 0$.

Proof. First note that if $f : W \to X$ is a proper bimeromorphic morphism, then $\kappa(X) \ge 0$ if and only if $\kappa(W) \ge 0$, since *X* has canonical singularities. Now let $a : X \to Alb(X)$ be the Albanese morphism, Y := a(X), and $\pi : Z \to Y$ is a resolution of singularities of *Y*. Then $\kappa(Z) \ge 0$ by Lemma 3. Note that there is a generically finite meromorphic map $\phi : X \to Z$; resolving the graph of ϕ we may assume that *X* is smooth and $\phi : X \to Z$ is a morphism. Then $K_X = \phi^* K_Z + E$, where $E \ge 0$ is an effective divisor. Therefore $\kappa(X) \ge 0$, since $\kappa(Z) \ge 0$.

2.1. Fourier-Mukai transform

Let *T* be a complex torus of dimension *g* and $\hat{T} = \operatorname{Pic}^0(T)$ its dual torus. Let $p_T : T \times \hat{T} \to T$ and $p_{\hat{T}} : T \times \hat{T} \to \hat{T}$ be the projections, and \mathscr{P} the normalized Poincaré line bundle on $T \times \hat{T}$ so that $\mathscr{P}|_{T \times \{0\}} \cong \mathscr{O}_T$ and $\mathscr{P}|_{\{0\} \times \hat{T}} \cong \mathscr{O}_{\hat{T}}$. Let \hat{S} be the functor from the category of \mathscr{O}_T -sheaves to the category of $\mathscr{O}_{\hat{T}}$ -sheaves, defined by

$$\widehat{S}(\mathscr{F}) := p_{\widehat{T}_{*}}(p_{T}^{*}\mathscr{F} \otimes \mathscr{P})$$

where \mathscr{F} is a sheaf of \mathscr{O}_T -modules. Similarly, *S* is a functor from the category of $\mathscr{O}_{\hat{T}}$ -sheaves to the category of \mathscr{O}_T -sheaves, defined as

$$S(\mathscr{G}) := p_{T,*}(p_{\hat{T}}^* \mathscr{G} \otimes \mathscr{P}),$$

where \mathscr{G} is a sheaf of $\mathcal{O}_{\hat{T}}$ -modules.

The corresponding derived functors are

$$\mathbf{R}\widehat{S}(\cdot) := \mathbf{R}p_{\widehat{T}}(\cdot) \otimes \mathscr{P} \text{ and } \mathbf{R}S(\cdot) := \mathbf{R}p_{T,*}(p_{\widehat{T}}^{*}(\cdot) \otimes \mathscr{P}).$$

Recall the following fundamental result of Mukai [13, Theorem 2.2, and (3.8)], [14, Theorem 13.1]

Theorem 5. With notations and hypothesis as above, there are isomorphisms of functors (on the bounded derived category of coherent sheaves)

$$\mathbf{R}\widehat{S} \circ \mathbf{R}S \cong (-1)_{\widehat{T}}^* [-g], \qquad \mathbf{R}S \circ \mathbf{R}\widehat{S} \cong (-1)_{T}^* [-g],$$
$$\mathbf{\Delta}_{T} \circ \mathbf{R}S = ((-1_{T})^* \circ \mathbf{R}S \circ \mathbf{\Delta}_{\widehat{T}})[-g].$$

Recall that $\Delta_T(\cdot) := \mathbf{R}\mathcal{H}om(\cdot,\mathcal{O}_T)[g]$ is the dualizing functor.

Definition 6. Let A be a complex torus. For $a \in A$, let $t_a : A \to A$ be the usual translation morphism defined by a. A vector bundle \mathscr{E} on A is called homogeneous, if $t_a^* \mathscr{E} \cong \mathscr{E}$ for all $a \in A$.

Remark 7. Let *A* be a complex torus, \hat{A} the dual torus and dim *A* = dim \hat{A} = *g*. Then from the proof of [13, Example 3.2] it follows that $R^g \hat{S}$ gives an equivalence of categories

 $\mathbf{H}_A := \{\text{Homogeneous vector bundles on } A\},\$

and $\mathbf{C}_{\hat{A}}^{f} := \{\text{Coherent sheaves on } \widehat{A} \text{ supported at finitely many points} \}.$

Note that in [13] the results are all stated for abelian varieties, however, we observe that in the proof of [13, Example 3.2] the main arguments follow from Theorem 5 and the isomorphisms in [13, (3.1), p. 158], both of which hold for complex tori. In particular, [13, Example 3.2] holds for complex tori.

We will need the following result on the rational singularity of (log) canonical models of klt pairs.

Proposition 8. Let (X, B) be a klt pair, where X is a compact analytic variety in Fujiki's class \mathscr{C} . Assume that the Kodaira dimension $\kappa(X, K_X + B) \ge 0$. Then $R(X, K_X + B) := \bigoplus_{m \ge 0} H^0(X, m(K_X + B))$ is a finitely generated \mathbb{C} -algebra and

$$\overline{Z} = \operatorname{Proj} R(X, K_X + B)$$

has rational singularities.

Proof. The finite generation of $R(X, K_X + B)$ follows from [5, Theorem 1.3] and [6, Theorem 5.1]. Let $f : X \dashrightarrow Z$ be the Iitaka fibration of $K_X + B$. Resolving Z, f and X, we may assume that X is a compact Kähler manifold, B has SNC support, Z is a smooth projective variety and f is a morphism. Then from the proof of [6, Theorem 5.1] it follows that there is a smooth projective

variety Z' which is birational to Z and an effective \mathbb{Q} -divisor $B_{Z'} \ge 0$ such that $(Z', B_{Z'})$ is klt, $K_{Z'} + B_{Z'}$ is big and the following holds

$$R(X, K_X + B)^{(d)} \cong R(Z', K_{Z'} + B_{Z'})^{(d')}$$

where the superscripts d and d' represent the corresponding d and d'-Veronese subrings.

Thus $\overline{Z} = \operatorname{Proj} R(\overline{X}, K_X + B) \cong \operatorname{Proj} R(Z', K_{Z'} + B_{Z'})$ is the log-canonical model of $(Z', B_{Z'})$. If $(Z'', B_{Z''})$ is a minimal model of $(Z', B_{Z'})$ as in [2, Theorem 1.2(2)], then by the base-point free theorem, there is a birational morphism $\phi : Z'' \to \overline{Z}$ such that $K_{Z''} + B_{Z''} = \phi^*(K_{\overline{Z}} + B_{\overline{Z}})$, where $B_{\overline{Z}} := \phi_* B_{Z''} \ge 0$. Thus $(\overline{Z}, B_{\overline{Z}})$ is a klt pair, and hence \overline{Z} has rational singularities.

3. Main Theorem

In this section we will prove our main theorem. We begin with some preparation.

Definition 9. Let *X* be a smooth compact analytic variety. Then the *m*-th plurigenera of *X* is defined as

$$P_m(X) := \dim_{\mathbb{C}} H^0(X, \omega_X^m).$$

The next result is one of our main tools in the proof of the main theorem, it is also of independent interest. It follows immediately from the main results of [14].

Theorem 10. Let X be a compact Kähler variety with terminal singularities. Assume that X has maximal Albanese dimension and $\kappa(X) = 0$. Then X is bimeromorphic to a torus. Additionally, if K_X is also nef, then X is isomorphic to a torus.

Remark 11. Note that the above result holds if we simply assume that *X* is in Fujiki's class \mathscr{C} . Indeed, if $X' \to X$ is a resolution of singularities such that X' is Kähler, then $\kappa(X') = 0$ and so $X' \to Alb(X')$ is bimeromorphic, and hence so is $X \to Alb(X')$. Note also that if *X* is a complex manifold of maximal Albanese dimension, then *X* is automatically in Fujiki's class \mathscr{C} . To see this, consider the Stein factorization $X \to Y \to A$. Then $Y \to A$ is finite and so *Y* is also Kähler (see [15, Proposition 1.3.1 (v) and (vi), p. 24]). Let $X' \to X$ be a resolution of sungularities such that $X' \to Y$ is projective, then X' is Kähler and so *X* is in Fujiki's class \mathscr{C} .

Proof of Theorem 10. Since *X* is terminal, it has rational singularities, and thus by Definition 2 the Albanese morphism $a: X \to Alb(X)$ exists. Let $\pi: \tilde{X} \to X$ be a resolution of singularities of *X*. Then $a \circ \pi: \tilde{X} \to Alb(X)$ is the Albanese morphism of \tilde{X} . Moreover, since *X* has terminal singularities, $\kappa(\tilde{X}) = \kappa(X) = 0$. Thus replacing *X* by \tilde{X} , we may assume that *X* is a compact Kähler manifold. Let $d = \dim X$ and pick a general element $\Theta \in H^0(\Omega_A^d)$, where A = Alb(X). Then $0 \neq a^* \Theta \in H^0(\Omega_X^d)$ and so $P_1(X) > 0$. It follows that $P_k(X) = h^0(X, \omega_X^k) > 0$ for all k > 0. Since $\kappa(X) = 0$, we have $P_1(X) = P_2(X) = 1$. Thus by [14, Theorem 19.1], $X \to A$ is surjective, and hence dim $X = \dim A = h^{1,0}(X)$. Thus by [14, Theorem B], *X* is bimeromorphic to a complex torus and so $a: X \to A$ is (surjective and) bimeromorphic.

Assume now that *X* has terminal singularities and K_X is nef. Let $a : X \to A$ be the Albanese morphism. By what we have seen above, this morphism is bimeromorphic. Thus $K_X \equiv a^*K_A + E \equiv E$, where $E \ge 0$ is an effective Cartier divisor such that Supp(E) = Ex(a) (since *A* is smooth). By the negativity lemma (see [16, Lemma 1.3]) we have E = 0, and hence *a* is an isomorphism. \Box

Corollary 12. Let (X, B) be a compact Kähler klt pair. Assume that X has maximal Albanese dimension and $\kappa(X, K_X + B) = 0$. Then X is bimeromorphic to a torus. Additionally, if $K_X + B \sim_{\mathbb{Q}} 0$, then X is isomorphic to a torus.

Proof. Passing to a terminalization by running an appropriate MMP over *X* (using [5, Theorem 1.4]) we may assume that (X, B) has \mathbb{Q} -factorial terminal singularities. Now since $\kappa(X) \ge 0$ by Corollary 4, $\kappa(X, K_X + B) = 0$ implies that $\kappa(X, K_X) = 0$. Thus by Theorem 10, $a: X \to A := \text{Alb}(X)$ is a surjective bimeromorphic morphism. Now assume that $K_X + B \sim_{\mathbb{Q}} 0$. Then $K_X + B = a^* K_A + E + B \sim_{\mathbb{Q}} B + E$, where $E \ge 0$ is an effective Cartier divisor such that Supp(E) = Ex(a), since *A* is smooth. Thus $(B + E) \sim_{\mathbb{Q}} 0$, as $K_X + B \sim_{\mathbb{Q}} 0$, and hence B = E = 0 (as *X* is Kähler). In particular, $a: X \to A$ is an isomorphism.

Now we are ready to prove our main theorem.

Proof of Theorem 1. Let $a : X \to A$ be the Albanese morphism. Since *X* has maximal Albanese dimension, *a* is generically finite over its image a(X). By the relative Chow lemma (see [10, Corollary 2] and [4, Theorem 2.16]) there is a log resolution $\mu : X' \to X$ of (X, B) such that the Albanese morphism $a' = a \circ \mu : X' \to A$ is projective. Let $K_{X'} + B' = \mu^*(K_X + B) + F$, where $F \ge 0$ such that $Supp(F) = Ex(\mu)$, and (X', B') has klt singularities. Note that if (X', B') has a good minimal model $\psi : X' \to X^m$, then ψ contracts every component of *F* and the induced bimeromorphic map $X \to X^m$ is a good minimal model of (X, B) (see [9, Lemmas 2.5 and 2.4] and their proofs). Thus, we may replace (X, B) by (X', B') and assume that (X, B) is a log smooth pair and $X \to A$ is a projective morphism. From Corollary 4 it follows that $\kappa(X) \ge 0$. In particular, $\kappa(X, K_X + B) \ge 0$. Now we split the proof into two parts. In Step 1 we deal with the $\kappa(X, K_X + B) = 0$ case, and the remaining cases are dealt with in Step 2.

Step 1. Suppose that $\kappa(X, K_X + B) = 0$. Then by Theorem 10, the Albanese morphism $a : X \to A := Alb(X)$ is bimeromorphic. Let *D* be an irreducible component of the unique effective divisor $G \in |m(K_X + B)|$ for m > 0 sufficiently divisible. We make the following claim.

Claim 13. *D* is a-exceptional; in particular, *G* is a-exceptional.

Proof. First passing to a higher model of *X* we may assume that *D* has SNC support. Consider the short exact sequence

$$0 \longrightarrow \omega_X \longrightarrow \omega_X(D) \longrightarrow \omega_D \longrightarrow 0.$$

Let $V^0(\omega_D) := \{P \in \operatorname{Pic}^0(A) \mid h^0(D, \omega_D \otimes a^*P) \neq 0\}$. If dim $V^0(\omega_D) > 0$, then it contains a subvariety K + P, where P is torsion in $\operatorname{Pic}^0(A)$ and K is a subtorus of $\operatorname{Pic}^0(A)$ with dim K > 0 (see [14, Corollary 17.1]). Since $a : X \to A$ is surjective and bimeromorphic, we have $H^i(X, a^*Q) = H^i(A, Q) = 0$ for any $\mathcal{O}_A \neq Q \in \operatorname{Pic}^0(A)$; in particular, $H^1(X, \omega_X \otimes a^*Q) = H^{n-1}(X, a^*Q^{-1})^{\vee} = 0$, where $n = \dim X$. Thus $H^0(X, \omega_X(D) \otimes a^*Q) \to H^0(D, \omega_D \otimes a^*Q)$ is surjective for all $\mathcal{O}_A \neq Q \in \operatorname{Pic}^0(A)$, and so $h^0(X, \omega_X(D) \otimes a^*Q) > 0$ for all $\mathcal{O}_A \neq Q \in P + K$. Since P is torsion, $\ell P = 0$ for some $\ell > 0$. Consider the morphism

$$|K_X + D + P + Q_1| \times \dots \times |K_X + D + P + Q_\ell| \longrightarrow |\ell(K_X + D)|, \tag{1}$$

where $Q_i \in K$ such that $\sum_{i=1}^{\ell} Q_i = 0$.

Since dim K > 0, for $\ell \ge 2$, the Q_1, \ldots, Q_ℓ vary in the subvariety $\mathcal{K} \subset K^{\times \ell}$ defined by the equation $\sum_{i=1}^{\ell} Q_i = 0$. Thus dim $\mathcal{K} \ge \ell \cdot (\dim K) - 1 \ge \ell - 1 \ge 1$. Therefore dim $|\ell(K_X + D)| > 0$, i.e. $h^0(X, \ell(K_X + D)) > 1$. Since D is contained in the support of G, we have $(r - \ell)G \ge \ell D$ for some r > 0. Then $h^0(X, rm(K_X + B)) \ge h^0(X, \ell(K_X + D)) > 1$, which is a contradiction. Therefore, dim $V^0(\omega_D) \le 0$. By [14, Theorem A], $a_*\omega_D$ is a GV sheaf so that $\mathbf{R}\widehat{S}\Delta_A(a_*\omega_D) = \mathbf{R}^0\widehat{S}\Delta_A(a_*\omega_D)$. If dim $V^0(\omega_D) = 0$, then $\mathbf{R}^0\widehat{S}(\Delta_A(a_*\omega_D))$ is an Artinian sheaf of modules on A, and hence by Theorem 5 and Remark 7

$$\Delta_A(a_*\omega_D) = (-1_A)^* \mathbf{R}S(\mathbf{R}\widehat{S}\Delta_A(a_*\omega_D))[g] = (-1_A)^* \mathbf{R}S(\mathbf{R}^0\widehat{S}\Delta_A(a_*\omega_D))[g]$$

is a shift of a homogeneous vector bundle which we denote by \mathscr{E} (see Remark 7). But then

$$a_*\omega_D = \Delta_A(\Delta_A(a_*\omega_D)) = \mathscr{E}^{\vee}$$

is also a homogeneous vector bundle and hence its support is either empty or entire *A*. The latter is clearly impossible, since $\text{Supp}(a_*\omega_D) \neq A$, and hence $V^0(\omega_D) = \emptyset$. Thus by [14, Proposition 13.6 (b)], $a_*\omega_D = 0$; in particular *D* is *a*-exceptional.

Now by [5, Theorem 1.4] and [7, Theorem 1.1] we can run the relative minimal model program over *A* and hence may assume that $K_X + B$ is nef over *A*. From our claim above we know that $K_X + B \sim_{\mathbb{Q}} E \ge 0$ for some effective *a*-exceptional divisor $E \ge 0$. Then by the negativity lemma we have E = 0; thus $\mathcal{O}_X(m(K_X + B)) \cong \mathcal{O}_X$ for sufficiently divisible m > 0, and hence we have a good minimal model.

Step 2. Suppose now that $\kappa(X, K_X + B) \ge 1$ and let $f: X \to Z$ be the Iitaka fibration. Note that the ring $R(X, K_X + B) := \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(\lfloor m(K_X + B) \rfloor))$ is a finitely generated \mathbb{C} -algebra by [5, Theorem 1.3]. Define $\overline{Z} := \operatorname{Proj} R(X, K_X + B)$. Then $Z \dashrightarrow \overline{Z}$ is a birational map of projective varieties. Resolving the graph of $Z \rightarrow \overline{Z}$ we may assume that Z is a smooth projective variety and $v: Z \to \overline{Z}$ is a birational morphism. Then passing to a resolution of X we may assume that f is a morphism and (X, B) is a log smooth pair. Write $K_F + B_F = (K_X + B)|_F$, where F is a very general fiber of f, so that $\kappa(F, K_F + B_F) = 0$. Note that $a|_F$ is also generically finite (as F is a very general fiber of f) and thus F has maximal Albanese dimension. In particular, (F, B_F) has a good minimal model by Step 1. Let $\psi: F \to F'$ be this minimal model; then $K_{F'} + B_{F'} \sim_{\mathbb{Q}} 0$. Thus by Corollary 12, F' is a torus and $B_{F'} = 0$; in particular, $\psi: F \to F'$ is the Albanese morphism. Thus $a|_F: F \to A$ factors through $\psi: F \to F'$; let $\alpha: F' \to A$ be the induced morphism. Let $K := \alpha(F')$; then K is a torus, and α is étale over K, as F' and K are both homogeneous varieties. Now since A contains at most countably many subtori and F is a very general fiber, K is independent of the very general points $z \in Z$, and hence so is F'. Define A' := A/K, then A' is again a torus. Since the composite morphism $X \to A'$ contracts F and dim $F = \dim K$, from the rigidity lemma (see [1, Lemma 4.1.13]) and dimension count it follows that there is a meromorphic map $Z \rightarrow A'$ generically finite onto its image. Since Z is smooth, we may assume that $Z \rightarrow A'$ is a morphism (see [12, Lemma 8.1]). Similarly, since \overline{Z} has rational singularities by Proposition 8, again from [12, Lemma 8.1] it follows that $\overline{Z} \to A'$ is a morphism.

Since $\overline{Z} = \operatorname{Proj} R(X, K_X + B)$, we may choose an ample \mathbb{Q} -divisor \overline{H} on \overline{Z} such that if H_X is its pull-back to X, then $K_X + B \sim_{\mathbb{Q}} H_X + E$ and $|k(K_X + B)| = |kH_X| + kE$ for any sufficiently large and divisible integer k > 0, where $E \ge 0$ is effective (it suffices to pick k so that $k(K_X + B)$ and kH_X are Cartier and $R(X, K_X + B)$ is generated in degree k).

Now let $\overline{A} := \overline{Z} \times_{A'} A$. Observe that there is a unique morphism $\overline{a} : X \to \overline{A}$ determined by the universal property of fiber products. We claim that *E* is exceptional over \overline{A} . If not, then let *D* be a component of *E* which is not exceptional over \overline{A} . Let $h : X \to \overline{Z}$ be the composite morphism $X \to Z \to \overline{Z}$ and W := h(D). Choose a sufficiently divisible and large positive integer s > 0 such that $s\overline{H}$ is very ample, $r(K_X + B)$ is Cartier, $rE \ge D$ and $|r(K_X + B)| = |rH_X| + rE$, where r = (n+1)s and $n = \dim X$.

(2)

Claim 14. $|K_D + (n+1)sH_D| \neq \emptyset$, where $H_D = H_X|_D$.

Proof. Let $D_i = G_1 \cap ... \cap G_i$ be the intersection of general divisors $G_1, ..., G_m \in |sH_D|$, where $0 \le i \le m := \dim W$ and $D_0 := D$. Let $M := K_D + (n+1)sH_D$, then we have the short exact sequences

$$0 \longrightarrow \mathcal{O}_{D_i}(M - G_{i+1}) \longrightarrow \mathcal{O}_{D_i}(M) \longrightarrow \mathcal{O}_{D_{i+1}}(M) \longrightarrow 0.$$

Recall that $h: X \to \overline{Z}$ is the given morphism; let $h_i := h|_{D_i}$. Then

$$\begin{split} (M - G_{i+1})|_{D_i} &\sim (K_D + nsH_D)|_{D_i} \\ &\sim \left(K_D + \sum_{j=1}^i G_j + (n-i)sH_D\right)\Big|_D \\ &\sim K_{D_i} + (n-i)sH_{D_i} \\ &\sim K_{D_i} + h_i^*(n-i)s\overline{H}, \end{split}$$

where $H_{D_i} := H_X|_{D_i}$. By [8, Theorem 3.1 (i)] the only associated subvarieties of

$$R^{1}h_{i,*}\mathcal{O}_{D_{i}}(M-G_{i+1}) = R^{1}h_{i,*}\mathcal{O}_{D_{i}}(K_{D_{i}}) \otimes \mathcal{O}_{\overline{Z}}((n-i)s\overline{H})$$

are $W_i := h(D_i) \subset \overline{Z}$, i.e. $R^1 h_{i,*} \mathcal{O}_{D_i}(M - G_{i+1})$ is a torsion free sheaf on W_i . Therefore, the induced homomorphism $h_{i,*} \mathcal{O}_{D_{i+1}}(M) \to R^1 h_{i,*} \mathcal{O}_{D_i}(M - G_{i+1})$ is zero and we have the following exact sequence

$$0 \longrightarrow h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1}) \longrightarrow h_{i,*}\mathcal{O}_{D_i}(M) \longrightarrow h_{i,*}\mathcal{O}_{D_{i+1}}(M) \longrightarrow 0.$$

By [8, Theorem 3.1 (ii)] we have

$$H^{1}(\overline{Z}, h_{i,*}\mathcal{O}_{D_{i}}(M - G_{i+1})) = H^{1}(\overline{Z}, h_{i,*}\mathcal{O}_{D_{i}}(K_{D_{i}}) \otimes \mathcal{O}_{\overline{Z}}((n-i)s\overline{H})) = 0$$

and thus we have the following surjections

 $H^0(D, \mathcal{O}_D(M)) \longrightarrow H^0(D_1, \mathcal{O}_{D_1}(M_{D_1})) \longrightarrow \cdots \longrightarrow H^0(D_m, \mathcal{O}_{D_m}(M_{D_m})) \longrightarrow H^0(G, \mathcal{O}_G(M|_G)),$ (3) where *G* is a connected (and hence irreducible, as D_m is smooth) component of D_m . Note that *G*

is a general fiber of $D \to W$, since H_D is a pullback from W and $m = \dim W$. Let $w := h(G) \in W \subset \overline{Z}$. Then $G \to \overline{G} := \overline{a}(G)$ is generically finite (as so is $D \to \overline{a}(D)$ by our assumption), and $\overline{G} \to a(G)$ is an isomorphism, since $\overline{A}_w \to K \subset A$ is an isomorphism, as $\overline{A}_w = (A \times_{A'} \overline{Z})_w = A \times_{A'} \{w\} \cong K$. In particular, G has maximal Albanese dimension, and hence $h^0(G, K_G) > 0$ by Lemma 3. Now since $M|_G \sim K_G$, from the surjections in (3) it follows that

Now consider the short exact sequence

 $|M| = |K_D + (n+1)sH_D| \neq \emptyset$, and hence the claim follows.

$$0 \longrightarrow \omega_X(L) \longrightarrow \omega_X(L+D) \longrightarrow \omega_D(L) \longrightarrow 0,$$

where $L = rH_X$. Then by [8, Theorem 3.1 (i)], $R^1h_*\omega_X(L) = R^1h_*\omega_X \otimes \mathcal{O}_{\overline{Z}}(r\overline{H})$ is torsion free, and hence $h_*\omega_X(L+D) \rightarrow h_*\omega_D(L)$ is surjective. Again by [8, Theorem 3.1 (ii)], $H^1(\overline{Z}, h_*\omega_X(L)) = H^1(\overline{Z}, h_*\omega_X \otimes \mathcal{O}_{\overline{Z}}(r\overline{H})) = 0$, and so $H^0(X, \omega_X(L+D)) \rightarrow H^0(D, \omega_D(L))$ is surjective. Since $|K_D + L|_D| \neq 0$ by Claim 14, *D* is not contained in the base locus of $|K_X + L + D|$. Let $0 \leq b := \operatorname{mult}_D(B) < 1$ and $e := \operatorname{mult}_D(E) > 0$. Then $\sigma E + B - D \geq 0$ and $\operatorname{mult}_D(\sigma E + B - D) = 0$ for $\sigma = \frac{1-b}{e} > 0$. We may assume that $\sigma \leq r$ (as *r* is sufficiently large and divisible). Adding rE + B - D to a general divisor $G \in |K_X + L + D|$ we get

$$\Gamma := rE + B - D + G \sim_{\mathbb{Q}} (r+1)(K_X + B) \sim_{\mathbb{Q}} (r+1)(H_X + E).$$

Then for any sufficiently divisible m > 0 we have

$$\operatorname{mult}_D(m\Gamma) = m(r - \sigma)\operatorname{mult}_D(E) < m(r + 1)\operatorname{mult}_D(E),$$

which is a contradiction to the fact that $|k(K_X + B)| = |kH_X| + kE$ for sufficiently divisible k = m(r+1) > 0. Thus *D* is exceptional over \overline{A} .

Let $n = \dim X$. We will run a relative $(K_X + B + (2n+3)sH_X)$ -MMP over A. Note that since $|(2n+3)sH_X|$ is a base-point free linear system on a smooth compact variety X, by Sard's theorem there

 \square

is an effective \mathbb{Q} -divisor $H' \ge 0$ such that $(2n+3)sH_X \sim_{\mathbb{Q}} H'$ and (X, B + H') has klt singularities. Thus $K_X + B + (2n+3)sH_X \sim_{\mathbb{Q}} K_X + B + H'$ and we can run a $(K_X + B + (2n+3)sH_X)$ -MMP over A by [5, Theorem 1.4], and obtain $X \longrightarrow X'$ so that $K_{X'} + B' + (2n+3)sH_{X'} \sim_{\mathbb{Q}} ((2n+3)s+1)H_{X'} + E'$ is nef over A. Note that if R is a $(K_X + B + (2n+3)sH_X)$ -negative extremal ray over A, then it is also $(K_X + B)$ -negative and so it is spanned by a rational curve C such that $0 > (K_X + B) \cdot C \ge -2n$ (see [5, Theorem 2.46]). But then C is vertical over \overline{Z} , otherwise $(K_X + B + (2n+3)sH_X) \cdot C > 0$, as H_X is the pullback of an ample divisor \overline{H} on \overline{Z} , this is a contradiction. Thus it follows that every step of this MMP is also a step of an MMP over \overline{Z} , and hence there is an induced morphism $\mu : X' \to \overline{A} := \overline{Z} \times_{A'} A$. It follows that

$$K_{X'} + B' \sim_{\mathbb{Q}} \mu^* H_{\overline{A}} + E' \sim_{\mathbb{Q}, \overline{A}} E' \ge 0,$$

where $H_{\overline{A}}$ is the pullback of the ample divisor \overline{H} by the projection $\overline{A} \to \overline{Z}$.

Then E' is nef and exceptional over \overline{A} , and hence by the negativity lemma, E' = 0. But then $K_{X'} + B' \sim_{\mathbb{Q}} \mu^* H_{\overline{A}}$ and since $H_{\overline{A}}$ is semi-ample, so is $K_{X'} + B'$.

Corollary 15. Let (X, B) be a compact Kähler klt pair of maximal Albanese dimension such that $a: X \to A := Alb(X)$ is a projective morphism. Then we can run $a(K_X+B)$ -Minimal Model Program which ends with a good minimal model.

Proof. Note that since $a: X \to A$ is generically finite over image, $K_X + B$ is relatively big over a(X). Thus by [5, Theorem 1.4] and [7, Theorem 1.8], we can run a $(K_X + B)$ -Minimal Model Program over A. Notice that each step of this MMP is also a step of the $(K_X + B)$ -MMP. Therefore, we may assume that $K_X + B$ is nef over A and we must check that it is indeed nef on X. Let $(\overline{X}, \overline{B})$ be a good minimal model of (X, B), which exists by Theorem 1. By what we have seen, $(\overline{X}, \overline{B})$ is also a minimal model over A. But then $\phi: (X, B) \dashrightarrow (\overline{X}, \overline{B})$ is an isomorphism in codimension 1. If $p: Y \to X$ and $q: Y \to \overline{X}$ is a common resolution, then $p^*(K_X + B) - q^*(K_{\overline{X}} + \overline{B})$ is exceptional over X (resp. \overline{X}) and nef over \overline{X} (resp. anti-nef over X). From the negativity lemma, it follows that $p^*(K_X + B) = q^*(K_{\overline{X}} + \overline{B})$. In particular, $p^*(K_X + B)$ is semi-ample, and hence so is $K_X + B$. Thus (X, B) is a good minimal model.

References

- [1] M. C. Beltrametti and A. J. Sommese, *The adjunction theory of complex projective varieties*, Walter de Gruyter, 1995, pp. xxii+398.
- [2] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, "Existence of minimal models for varieties of log general type", J. Am. Math. Soc. 23 (2010), no. 2, pp. 405–468.
- [3] J. Cao and A. Höring, "Rational curves on compact Kähler manifolds", J. Differ. Geom. 114 (2020), no. 1, pp. 1–39.
- [4] O. Das and C. Hacon, "The log minimal model program for Kähler 3-folds", 2020. https: //arxiv.org/abs/2009.05924, to appear in *J. Differ. Geom.*
- [5] O. Das, C. Hacon and M. Păun, "On the 4-dimensional minimal model program for Kähler varieties", *Adv. Math.* **443** (2024), article no. 109615 (68 pages).
- [6] O. Fujino, "Some Remarks on the Minimal Model Program for Log Canonical Pairs", J. Math. Sci., Tokyo 22 (2015), pp. 149–192.
- [7] O. Fujino, "Minimal model program for projective morphisms between complex analytic spaces", 2022. https://arxiv.org/abs/2201.11315.
- [8] O. Fujino, "Vanishing theorems for projective morphisms between complex analytic spaces", 2022. https://arxiv.org/abs/2205.14801.
- [9] C. Hacon and C. Xu, "Existence of log canonical closures", *Invent. Math.* 192 (2013), no. 1, pp. 161–195.

- [10] H. Hironaka, "Flattening theorem in complex-analytic geometry", *Am. J. Math.* **97** (1975), pp. 503–547.
- [11] A. Höring and T. Peternell, "Minimal models for Kähler threefolds", *Invent. Math.* **203** (2016), no. 1, pp. 217–264.
- [12] Y. Kawamata, "Minimal models and the Kodaira dimension of algebraic fiber spaces", *J. Reine Angew. Math.* **363** (1985), pp. 1–46.
- [13] S. Mukai, "Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves", *Nagoya Math. J.* **81** (1981), pp. 153–175.
- [14] G. Pareschi, M. Popa and C. Schnell, "Hodge modules on complex tori and generic vanishing for compact Kähler manifolds", *Geom. Topol.* **21** (2017), no. 4, pp. 2419–2460.
- [15] J. Varouchas, "Kähler spaces and proper open morphisms", *Math. Ann.* **283** (1989), no. 1, pp. 13–52.
- [16] J. Wang, "On the Iitaka conjecture $C_{n,m}$ for Kähler fibre spaces", *Ann. Fac. Sci. Toulouse, Math.* **30** (2021), no. 4, pp. 813–897.