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Abstract. Motivated by a MFG model where the trajectories of the agents are piecewise constants and agents
pay for the number of jumps, we study a variational problem for curves of measures where the cost includes
the length of the curve measures with the L1 distance, as well as other, non-autonomous, cost terms arising
from congestion effects. We prove several regularity results (first in time, then in space) on the solution,
based on suitable approximation and maximum principle techniques. We then use modern algorithms in
non-smooth convex optimization in order to obtain a numerical method to simulate such solutions.

Résumé. Motivé par un modèle de MFG dans lequel les trajectoires des agents sont constantes par morceaux
et où les agents paient un coût dépendant du nombre de sauts, nous étudions un problème variationnel
pour des courbes de mesures où le coût inclut la longueur de la courbe mesurée en termes de la distance
L1, ainsi que d’autres termes non autonomes représentants des effets de congestion. Nous démontrons
plusieurs résultats de régularité (d’abord en temps, puis en espace) sur la solution, en utilisant des techniques
d’approximation et le principe du maximum. Ensuite, des algorithmes modernes d’optimisation convexe non
lisse nous permettent d’obtenir une méthode numérique pour simuler de telles solutions.
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1. Introduction

This work studies a class of variational problems which arises in a variant of one of the most clas-
sical Mean Field Game models. This variant could be used as a brick for describing the evolution
of the real estate market but the mathematical questions which appear are of independent inter-
est and the present paper only concentrates on the variational problem without addressing the
full model.
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The theory of Mean Field Games was introduced around 2006 at the same time by Lasry and
Lions, [11–14], and by Caines, Huang and Malhamé, [10], in order to describe the evolution
of a population of rational agents, each one choosing (or controlling) a path in a state space,
according to some preferences which are affected by the presence of other agents nearby in a
way physicists call mean-field effect. The evolution is described through a Nash equilibrium in a
game with a continuum of players.

In the simplest MFG models we look at a population of agents moving inside a domain Ω and
we suppose that every agent chooses his own trajectory solving a minimization problem of the
form

min

ˆ T

0

( |x ′(t )|2
2

+h(t ,ρt , x(t ))

)
dt +Ψ(x(T )),

with given initial point x(0). The mean-field effect will be modeled through the fact that the
running cost h explicitly depends on the density ρt of the agents at time t .

The initial density of the playersρ0 is given. The goal in MFG is to find an evolution t 7→ ρt such
that, when agents consider the above optimization problem for such a given ρ, the trajectories
they choose globally reconstruct the same density ρ. This is a non-trivial fixed point condition
which can be described via a system of PDEs (we refer to [8], for instance). In some cases, and
in particular when h(t ,ρ, x) = V (t , x)+ g (ρ(x)) for an increasing function g : R+ → R (where, by
abuse of notation, ρ also denotes the density of the measure ρ, which has to be found absolutely
continuous), fixed point can be found by an overall minimization problem. The function g
models in this case the cost for congestion (i.e. agents have a higher cost when passing through
congested regions, where the density is larger).

The corresponding variational formulation is the following: we consider all the possible
population evolutions, i.e. curves t 7→ ρt ∈P (Ω) and we minimize the following energy

ˆ T

0

(
1

2
|ρ̇|2W2

(t )+FVt (ρt )

)
dt +

ˆ
Ω

ΨdρT ,

where FV (ρ) := ´
V (x)ρ(x)+ f (ρ(x))dx, where f is the anti-derivative of g , i.e. f ′(s) = g (s) for

s ∈R+ with f (0) = 0. We fix by convention f (s) =+∞ for ρ < 0. The functional FV is set to +∞ if ρ
is not absolutely continuous. Here, at each instant of time, we use the functional associated with
the time-dependent potential Vt := V (t , · ). The minimization problem above is a variant of the
well-known dynamic formulation of optimal transport (see [5]) which includes congestion effects
(as in [7]). Note in particular that f is convex, as its derivative is the increasing function g , and
so is FV . The notation |ρ̇|W2 (t ) stands for the metric derivative (see [2]) of the curve t 7→ ρt in the
space of probability measures, endowed with the Wasserstein distance W2 (a distance induced by
optimal transport, see [19, 21]). The reason for this distance to appear is related to the presence
of the quadratic term |x ′(t )|2 in the minimization problem solved by each agent. If this term was
replaced by |x ′(t )|p we would have |ρ̇|pWp

(t ) instead of |ρ̇|2W2
(t ).

We are now interested in a different individual cost, and more precisely we replace the term´ T
0

|x′(t )|2
2 dt , defined on curves x ∈ H 1([0,T ]) with the cost S(x), defined for x ∈ BV ([0,T ]) in the

following way: if x is piecewise constant S(x) equals the number of its jumps, while S(x) = +∞
if x is not piecewise constant. We then face discontinuous trajectories, and the individual
optimization problem can be considered as an impulse control problem (for which we refer, for
instance, to the classical book [6]). The variational formulation of such a new Mean Field Game
is based on the observation (see, for instance, [21]) that the Wasserstein distance associated with
a transport cost

c(x, y) =
{

1 if x ̸= y

0 if x = y
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is equal to the total variation distance between the two measures times a factor 1/2. Indeed, when
transporting with this cost a measure µ onto a measure ν with the same mass, the mass which
needs to move is equal to the part of the mass of µ which is not in common with ν, which means
half of the mass ∥µ−ν∥. When µ,ν are absolutely continuous, this gives 1

2∥µ−ν∥L1 .

This motivates to study a problem where the term
´ T

0
1
2 |ρ̇|2W2

(t )dt is replaced by the length of
the curve t 7→ ρt computed according to the L1 distance (we can restrict to absolutely continuous
measures ρt because of the functional GV ). Hence, formally, we obtain

min

ˆ T

0

(
1

2
∥ρ̇∥L1 +FVt (ρt )

)
dt +

ˆ
Ω

ΨdρT .

The term
´ T

0 ∥ρ̇∥L1 dt should be intended as the length of the curve ρ (its total variation) w.r.t. the
L1 distance.

Because of the BV behavior of the curves, the Dirichlet condition ρ(0) = ρ0, as well as the
final penalization on ρT , have to be suitably interpreted. Indeed, it is always possible to jump
exactly at time t = 0 or t = T , so that the Dirichlet condition at t = 0 can be replaced by
a penalization 1

2∥ρ(0+) − ρ0∥L1 and for the final penalization, we can replace
´
ΩΨdρT with

infµ∈P (Ω) ∥µ− ρT ∥ +
´
Ψdµ. This last quantity can be computed and equals

´
Ψ̃dρT , where

Ψ̃ = min{Ψ, infΨ+ 1}. This is perfectly coherent with the individual optimization problem: if
agents are allowed to jump at a cost 1, the final cost Ψ is automatically replaced by Ψ̃ as there is
no point in payingΨ(x) wheneverΨ(x) >Ψ(x ′)+1 for some point x ′. Up to subtracting a constant
to the final penalization, we can thus suppose that we have |Ψ| ≤ 1/2.

More generally, we will study in this note the variational problem

min

ˆ T

0

ˆ
Ω

(
λ|ρ̇|+ f (ρt )+Vtρt

)
dt +

ˆ
Ω

ΨdρT

with a final costΨ satisfying |Ψ| ≤λ and an initial condition ρ(0) = ρ0 which can also be replaced
by a penalizationλ∥ρ(0+)−ρ0∥L1 . A variant will be the infinite-horizon case with a discount factor
r > 0, i.e. the variational problem

min

ˆ ∞

0

ˆ
Ω

e−r t (
λ|ρ̇|+ f (ρt )+Vtρt

)
dt

under the same initial condition.
For simplicity, we will only consider the case where the function f is uniformly convex (think

at f (ρ) := 1
2ρ

2). We still establish regularity results in both time and space for the optimal solution
(which is unique because of strict convexity). This result, besides its mathematical interest, has
also at least two applications in the MFG theory which motivates the problem. First, it proves that,
despite individual trajectories being discontinuous, the global behavior of the density of agents
ρ(t , x) is smooth, coherently with the experience about the evolution of residential areas. Second,
it provides the necessary mathematical properties on the individual running cost g (ρ)+V so as
to rigorously prove that minimizers of the variational problem are indeed equilibria of the game.
This requires, as we will briefly explain at the end of Section 5, the continuity (in space) of the
running cost, or at least its boundedness; we refer to [20]) for more details.

Then, we will also provide a numerical method to approximate the solutions using convex
optimization tools, able to deal with the non-smooth penalization given by the L1 term.

Since proving regularity in a problem set on BV curves could be challenging, in order to
develop the relevant techniques (which will be based on a suitable use of the maximum principle)
we will first start from a simpler, yet not-so-standard, case, where curves, instead of being valued
in the functional space L1, will be simply valued in the euclidean space Rd . This will be object
of Section 2, where we will prove Lipschitz behavior in the open interval (0,T ). Some explicit
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examples will also be analyzed, in particular for d = 1, in order to have some cases which could
be used as a test for the numerical methods of Section 6.

The analysis of the infinite-dimensional case, valued in L1, will be the object of Section 3,
and will be performed by means of many approximations. Some of them are common with the
Euclidean case, but there is an extra approximation which comes from discretization: the infinite-
dimensional problem is indeed approximated by a sequence of finite-dimensional ones, where
the domain Ω is divided into small cells and only piecewise constant densities are considered.
Note that in this Eulerian discretization (different from a Lagrangian one where one should follow
the jumping trajectories of the particles) the problem becomes very similar to the one studied
in Section 2 with the only exception that the norm used on the finite-dimensional space is not
the Euclidean one (i.e. ℓ2) but the ℓ1 norm. This makes things slightly more involved, but,
surprisingly, the final Lipschitz regularity result will be expressed anyway in the L2 norm.

Section 4 contains the modifications of the strategy proof which are needed to handle the
infinite-horizon case, both in the finite and infinite dimensional case. Then, Section 5 addresses
the problem of space regularity. We will prove that the solution ρ(t , x) shares the same modulus
of continuity in x (uniformly in t ) of the Dirichlet data and of the time-dependent potential
V (t , x), and in this proof, differently from what is done in Sections 2, 3 and 4, the Dirichlet data
will be attacked by approximation but without replacing them with penalizations (the L1 cost
will be approximated by other superlinear costs on the velocity, as it was already done in the
other sections as well). Indeed, for the previous results, it was crucial to use the transversality
conditions coming from a suitable approximation of these penalizations, while here, on the
contrary, the transversality conditions are harder to consider. This is why the first regularity
result is presented in the case where the problem is endowed with Dirichlet conditions at both
t = 0 and t = T , which is not the natural framework we will be interested in. In order to consider
some instances of the problem which are more interesting for applications, we will consider the
infinite time horizon with Dirichlet data at t = 0 (in this case we do not have penalization at the
end), where the whole analysis can be performed, as well as the finite-horizon case when the final
penalization ψ is piecewise constant: in this last case we can prove continuity of ρ on each piece
where ψ is constant, which is enough, for instance, to obtain ρ ∈ L∞.

Finally, Section 6 uses proximal methods from non-smooth convex optimization to attack in a
numerical way all these problems, and some examples will be considered. A periodic and explicit
case presented at the end of Section 2 will be solved numerically as an example in order to validate
the method.

2. Lipschitz regularity in the Euclidean setting

As a starting point for our analysis, we consider here the following easier problem

min

{
T V (γ; [0,1])+

ˆ 1

0
F (t ,γ(t ))dt +ψ0(γ(0))+ψ1(γ(1)) : γ ∈ BV ([0,1];Rd )

}
. (1)

Here T V (γ; [0,1]) denotes the total variation of γ on [0,1], i.e.

T V (γ; [0,1]) := sup

{
N−1∑
k=0

|γ(tk )−γ(tk+1)| : 0 = t0 < t1 < ·· · < tN = 1

}
,

a value which also coincides with the total mass of the vector measure γ′.
The functions ψ0,ψ1 : Rd → [0,+∞] are just supposed to be l.s.c. and bounded from below,

and among possible choices we mention those which impose Dirichlet boundary conditions, i.e.

t = 0,1 ψt (x) =
{

0 if x = xt ,

+∞ if not.
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We stress the fact that functions in BV spaces are not continuous and can have jumps ; even if
we consider that BV functions of one variable are defined pointwisely, it is possible to change very
easily their value at a point. In particular, Dirichlet boundary conditions have a very particular
meaning: a curve which takes the value x0 at t = 0 but immediately jumps at another point
at t = 0+ is considered to satisfy the condition γ(0) = x0. In particular, it is possible to freely
choose a curve γ on (0,1) and then add a jump to x0 or x1 at the boundary in order to satisfy the
corresponding Dirichlet boundary condition, of course adding a price |γ(0+)− x0| or |γ(1−)− x1|
to the total variation. In this way, we could decide to identify the values of γ at t = 0 or t = 1 with
their right or left limits at these points, respectively, and replace Dirichlet boundary conditions
with a boundary penalization. This could also be done for more general penalizations ψ0,ψ1, for
which it is useful to define the relaxed functions

ψ̃t (x) := inf
y
|y −x|+ψt (y).

It is important to observe that the functions ψ̃i are automatically 1-Lipschitz continuous, as an
inf of Lip1 functions of the variable x, indexed with the parameter y .

In this way the problem (1) becomes

min

{
T V (γ; [0,1])+

ˆ 1

0
F (t ,γ(t ))dt + ψ̃0(γ(0+))+ ψ̃1(γ(1−)) : γ ∈ BV ([0,1];Rd )

}
or, equivalently, we can replace ψ̃0(γ(0+))+ψ̃1(γ(1−)) with ψ̃0(γ(0))+ψ̃1(γ(1)) and impose conti-
nuity of γ at t = 0,1.

Lemma 1. Let L : Rd → R be a smooth and uniformly convex function which is supposed to be
radial: L(v) := ℓ(|v |) for a convex and increasing function ℓ : R+ → R. Let F : [0,1] ×Rd → R

be a C 2 time-dependent potential satisfying D2
xx F (t , x) ≥ c0I for a certain constant c0 > 0 and

|∂t∇x F (t , x)| ≤ C0, and ψ0,ψ1 : Rd → R two Lipschitz continuous functions. Consider a solution
γ of

min

{ˆ 1

0
(L(γ′(t ))+F (t ,γ(t )))dt +ψ0(γ(0))+ψ1(γ(1)) : γ ∈ H 1([0,1])

}
.

Then γ is Lipschitz continuous and satisfies |γ′| ≤C where C is defined by

C := max

{
C0

c0
, (ℓ′)−1(Lipψ0), (ℓ′)−1(Lipψ1)

}
.

Proof. Let us start from the Euler–Lagrange system of the above optimization problem. We have
(∇L(γ′)′(t ) =∇x F (t ,γ(t ))

∇L(γ′(0)) =∇ψ0(γ(0))

∇L(γ′(1)) =−∇ψ1(γ(1)).

First we observe that γ ∈ C 0 and F ∈ C 1 imply that the right-hand side in the first equation is a
continuous function, so that we have ∇L(γ′) ∈ C 1. Inverting the injective function ∇L we obtain
γ ∈C 2 and, since F ∈C 2, we obtain γ ∈C 3.

Then, the transversality conditions show |∇L(γ′(t ))| ≤ Lipψt for t = 0,1. Using |∇L(v)| = ℓ′(|v |)
we see |γ′(t )| ≤C for t = 0,1.

Let us now consider the maximal value of |γ′(t )|. This maximum exists on [0,1] since γ ∈ C 1

and if it is attained on the boundary t = 0,1 the desired Lipschitz bound |γ′| ≤ C is satisfied.
We can now suppose that it is attained in (0,1). Since ℓ′ is increasing and non-negative, the
maximal points of |γ′| and of |∇L(γ′)|2 are the same. We can then write the optimality condition
differentiating once and twice in t : we do have

∇L(γ′(t )) · (∇L(γ′))′(t ) = 0; ∇L(γ′(t )) · (∇L(γ′))′′(t )+|(∇L(γ′))′(t )|2 ≤ 0.
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In the last condition we can ignore the positive term |(∇L(γ′))′(t )|2 and observe that, since

∇L(γ′(t )) and γ′(t ) are vectors with the same orientation (we do have ∇L(γ′(t )) = ℓ′(|γ′(t )|)
|γ′(t )| γ′(t )),

we have γ′(t ) · (∇L(γ′))′′(t ) ≤ 0.
We now differentiate in time the Euler–Lagrange equation and take the scalar product times

γ′, and obtain

0 ≥ γ′(t ) · (∇L(γ′))′′(t ) = (∇x F (t ,γ(t )))′ ·γ′(t ) = ∂t∇x F (t ,γ(t )) ·γ′(t )+γ′(t ) ·D2
xx F (t ,γ(t ))γ′(t ).

We deduce
c0|γ′(t )|2 ≤ |γ′(t )| |∂t∇x F (t ,γ(t ))|,

which implies |γ′(t )| ≤ C0
c0

≤C and concludes the proof. □

We now use the above result on an approximation of the original problem in BV.

Proposition 2. Consider

min

{
T V (γ; [0,1])+

ˆ 1

0
F (t ,γ(t ))dt +ψ0(γ(0+))+ψ1(γ(1−)) : γ ∈ BV ([0,1];Rd )

}
(2)

where F : [0,1]×Rd → R is a C 2 time-dependent potential satisfying D2
xx F (t , x) ≥ c0I for a certain

constant c0 > 0 and |∂t∇x F (t , x)| ≤C0, and ψ0,ψ1 ∈ Lip1(Rd ) are two penalization functions.
Then a minimizer γ for the above problem exists, is unique, and is actually Lipschitz continuous

with |γ′| ≤ C0
c0

.

Note that we directly state the problem using Lip1 penalizations instead of first fixing ψ0 and
ψ1 and then passing to ψ̃0 and ψ̃1, but we have already explained why we can restrict to this case.
Yet, an important remark is needed:

Remark 3. The solutions with penalizations ψt and ψ̃t (t = 0,1) coincide in (0,1), but the
solution with the original (non-Lip1) penalizations could jump at t = 0 or t = 1, and this jump
is intrinsically considered in the definition of ψ̃t .

Proof. Given ε > 0, we define ℓε : R+ → R+ via ℓε(s) :=
p
ε2 + s2 + εh(s), where h : R+ → R+ is a

smooth, convex, and increasing function, with liminfs→∞ h′′(s) > 0. We then define Lε : Rd → R

via Lε(v) = ℓε(|v |), so that Lε is smooth, uniformly convex, and radial1.
We also choose some numbersαε < 1 in such a way that limε→0αε = 1 and limε→0

ε2

1−α2
ε
= 0 (for

instance αε =
p

1−ε).
We consider γε the solution of the variational problem

min

{ˆ 1

0
(Lε(γ′(t ))+F (t ,γ(t )))dt +αε(ψ0(γ(0))+ψ1(γ(1))) : γ ∈ H 1([0,1])

}
.

Since Lε is convex, a solution exists by the direct method of the calculus of variations, and it is
unique because of the strict convexity of the function F .

We want to apply Lemma 1 to this approximated optimization problem. We first compute
ℓ′ε(s) = sp

ε2+s2
+ εh′(s) ≥ sp

ε2+s2
and observe that we have (ℓ′ε)−1(r ) ≤ rεp

1−r 2
. Since Lip(αεψi ) =

αεLip(ψi ) ≤αε we obtain from Lemma 1

|γ′ε| ≤ max

C0

c0
,

αεε√
1−α2

ε

 ,

and we observe that our choice of αε implies that the second term in the max above tends to 0 as
ε→ 0. This means that the Lipschitz constant of γε is at most C0

c0
if ε is small enough.

1Note that the easiest choice for h is h(s) = 1
2 s2, but other choices are possible and reasonable, and the only role of

h is to guarantee a lower bound on the Hessian of Lε (and in particular, to provide a quadratic behavior to ℓε so that the
problem is well-posed in H1). Later one we will see the interest for other choices of h.
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By comparing γε with the constant curve γ= 0 we obtain
ˆ 1

0
F (t ,γε(t ))dt +αε(ψ0(γε(0))+ψ(γε(1))) ≤

ˆ 1

0
F (t ,0)dt +αε(ψ0(0)+ψ1(0)) ≤C .

This estimate includes an L2 estimate on γε and, because of the uniform Lipschitz condition on
γε, it also implies that the curves γε are equibounded. We can then apply Arzelà–Ascoli’s theorem
to obtain a limit curve γε → γ0. This curve γ0 is of course C0

c0
-Lipschitz continuous, and we can

prove that it solves Problem (2).
Indeed, the optimality of γε, together with the inequality Lε(v) ≥ |v | (which allows to bound

the total variation from above with the integral of Lε), shows that we have

T V (γε; [0,1])+
ˆ 1

0
F (t ,γε(t ))dt +αε(ψ0(γε(0))+ψ1(γε(1)))

≤
ˆ 1

0
Lε(γ′(t ))dt +

ˆ 1

0
F (t ,γ(t ))dt +αε(ψ0(γ(0))+ψ1(γ(1)))

for every γ ∈ H 1. If we let ε tend to 0 and use the lower semicontinuity of TV for the uniform
convergence, we obtain

T V (γ0; [0,1])+
ˆ 1

0
F (t ,γ0(t ))dt +ψ0(γ0(0))+ψ1(γ0(1))

≤
ˆ 1

0
|γ′(t )|dt +

ˆ 1

0
F (t ,γ(t ))dt +ψ0(γ(0))+ψ1(γ(1)),

where we used the dominated convergence Lε(γ′) →|γ′| as ε→ 0, and αε→ 1.
This shows the optimality of γ0 compared to any H 1 curve. It is now enough to approxi-

mate any BV curve with H 1 curves. We take γ ∈ BV ([0,1]), we define it as equal to γ(0+) on
[−1,0] and to γ(1−) on [1,2] and we convolve it with a smooth compactly supported kernel ηδ
tending to the identity so as to smooth it, thus obtaining a sequence of curves γ∗ηδ such that
T V (γ∗ηδ; [−1,2]) = ´ 2

−1 |(γ∗ηδ)′(t )|dt ≤ T V (γ, (0,1)); moreover, γ∗ηδ is uniformly bounded and
converges to γ at all continuity points of γ, which means that the convergence holds a.e. and at
the boundary point. This proves

limsup
δ→0

ˆ 1

0
|(γ∗ηδ)′(t )|dt +

ˆ 1

0
F (t ,γ∗ηδ(t ))dt +ψ0(γ∗ηδ(0))+ψ1(γ∗ηδ(1))

≤ T V (γ, (0,1))+
ˆ 1

0
F (t ,γ(t ))dt +ψ0(γ(0))+ψ1(γ(1))

and concludes the proof of the optimality of γ0.
What we proved implies the existence of an optimal curve for (2), and its uniqueness comes,

again, from the strict convexity of the term with F . □

In the case where the space of curves is BV([0,1];Rd ) with d = 1, we can obtain a very
interesting behavior.

Proposition 4. When d = 1, i.e. the target space of the curves in Problem (2) is one-dimensional,
the minimizer γ satisfies |γ′(t )| |∇x F (t ,γ(t ))| = 0 a.e., i.e. at each instant of time either γ does not
move or it is already located at the optimal point for F (t , · ).

Proof. We consider the same approximation as in Proposition 2, using the function h(s) =
(s −M)2+ for a very large M . The uniform Lipschitz bound proven in Lemma 1 and Proposition 2
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makes it irrelevant the choice of ℓε(s) for large values of s, so that we can write the Euler–Lagrange
equation for the minimizer γε in the form

ε2

(ε2 +|γ′ε|2)3/2
γ′′ε =

(
L′
ε(γ′ε)

)′ =∇x F (t ,γε),

where we explicitly computed2 the second derivative of Lε ignoring the term in h.
We write this as ε2γ′′ε = (ε2 +|γ′ε|2)3/2∇x F (t ,γε). First, note that this implies a uniform bound

ε2|γ′′ε | ≤C . Then, we differentiate it in time, thus obtaining

ε2γ′′′ε = 3(ε2 +|γ′ε|2)1/2γ′ε ·γ′′ε∇x F (t ,γε)+ (ε2 +|γ′ε|2)3/2 (∇x F (t ,γε)
)′ .

Re-using the Euler–Lagrange equation we have

ε2γ′′′ε = 3ε2(ε2 +|γ′ε|2)−1(γ′ε ·γ′′ε )γ′′ε + (ε2 +|γ′ε|2)3/2 (∇x F (t ,γε)
)′ .

We observe that the last term (ε2+|γ′ε|2)3/2
(∇x F (t ,γε)

)′ is bounded thanks to the Lipschitz bound
on γε and the regularity of F . We multiply by γ′ε and obtain

|ε2γ′′′ε ·γ′ε−3ε2(ε2 +|γ′ε|2)−1(γ′ε ·γ′′ε )2| ≤C . (3)

We then compute

ε2
ˆ 1

0
|γ′′ε |2dt =−ε2

ˆ 1

0
γ′′′ε ·γ′εdt + [

ε2γ′ε ·γ′′ε
]1

0 ≤C .

the last inequality is justified by (3), by the sign of the term ε2(ε2 + |γ′ε|2)−1(γ′ε ·γ′′ε )2, and by the
bound on the boundary term, which is the product of two bounded quantities: γ′ε and ε2γ′′ε .

Coming back to the equality ε2γ′′ε = (ε2+|γ′ε|2)3/2∇x F (t ,γε) we take the L2 norms of both sides,
thus obtainingˆ 1

0
|γ′ε|6|∇x F (t ,γε)|2dt ≤

ˆ 1

0
(ε2 +|γ′ε|2)3|∇x F (t ,γε)|2dt =

ˆ 1

0
ε4|γ′′ε |2dt ≤Cε2.

We deduce
´ 1

0 |γ′ε|6|∇x F (t ,γε)|2dt → 0 and, at the limit, by lower semicontinuity, we have the
claim. □

We will now analyze in details a simple example, both for future use and for better understand-
ing the properties of the minimizers.

We consider the periodic problem

min

{
J (γ) :=λT V (γ;S1)+

ˆ
S1

1

2
|γ(t )−ω(t )|2dt : γ ∈ BV (S1;R)

}
, (4)

where λ> 0 and ω :S1 →R is a fixed curve. We suppose that ω is a Lipschitz continuous function
such that there exists a finite decomposition of S1 into essentially disjoint intervals Ik = [ak ,bk ]
(k = 1, . . . ,4N for N ≥ 1) such that ak+1 = bk and b4N = a1 and satisfying for each n = 0, . . . , N −1,
the following conditions

• ω is non-decreasing on I4n+1;
• ω(a4n+2) =ω(b4n+2) := c4n+2 and ω≥ c4n+2 on I4n+2;
• ω is non-increasing on I4n+3;
• ω(a4n+4) =ω(b4n+4) := c4n+4 and ω≤ c4n+4 on I4n+4;
• ´

I4n+2
ω− c4n+2 =

´
4n+4 c4n+4 −ω= 2λ.

2Note that this computation is based on a 1D cancellation effect, since in higher dimension we have

D2Lε(v) = (ε2 +|v |2)I − v ⊗ v

(ε2 +|v |2)3/2

and the matrices |v |2I and v ⊗ v do not cancel out.



Annette Dumas and Filippo Santambrogio 665

We then define a curve γ and a function z via

on I4n+1 γ=ω and z =λ,

on I4n+2 γ= c4n+2 and z(t ) =λ−
ˆ t

a4n+2

(ω− c4n+2),

on I4n+3 γ=ω and z =−λ,

on I4n+4 γ= c4n+4 and z(t ) =−λ−
ˆ t

a4n+2

(ω− c4n+2).

We can check that γ and z are Lipschitz continuous functions, that we have z ′ =ω−γ as well as
|z| ≤ λ, z = ±λ when γ′ ̸= 0 and z and γ′ have the same sign. Hence, z(t ) ∈ ∂(λ| · |)(γ′(t )). This
means that we have, for any curve γ̃, the inequality

λT V (γ̃;S1) ≥λT V (γ;S1)+
ˆ
S1

(γ̃′−γ′) · z. (5)

We claim that γ is a solution of Problem (4). Indeed, for any other competitor γ̃, we have

J (γ̃) =λT V (γ̃;S1)+
ˆ
S1

1

2
|γ̃−ω|2 ≥ J (γ)+

ˆ
S1

(γ̃′−γ′) · z + (γ̃−γ) · (γ−ω) = J (γ),

where the last equality is obtained by integrating by parts and using z ′ = ω−γ. The previous
inequality comes from the use of (5) and from expanding the square.

This explicit example confirms the behavior predicted in Proposition 4: the optimizer in the
scalar case either coincides with the minimal point of F (t , · ) (here such a point is equal to ω(t ))
or it does not move. By using the numerical method described in Section 6, the solution to the
problem (4) is displayed in Figure 1 whenω : S1 →R is a curve such thatω(t ) = sin(2πt )+3sin(3 ·
2πt ). The periodic functionω verifies the hypothesis listed above and we can see that the solution
γ either follows ω or it is constant on each interval Ik . This numerical simulation confirms the
solution and at the same time it validates the numerical method which will be presented more
precisely in Section 6.

3. Lipschitz regularity in the L1 setting

In this section, we prove the regularity in time of the density ρ which solves the following
problem:

min
ρ∈E
ρ≥0

∀t∈[0,T ],
´
Ω ρ(t ,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt+ψ0(ρ(0))+ψT (ρ(T )) := F (ρ),

where E := BV([0,T ];L1(Ω)) ∩ L2([0,T ] ×Ω) (for one-variable BV functions valued in a Banach
space such as L1 we refer, for instance, to [15, 16]). The function f will be supposed to be
uniformly convex (i.e. f ′′ ≥ c0 > 0), and the time-dependent potential V will be supposed to
belong to Lip([0,T ];L2(Ω)). The domain Ω is a finite measure set in Rd , and we assume for
simplicity that it has unit volume.

A few words on the penalizations ψ0 and ψT

We aim to apply the results when ψT is of the following form

ψT : L1(Ω) −→R

ρ 7−→
ˆ
Ω

ϕT (x)ρ(x)dx,
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Figure 1. The simulation of the solution γ to the 1D periodic case (4) withω(t ) = sin(2πt )+
3sin(3 ·2πt ). The parameters are displayed in Table 1 except from S = 1 and λ = 0.04. The
blue solid line corresponds to the solution γ, while the red dashed line is the profile of ω.
Each interval Ik is delimited by the vertical dotted gray lines.

where ϕT :Ω→ R is L∞ and ∥ϕT ∥∞ ≤ 1. In this case, ψT is 1-Lipschitz for the norm ∥·∥L1(Ω), and
it is also weakly continuous in L1(Ω) (and hence in L2(Ω)).

When it comes to ψ0, we aim to consider the following case:

ψ0 : L1(Ω) −→R

ρ 7−→ ∥ρ−m0∥L1(Ω),

where m0 ∈ L1(Ω). In this case as well, ψ0 is 1-Lipschitz for the norm ∥·∥L1(Ω). It is also weakly
lower-semicontinuous in L1(Ω) and L2(Ω).

More generally, our results apply when the penalizations ψ0 and ψ1 are of the following form:

ψt (ρ) :=
ˆ
Ω

at (x,ρ(x))dx,

for two functions at which are 1-Lipschitz continuous and convex in the second variable. In this
way the functionals ψt are both continuous for the strong L1 convergence (actually, Lip1) and
lower semicontinuous for the weak L1 convergence. This general framework includes the two
examples above.

Finally, if ψ0 and ψT are defined as previously, we will define ψ0,α :=αψ0 and ψT,α :=αψT .

Approximations

As in the previous section, the absolute value |ρ̇| will be approximated by a smoother function
Lϵ which will be specified later. The mass constraint

´
ρt = 1 will be imposed via a penalization

method, adding
(
´
ρ−1)2

2δ . The penalizations on the boundary on [0,T ], ψ0 and ψT , will also be
approximated by multiplying them by α< 1. Finally, the positivity constraint will be handled by
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approximating f with a sequence fn : R→ R obtained via fn(ρ) := f (ρ)+n(ρ−)2 so that negative
values are penalized but the uniform convexity of f is preserved since we have f ′′

n ≥ c0 for the
same c0 > 0.

Taking together these approximations, we obtain the following problem:

min
ρ∈E

ˆ T

0

(ˆ
Ω

Lϵ(ρ̇(t , x))+ fn(ρ(t , x))+V (t , x)ρ(t , x)dx +
(´
ρ(t , y)dy −1

)2

2δ

)
dt

+ψ0,α(ρ(0))+ψT,α(ρ(T )) := Fn(ρ).

Note that the approximated functional is written as Fn , meaning that we have fixed a suitable
sequence of values (ϵ,δ,α) such that ϵn → 0, δn → 0 and αn → 1.

In order not to have difficulties with the infinite-dimensional space L1(Ω), we will also use a
finite-dimensional discretization. This consists in imposing that the functions ρ(t ) belong to a
finite-dimensional subspace. More precisely, we divide the space Ω into n small areas of volume
1
n called An

i (we need their diameter to tend to 0) and we take ρn(t ) : Ω→R such that it is constant
on each area. This means that ρn(t ) takes at most n different values and its mass is constant
equal to ρi (t ) on each region An

i (and its density equals nρi (t )). The problem can be considered
as a restriction of the previous one to the subset of E composed of densities which are piecewise
constant functions (constant on each An

i ) for every t , or it can be rewritten as follows:

min
ρ∈BV ([0,T ];Rn )

ˆ T

0

((
n∑

i=1

1

n
(Lϵ(nρ̇i (t ))+ fn(nρi (t )))+ρi (t )

 
An

i

V (t , x)dx

)
+

(∑
j ρ j (t )−1

)2

2δ

)
dt

+ψ0,α(ρ(0))+ψT,α(ρ(T )),

where the functionals ψ0,α and ψT,α can also be written in terms of values ρi (0) and ρi (T ): they
are of the form

ψ0,α(ρ(0)) :=α∑
i

an
i ,0(ρi (0)) and ψT,α(ρ(0)) :=α∑

i
an

i ,T (ρi (T ))

for some Lip1 functions an
i ,t , which are precisely given by

an
i ,t (u) := 1

n

 
An

i

at (x,nu)dx.

In the set E , we say that ρn converges to ρ in E in the sense of (6), if

∃C s.t. ∥ρn(t )∥L2(Ω) ≤C for every n and every t and ρn(t )* ρ(t ) uniformly in t (6)

where the uniform L2 bound allows to metrize the weak L2 convergence and the uniform
convergence is defined accordingly.

We observe that the convergence in the sense of (6) implies the weak convergence ρn * ρ

weakly in L2([0,T ]×Ω).

Lemma 5. Let (ρn)n be a sequence converging to ρ ∈ E in the sense of (6) such that Fn(ρn) is
bounded. Then, we have ρ ≥ 0, for a.e. t ∈ [0,T ] we have

´
Ωρ(t , x)dx = 1, and moreover

F (ρ) ≤ liminf
n

Fn(ρn).

Proof. First, we have
ˆ T

0

ˆ
Ω

|ρ̇n(t , x)|dxdt ≤
ˆ T

0

ˆ
Ω

Lϵ(ρ̇n(t , x))dxdt ≤ Fn(ρn) ≤C ,
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so that ∥ρ̇n∥L1([0,T ]×Ω) is bounded. By embedding L1([0,T ]×Ω) into M([0,T ]×Ω), the space of
Radon measures, there exists a subsequence of (ρ̇n)n which converges weakly in M([0,T ]×Ω) to-
wards a measure which can only be ρ̇. The semicontinuity of the mass for the weak convergence
provides ˆ T

0

ˆ
Ω

|ρ̇(t , x)|dxdt ≤ liminf
n→∞ ∥ρ̇n∥L1([0,T ]×Ω) ≤

ˆ T

0

ˆ
Ω

Lϵ(ρ̇n(t , x))dxdt

(where, actually, the first integral is to be intended as a mass in the sense of measures, or as the

total variation of the curve t 7→ ρ(t ) in L1(Ω)). Then, using again ρn
L2

* ρ, we obtainˆ T

0

ˆ
Ω

V (t , x)ρ(t , x)dxdt = lim
n→∞

ˆ T

0

ˆ
Ω

V (t , x)ρn(t , x)dxdt .

Using f ≤ fn and the convexity of f , which implies the weak lower semicontinuity of ρ 7→´´
f (ρ(t , x))dxdt , we haveˆ T

0

ˆ
Ω

f (ρ(t , x))dxdt ≤ liminf
n→∞

ˆ T

0

ˆ
Ω

fn(ρn(t , x))dxdt .

Moreover, by the definition of fn , we also obtainˆ T

0

ˆ
Ω

(ρ−)2(t , x)dxdt ≤ liminf
n

ˆ T

0

ˆ
Ω

((ρn)−)2(t , x)dxdt = 0

since
´´

((ρn)−)2(t , x)dxdt ≤ C
n . This shows ρ ≥ 0.

Since for all t ∈ [0,T ], ρn(t ) * ρ(t ) weakly in L2(Ω), we have in particular ρn(0) * ρ(0) and
ρn(T )* ρ(T ) weakly in L2(Ω) and consequently weakly in L1(Ω), so by the lower semi-continuity
of ψ0 and ψT , we have

ψ0(ρ(0)) ≤ liminf
n

ψ0(ρn(0)) and ψT (ρ(T )) ≤ liminf
n

ψT (ρn(T )).

Since (∥ρn(0)∥L2(Ω))n and (∥ρn(T )∥L2(Ω))n are bounded we also have L1 bounds and hence

lim
n
αnψ0(ρn(0)) = lim

n
ψ0(ρn(0)) and lim

n
αnψT (ρn(T )) = lim

n
ψT (ρn(T )).

Finally, we use the positivity of the termˆ T

0

(´
ρn(t , y)dy −1

)2

2δ
dt

to obtain
F (ρ) ≤ liminf

n
Fn(ρn),

and its boundedness to obtain
´
ρ(t ) = lim

´
ρn(t ) = 1 for a.e. t . □

Lemma 6. Suppose that m0 is such that
´

f (m0) < +∞ (in particular m0 ∈ L2(Ω)). For all ρ ∈ E
there exists a sequence (ρn)n in D = H 1([0,T ];L2(Ω)) which converges to ρ strongly in L2

t ,x and
which satisfies

ρn(0) = m0

∥ρ̇n∥L1([0,T ]×Ω) ≤ ∥ρ̇∥L1([0,T ]×Ω) +∥ρ(0+)−m0∥L1(Ω) (7)

= ∥ρ̇∥L1([0,T ]×Ω) +ψ0(ρ(0+))

limsup
n

ˆ T

0

ˆ
Ω

f (ρn(t , x))dxdt ≤
ˆ T

0

ˆ
Ω

f (ρ(t , x))dxdt (8)

lim
n→∞

ˆ T

0

ˆ
Ω

ρn(t , x)V (t , x)dxdt =
ˆ T

0

ˆ
Ω

ρ(t , x)V (t , x)dxdt (9)

lim
n
ψT (ρn(T )) =ψT (ρ(T −)) (10)

In addition, if for all t ∈ [0,T ],
´
Ωρ(t , x)dx = 1, then for all n ∈N,

´
Ωρn(t , x)dx = 1.
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Proof. Let ρ ∈ E . We denote by ηn a sequence of mollifiers in the t variable (i.e. ηn is a sequence
of smooth probability measures on R such that ηn * δ0), and we suppose sptηn ⊂ [0, 1

n ].
The function ρ is only defined on the time interval [0,T ], but we can extend ρ to a function

ρ̃ : [−1,T ]×Ω→R setting ρ̃(t ) = m0 for all t < 0. The total variation in L1 of this extension is equal
to the sum of that of ρ and the L1 distance between m0 and ρ(0+).

We then define ρn as the convolution of ρ̃ with the mollifiers ηn in time:

ρn(t , x) :=
ˆ
ηn(t − s)ρ̃(s, x)ds

With the assumption on the support of ηn this convolution is well-defined on [0,T ] even if ρ̃ has
not been extended on ]T,+∞[. Moreover, we have ρn(0) = m0.

Note that we have∣∣ρ̇n(t , x)
∣∣= ∣∣∣∣ˆ η′n(t − s)ρ̃(s, x)ds

∣∣∣∣≤C (n)

ˆ t

t−1/n
ρ̃(s, x)ds

so that we have

∥ρ̇n(t )∥L2(Ω) ≤C (n)

ˆ t

t−1/n
∥ρ̃(s)∥L2(Ω)ds ≤C (n)

(we use here the assumption m0 ∈ L2(Ω)). This proves ρn ∈ H 1([0,T ];L2(Ω)).
The convexity of the total variation easily implies (7). Again by convexity, for any convex

function g we have
ˆ T

0

ˆ
Ω

g (ρn(t , x))dxdt ≤
ˆ T

−1/n

ˆ
Ω

g (ρ̃(t , x))dxdt −→
ˆ T

0

ˆ
Ω

g (ρ(t , x))dxdt ,

where the last limit is valid whenever
´
Ω g (m0) < +∞. Applying this to g (ρ) = ρ2 proves

that ρn strongly convergence in L2
t ,x to ρ (it provides an L2 bound, hence a weak limit up to

subsequences; this weak limit can be identified as ρ by testing against continuous functions;
the limit is actually strong because the L2 norm converges to that of the limit). This implies, in
particular, (9). As for (8), it is enough to use g = f .

To prove (10), we use the property of bounded variation functions: ρ admits a left limit at T in
L1, i.e. for every ε > 0 there exists δ > 0 such that ∥ρ(t )−ρ(T −)∥L1 ≤ ε for every t ∈ [T −δ,T [. By
convexity this implies, as soon as 1

n < δ, ∥ρn(T )−ρ(T −)∥ ≤ ε and shows ρn(T ) → ρ(T −) strongly
in L1. This implies (10).

If we suppose in addition that for all t ∈ [0,T ],
´
Ωρ(t , x)dx = 1 the same will be true for ρn by

convexity, which concludes the proof of the statement. □

Theorem 7. Suppose that ψ0 : L1(Ω) → R and ψT : L1(Ω) → R are 1-Lipschitz and weakly lower
semicontinuous on L1(Ω) and that V : [0,T ]×Ω→ R belongs to Lip([0,T ];L2(Ω)). Suppose also
that f : R→R is c0-convex, i.e. f ′′ ≥ c0 on R.

Then, there exists a unique minimizer ρ to the problem

min
ρ∈E

∀t∈[0,T ],
´
Ω ρ(t ,x)dx=1

F (ρ). (11)

This solution belongs to Lip([0,T ];L2(Ω)) and it satisfies

sup
t∈[0,T ]

ˆ
Ω

|ρ̇(t , x)|2dx ≤C , (12)

where C = C 2
0

c2
0

with C 2
0 = supt∈[0,T ] ∥V ′(t , · )∥2

L2(Ω)
.
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Proof. To obtain the regularity (12), we will approximate the problem (11) as already described
at the beginning of this section; i.e. solving

min
ρ∈En

ˆ T

0

((
n∑

i=1

1

n

(
Lϵ(nρ̇i (t ))+ fn(nρi (t ))

)+nρi (t )

ˆ
An

i

V (t , x)dx

)
+

(∑
j ρ j (t )−1

)2

2δ

)
dt

+ψ0,α(ρ(0))+ψT,α(ρ(T )), (13)

where we denote by En the set of piecewise constant (in space) functions ρ ∈ E such that

∀ t ∈ [0,T ],∀ x ∈Ω, ρ(t , x) =
n∑

i=1
nρi (t )1An

i
(x),

where ρi : [0,T ] → R is a real-valued function. With the definition, the mass of ρ on each An
i

equals ρi (t ).
In particular, if we consider the curves ρi (t ), for each i the curve ρi solves

min
ρi∈H 1([0,T ];R)

ˆ T

0

(
Lϵ(nρ̇i (t ))+ fn(nρi (t ))+nρi (t )V n

i (t )+
(∑

j ρ j (t )−1
)2

2δ

)
dt

+αan
i ,0(ρi (0))+αai ,T (ρi (T )) (14)

where V n
i (t ) := 1

|An
i |
´

An
i

V (t , x)dx = n
´

An
i

V (t , x)dx. The function V n(t ) defined to be equal to

V n
i (t ) in An

i satisfies

∥V n(t )∥L2(Ω) ≤ ∥V (t )∥L2(Ω), ∥V n∥L2([0,T ]×Ω) ≤ ∥V ∥L2([0,T ]×Ω), ∥∂t V n(t )∥L2(Ω) ≤ ∥∂t V (t )∥L2(Ω),

all these inequalities being a consequence of Jensen’s inequality.
The proof is divided in several steps.

Step 1. The minimizers of (13), which is a finite-dimensional variational problem in H 1, exist by
the direct method.

Step 2. Let ρn be a minimizer of Fn for all n. In this step, we bound ∥ρ̇n(t )∥L2(Ω) independently
of n so that we will be able to pass to the limit n →∞. We remind that ρn is piecewise constant in
space: ρn(t , x) := ∑n

i=1 nρn,i (t )1An
i

(x). In the following, we fix n and write ρi (t ) instead of ρn,i (t )
to enlighten the notation.

The Euler–Lagrange equation of (14) is

(
L′
ϵ(nρ̇i (t ))

)′ =V n
i (t )+ f ′

n(nρi (t ))+
(∑

j ρ j (t )−1
)

nδ
. (15)

Differentiating the equation (15) yields(
L′
ϵ(nρ̇i (t ))

)′′ = (V n
i )′(t )+nρ̇i (t ) f ′′

n (nρi (t ))+
∑

j ρ̇ j (t )

nδ
.

Multiplying by ρ̇i (t ) and summing over i gives

n∑
i=1

ρ̇i (t )(L′
ϵ(nρ̇i (t )))′′ =

n∑
i=1

(V n
i )′(t )ρ̇i (t )+n(ρ̇i (t ))2 f ′′

n (nρi (t ))+
(∑

j ρ̇ j (t )
)2

nδ
.

Since the term
(∑

j ρ̇ j (t )
)2 is positive, using f ′′

n ≥ c0 as well, we obtain the inequality

n∑
i=1

ρ̇i (t )
(
L′
ϵ(nρ̇i (t ))

)′′ ≥ n∑
i=1

(V n
i )′(t )ρ̇i (t )+ c0n(ρ̇i (t ))2. (16)
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Now, we need to estimate the left-hand side of (16). By expanding the second derivative, we
have

n∑
i=1

ρ̇i (t )
(
L′
ϵ(nρ̇i (t ))

)′′ = n∑
i=1

ρ̇i (t )
(
nρ̈i (t )L′′

ϵ (nρ̇i (t ))
)′

=
n∑

i=1
ρ̇i (t )

(
(nρ̈i (t ))2L′′′

ϵ (nρ̇i (t ))+n
...
ρ i (t )L′′

ϵ (nρ̇i (t ))
)

.

(17)

Let us define the function h : R→R such that h(s) = sL′
ϵ(s)−Lϵ(s). Then, h verifies

h′(s) = sL′′
ϵ (s) and h′′(s) = L′′

ϵ (s)+ sL′′′
ϵ (s).

We now consider

max
t∈[0,T ]

n∑
i=1

h(nρ̇i (t )). (18)

Two cases will be distinguished:

• the maximum is reached on (0,T ),
• the maximum is reached on {0,T }.

(i) Suppose there exists t0 ∈ (0,T ) such that
∑n

i=1 h(nρ̇i (t0)) = maxt∈[0,T ]
∑n

i=1 h(nρ̇i (t )).

In particular, we have
n∑

i=1
nρ̈i (t0)h′(nρ̇i (t0)) =

n∑
i=1

n2ρ̈i (t0)ρ̇i (t0)L′′
ϵ (nρ̇i (t0)) = 0

and
n∑

i=1
n

...
ρ i (t0)h′(nρ̇i (t0))+ (nρ̈i (t0))2h′′(nρ̇i (t0)) ≤ 0,

i.e.
n∑

i=1
n2 ...

ρ i (t0)ρ̇i (t0)L′′
ϵ (nρ̇i (t0))+ (nρ̈i (t0))2 (

L′′
ϵ (nρ̇i (t0))+nρ̇i (t0)L′′′

ϵ (nρ̇i (t0))
)≤ 0.

Inserting (16) and (17) in t0, the last inequality becomes
n∑

i=1

(
(V n

i )′(t0)ρ̇i (t0)+ c0nρ̇i (t0)2)≤−
n∑

i=1
(nρ̈i (t0))2L′′

ϵ (nρ̇i (t0)) ≤ 0. (19)

Let us precise the expression of h:

h(s) = sL′
ϵ(s)−Lϵ(s)

= s2

p
s2 +ϵ2

+2ϵs2 −
√

s2 +ϵ2 −ϵs2 = s2 − s2 −ϵ2

p
s2 +ϵ2

+ϵs2

=− ϵ2

p
s2 +ϵ2

+ϵs2 < ϵs2.

Since t0 is a maximizer of
∑n

i=1 h(nρ̇i ), for all t ∈ [0,T ], we obtain

n∑
i=1

h(nρ̇i (t )) =
n∑

i=1
− ϵ2√

(nρ̇i (t ))2 +ϵ2
+ϵ(nρ̇i (t ))2 ≤

n∑
i=1

h(nρ̇i (t0)) < ϵ
n∑

i=1
(nρ̇i (t0))2. (20)

In particular, we have
n∑

i=1
− ϵ√

(nρ̇i (t ))2 +ϵ2
+ (nρ̇i (t ))2 <

n∑
i=1

(nρ̇i (t0))2.

Since ϵp
nρ̇i (t )2+ϵ2

≤ 1, for all t ∈ [0,T ],

n∑
i=1

nρ̇i (t )2 < 1+
n∑

i=1
nρ̇i (t0)2. (21)
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Besides, thanks to Cauchy–Schwarz inequality, the inequality (19) becomes

c0

n∑
i=1

nρ̇i (t0)2 ≤−
n∑

i=1
(V n

i )′(t0)ρ̇i (t0) (22)

≤
√

n∑
i=1

1

n
(V n

i )′(t0)2

√
n∑

i=1
nρ̇i (t0)2

≤
√√√√ sup

t∈[0,T ]

n∑
i=1

ˆ
An

i

(V n)′(t )2dx

√
n∑

i=1
nρ̇i (t0)2

≤ sup
t∈[0,T ]

∥(V n)′(t , · )∥L2(Ω)

√
n∑

i=1
nρ̇i (t0)2

≤ sup
t∈[0,T ]

∥V ′(t , · )∥L2(Ω)

√
n∑

i=1
nρ̇i (t0)2.

Finally, (22) gives

c2
0

n∑
i=1

nρ̇i (t0)2 ≤ sup
t∈[0,T ]

∥V ′(t , · )∥2
L2(Ω). (23)

By gathering the inequalities (21) and (23), there exists a constant

C 2
0 := sup

t∈[0,T ]
∥V ′(t , · )∥2

L2(Ω) ≥ 0

independent from n such that for all t ∈ [0,T ],

n∑
i=1

nρ̇i (t )2 ≤ 1+
n∑

i=1
nρ̇i (t0)2 ≤ 1+ C 2

0

c2
0

. (24)

Yet, for all t ∈ [0,T ], the L2-norm of ρ̇n(t ) is

∥ρ̇n(t )∥2
L2(Ω) =

n∑
i=1

ˆ
An

i

(nρ̇i (t ))2 =
n∑

i=1
nρ̇i (t )2,

so, for all n ∈N, a minimizer of (14) verifies

sup
t∈[0,T ]

∥ρ̇n(t )∥2
L2(Ω) ≤ 1+ C 2

0

c2
0

. (25)

(ii) Suppose that the maximum of (18) is reached at 0, i.e.

n∑
i=1

h(nρ̇i (0)) = max
t∈[0,T ]

n∑
i=1

h(nρ̇i (t )).

The transversality condition yields

L′
ϵ(nρ̇i (0)) = (αan

i ,0)′(ρi (0)),

and we know that αan
i ,0 is Lipα. Using L′

ϵ(s) = sp
s2+ϵ2

+2ϵs, we get∣∣∣∣∣ nρ̇i (0)√
(nρ̇i (0))2 +ϵ2

+2ϵnρ̇i (0)

∣∣∣∣∣≤α.

The same computations as in Section 2 lead to

|nρ̇i (0)| ≤ αε

1−α .
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Thanks to this inequality, we can conclude similarly to (24) that
n∑

i=1
nρ̇i (t )2 < 1+

n∑
i=1

nρ̇i (0)2,

≤ 1+ n2α2ϵ2

n2(1−α2)
= 1+ α2ϵ2

1−α2 ,

so, if α→ 1 and ϵ→ 0 in a way that α2ϵ2

1−α2 remains below 1, we have

sup
t∈[0,T ]

∥ρ̇n(t )∥2
L2(Ω) = sup

t∈[0,T ]

n∑
i=1

nρ̇i (t )2 ≤ 2. (26)

Remark 8. The upper bounds in (25) and (26) can be improved to quantities which are abritrarily
close to C 2

0 /c2
0 and 0, respectively.

For the first one, it suffices to define a slightly different approximation of | · |. If one take
Lϵ,A(s) =

p
s2 +ϵ2 + Aϵs2 instead of Lϵ, the calculus remains the same, except for (20), which

becomes
n∑

i=1
h(nρ̇i (t )) =

n∑
i=1

− ϵ2√
(nρ̇i (t ))2 +ϵ2

+ Aϵ(nρ̇i (t ))2 ≤
n∑

i=1
h(nρ̇i (t0)) < Aϵ

n∑
i=1

(nρ̇i (t0))2.

and yields the inequality

A
n∑

i=1
nρ̇i (t )2 < 1+ A

n∑
i=1

nρ̇i (t0)2,

i.e.
n∑

i=1
nρ̇i (t )2 < 1

A
+

n∑
i=1

nρ̇i (t0)2.

Since the constant A can be chosen as large as we want, the bound can be C 2
0 /c2

0 .

For the second estimate, it is enough to choose α → 1 such that α2ϵ2

1−α2 → 0 which allows to
replace the second term in (26) by almost 0 (and the first one can be taken small as well, as we
have just explained).

The same computations lead to the same conclusion if the maximum were reached on T .
To conclude, by (25), (26) and Remark 8, we have shown that

∀ n, sup
t∈[0,T ]

∥ρ̇n(t )∥2
L2(Ω) ≤ max

{
C 2

0

c2
0

,0

}
= C 2

0

c2
0

:=C .

Step 3. In this step, we prove that there exists a subsequence of (ρn)n which converges to a
function ρ ∈C ([0,T ],L2(Ω)).

The sequence (ρn(t ))n is equi-Lipschitz in L2(Ω) but the norm L2
t ,x is also bounded, which

provides a uniform bound ∥ρn(t )∥L2(Ω) ≤C . Bounded sets in L2(Ω) are not compact for the strong
convergence, but they are compact, by Banach–Alaoglu’s theorem, for the weak convergence. The
equicontinuity that we have is in the strong sense, so it also holds in the weak sense, and we can
then apply the Arzelà–Ascoli’s theorem to extract a subsequence of (ρn)n which converges to ρ in
the sense of (6).

Additionally, we obtain by the lower-semicontinuity property of the L2-norm that the limit
curve ρ is also Lipschitz in time for the strong L2 norm:

∀ (t , s) ∈ [0,T ]2, ∥ρ(t )−ρ(s)∥L2(Ω) ≤C |t − s|.
Step 4. The goal of this step is to prove that the limit ρ found previously is actually a minimizer
of (11). Comparing to a suitable competitor (for instance a discretization of m0, constant in time),
we can see that there exists C > 0 such that Fn(ρn) ≤C for all n.

First, let us notice that
´
Ωρ(t , x)dx = 1, for all t ∈ [0,T ].



674 Annette Dumas and Filippo Santambrogio

Indeed, we haveˆ T

0

(ˆ
Ω

ρ(t , x)dx −1

)2

dt ≤ liminf
n

ˆ T

0

(ˆ
Ω

ρn(t , x)dx −1

)2

dt = 0,

Second, by Lemma 5, we have that F (ρ) ≤ liminfn Fn(ρn).
Third, let m ∈ D = H 1([0,T ];L2(Ω)) be such that

´
Ωm(t , y)dy = 1. In what follows, we prove

that there exists a sequence (mn)n such that limsupn Fn(mn) ≤ F (m).
We define the sequence (mn)n by choosing piecewise constant functions such that

∀ t ∈ [0,T ], ∀ x ∈ An
i , mn(t , x) = n

ˆ
An

i

m(t , y)dy (27)

which verifies
´
Ωmn(t , y)dy = ´

Ωm(t , y)dy = 1. This lets the term penalizing the mass of
mn disappear in Fn(mn) and, using m ≥ 0 and mn ≥ 0, the penalization of the negative part
disappears as well:

Fn(mn) =
ˆ T

0

ˆ
Ω

Lϵ(ṁn(t , x))+ f (mn(t , x))+mn(t , x)V n(t , x)dxdt +ψ0,α(mn(0))+ψT,α(mn(T )).

We observe that, by Jensen’s inequality, exactly as it happens for V n , the sequence mn is
bounded in L2 (the norm is bounded by that of m) and clearly weakly converges to m (it is enough
to test against continuous test functions). So, it strongly converges to m in L2. This is true both in
L2

t ,x and in L2
x for every t . In particular, the boundary terms and the linear term

´
mnV n converge

to the corresponding terms with m. As for the term
´

f (mn), it can be bounded (again thanks to
Jensen’s inequality) by

´
f (m). We are left to bound the term involving the time-derivative.

Using again the Jensen inequality we have
´

Lε(ṁn) ≤ ´
Lε(ṁ) and using m ∈ D (i.e. ṁ ∈ L2

t ,x )
the quantity in the right-hand side tends to ∥ṁ∥L1([0,T ]×Ω).

Summing up, we have proved that for all m ∈ D such that
´
Ωm(t , x)dx = 1, there exists a

sequence (mn)n which converges to m strongly in L2([0,T ]×Ω) and which verifies

limsup
n

Fn(mn) ≤ F (m). (28)

Now, we can prove that ρ minimizes F . Let m ∈ D be a competitor such that
´
Ωm(t , x)dx = 1

and (mn)n the sequence defined in (27). Since for all n ∈N, ρn minimizes Fn , we have

∀ n ∈N, Fn(ρn) ≤ Fn(mn).

By Lemma 5 and the property (28), we obtain

∀ m ∈ D, F (ρ) ≤ F (m). (29)

The inequality is true for all m ∈ D , there remains to show that it is true for all m ∈ E .
Let m ∈ E be such that

´
Ωm(t , x)dx = 1. By Lemma 6, there exists a sequence (mn)n ⊂ D which

converges to m strongly in L2
t ,x and such that

´
RN mn(t , x)dx = 1 for all n ∈N. This sequence may

be different from (27). By Inequality (29), we have

∀ n ∈N, F (ρ) ≤ F (mn).

By using the properties (7), (8) and (9) and the fact that m is supported in [0,T ]×Ω, we obtain

∀ m ∈ E , F (ρ) ≤ F (m),

which shows that the limit ρ is a minimizer of F .
To conclude, the function ρ is a solution to the problem (11) and verifies the property (12).
Moreover, the solution ρ is unique by the strict convexity of F , given by f . □
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4. Infinite horizons problems

Similar results can be proven in the infinite horizon case, with an exponential discount factor:

min
ρ∈E∞;

∀t∈R+,
´
Ω ρ(t ,x)dx=1

ˆ ∞

0
e−r t

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt +ψ0(ρ(0)) := F∞(ρ)

where E∞ := BVloc (R+;L1(Ω))∩L2
loc (R+×Ω). This kind of infinite horizon problem is very classical

in economical models and we will not discuss any more its economical motivations. From the
mathematical point of view, it is interesting as we get rid of some difficulties (which will appear
in the next section) related to the transversality condition at t = T but the computations which
provide the time regularity can be re-done up to minor modifications.

The proof is similar to Theorem 7. We will need to use the following approximated functional

FT (ρ) :=
ˆ T

0
e−r t

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt +ψ0(ρ(0))

and its approximation

F n
T (ρ) :=

ˆ T

0
e−r t

(
n∑

i=1

1

n

(
Lϵ(nρ̇i (t ))+ fn(nρi (t ))+

(∑
j ρ j (t )−1

)2

2δ

)
+nρi (t )

ˆ
An

i

V (t , x)dx

)
dt

+ψ0,α(ρ(0)),

where Lϵ and the partition Ω=∪n
i=1 An

i are the same as in the proof of Theorem 7.

Theorem 9. Suppose that ψ0 : L1(Ω) → R is 1-Lipschitz and weakly lower semicontinuous on
L1(Ω) and that V : R+×Ω→R belongs to Lip(R+;L2(Ω)). Suppose also that f : R→R is c0-convex,
i.e. f ′′ ≥ c0.

Then, there exists a unique solution ρ to the problem

min
ρ∈E∞;

∀t∈R+,
´
Ω ρ(t ,x)dx=1

F∞(ρ),

and it satisfies

sup
t∈R+

ˆ
Ω

|ρ̇(t , x)|2dx ≤C∞, (30)

where C∞ = C 2
0

c2
0
> 0 only depends on V with C 2

0 = supt∈R+ ∥V ′(t , · )∥2
L2(Ω)

and on c0.

Proof. The proof will be very similar to the case discussed in Section 3, and we will only highlight
the differences. First, there is an extra approximation due to the infinite horizon: we fix T (and,
later, we will consider T →∞) and we solve

min
ρ∈En

F T
n (ρ). (31)

We adapt the proof of Theorem 7 and we mention here the main differences.

Step 1. Using the fact that e−r T ≤ e−r t , we can conclude similarly to Step 1 in Theorem 7 that
there exists a solution to problem (31).

Step 2. Let ρn (denoted ρ in this step for simplicity) be a minimizer of Fn . We exploit the Euler–
Lagrange equation for each component ρi (t ) in order to obtain bounds. The equation is slightly
different now, due to the coefficient e−r t . We have(

e−r t L′
ϵ(ρ̇i )

)′ = e−r t
(
V n

i (t , xi )+ f ′
n(nρi )+

∑
j ρ j −1

δ

)
(32)

i.e. − r L′
ϵ(ρ̇i )+ (L′

ϵ(ρ̇i ))′ =V n
i (t , xi )+ f ′

n(nρi )+
∑

j ρ j −1

δn
.
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Similarly to the proof of Theorem 7, we differentiate Eq. (32), multiply it by ρ̇i and sum over i :

∑
i

(−r ρ̈i ρ̇i L′′
ϵ (ρ̇i )+ ρ̇i (L′

ϵ(ρ̇i ))′′) =∑
i

(
ρ̇i (V n

i )′(t , xi )+nρ̇2
i f ′′

n (nρi )
)+ (∑

i ρ̇i
)2

δn
.

Compared to Section 3, there is an extra term equal to
∑

i (−r ρ̈i ρ̇i L′′
ϵ (ρ̇i ). We now take again h

the function such that

h(s) = sL′
ϵ(s)−Lϵ(s)

and look at maxt∈[0,T ]
∑n

i=1 h(nρ̇i (t )).
The extra term in the Euler–Lagrange equation appears in considering the maximum in (0,T ),

but in this case we also have
n∑

i=1
h′(nρ̇i (t ))ρ̈i (t ) = 0.

Using h′(s) = sL′′
ε(s) we see that this lets the extra term vanish, and the computations are then

unchanged.
As for the case where the maximum is reached at t = 0, the transversality condition is exactly

the same as in Section 3 because of e−r t = 1. When the maximum is reached at t = T , the
transversality condition now gives e−r T L′

ε(nρ̇i (T )) = 0 for every i . This allows to obtain ρ̇i (T ) = 0
and the maximum cannot be reached at t = T .

This allows to bound
∑

i nρ̇i (t )2 by a constant C∞ := C 2
0 /c2

0 which only depends on c0 and
supt∈[0,T [ ∥V ′(t , · )∥2

L2(Ω)
≤ supt∈R+ ∥V ′(t , · )∥2

L2(Ω)
:=C 2

0 .

Step 3. Now, we pass to the limit in n for fixed T . This follows the very same procedure based on
the Arzelà–Ascoli’s theorem, as in Section 3. In this way, we obtain a family (ρT )T of equilipschitz
functions in t valued in L2(Ω), satisfying the very same uniform bound on the time derivative,
and each ρT minimizes FT by proceeding the same way as in Step 4 of Theorem 7.

Step 4. We pass to the limit T →∞. The previous step provides a family (ρT )T∈N of equilipschitz
minimizers of FT . By choosing a density m such that

´
f (m) < +∞ and comparing ρT to the

constant curve equal to m, using the integrability of the exponential discount coefficient e−r t ,
we obtain a uniform bound FT (ρT ) ≤ C (independent of T ). Let us fix T0 < ∞. Since ρT is
a minimizer of FT , we have FT0 (ρT ) ≤ FT (ρT ) ≤ C . Thus we have a bound (depending on T0,
because of the coefficient e−r t )

sup
t∈[0,T0]

∥ρT (t )∥L2(Ω) ≤CT0 .

This allows to apply Arzelà–Ascoli’s theorem for the convergence in the sense of (6), and ex-
tracting a diagonal subsequence we obtain a subsequence of (ρT )T which converges towards
ρ ∈C (R+,L2(Ω)) in the sense of (6), on each interval [0,T0].

Step 5. In this step, we show that ρ defined previously is a minimizer of F . Let us denote by
(ρTk )k , the subsequence which converges to ρ. Let m ∈ E∞ be a competitor and T a fixed value.
For all Tk ≥ T , we have

FT (ρTk ) ≤ FT (m) ≤ F∞(m).

By the lower semi-continuity of FT we obtain FT (ρ) ≤ F∞(m) and, taking the limit T →∞, we see
F∞(ρ) ≤ F∞(m).

This shows that ρ is a minimizer of F . Additionally, it verifies

∀ t , s ∈R+, ∥ρ(t )−ρ(s)∥L2(Ω) ≤C∞|t − s|,
hence (30). □
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5. Regularity in space

While the regularity shown in the previous sections is in time, we can show regularity in space
under additional conditions on V and on the boundary conditions. We will start from the
problem with Dirichlet boundary conditions:

min
ρ∈E

ρ(0,· )=m0,ρ(T,· )=mT

∀t∈[0,T ],
´
Ω ρ(t ,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt := F (ρ), (33)

where we remind that E := BV([0,T ];L1(Ω)) ∩ L2([0,T ] ×Ω). Similarly to Section 3 and 4, we
approximate the problem (33) by

min
ρ∈En

ρ(0,· )=mn
0 ,

ρ(T,· )=mn
T

ˆ T

0

((
n∑

i=1

1

n
Lϵ(nρ̇i (t ))+nρi (t )

ˆ
An

i

V (t , x)dx + 1

n
f (nρi (t ))

)
+

(∑
j ρ j (t )−1

)2

2δ

)
dt := Fn(ρ),

(34)
with the usual choices for Lϵ(s) =

p
s2 +ϵ2 + ϵs2 and En , the set of piecewise constant functions

ρ ∈ E such that

∀ t ∈ [0,T ], ∀ x ∈Ω, ρ(t , x) =
n∑

i=1
nρi (t )1An

i
(x),

where ρi : [0,T ] → R is a real-valued function. Note that here we prefer not replace the Dirichlet
boundary conditions with L1 penalizations, so that we need to discretize the initial and final data
as well. We then define mn

t to be piecewise constant approximations of mt (for t = 0,T ), taking
in particular mn

i ,t := 1
|An

i |
´

An
i

mt (x)dx. We also set, as usual, V n
i (t ) := 1

|An
i |
´

An
i

V (t , x)dx.

We will consider the problem solved by ρi (t ) for all i ∈ {1, . . . ,n}:

min
nρi (0)=mn

i ,t ,

nρi (T )=mn
i ,t

ˆ T

0

(
Lϵ(nρ̇i (t ))+ f (nρi (t ))+nρi (t )V n

i +
(∑

j ρ j (t )−1
)2

2δ

)
dt . (35)

The Euler–Lagrange system of (35) is
(
L′
ϵ(nρ̇i (t ))

)′ =V n
i (t , xi )+ f ′(nρi (t ))+ c(t ),

nρi (0) = mn
i ,0,

nρi (T ) = mn
i ,T ,

(36)

where c(t ) :=
´
ρ(t ,y)dy−1

δn .

Lemma 10. If ρ is a minimizer of (34), then for every i , j we have the following inequality:

n sup
t∈[0,T ]

ρi (t )−ρ j (t ) ≤ max

(
sup

t∈[0,T ]
V n

j (t )−V n
i (t ),mn

i ,0 −mn
j ,0,mn

i ,T −mn
j ,T ,

)
.

Proof. We consider

max
t∈[0,T ]

ρi (t )−ρ j (t ).

We distinguish three cases:

• the maximum is reached on (0,T ),
• the maximum is reached at 0
• the maximum is reached at T .
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(i) If the maximum is attained at t0 ∈ (0,T ), we have ρ̇i (t0) = ρ̇ j (t0) as well as ρ̈i (t0) ≤ ρ̈ j (t0).
This implies ρ̈i (t0)L′′

ϵ (nρ̇i (t0)) ≤ ρ̈ j (t0)L′′
ϵ (nρ̇ j (t0)). By using (36) and substracting the

equation for i and that for j , we have

nρi (t0)−nρ j (t0) ≤ 1

c0
( f ′

n(nρi (t0)− f ′
n(nρ j (t0))

= ρ̈i (t0)L′′
ϵ (nρ̇i (t0))− ρ̈ j (t0)L′′

ϵ (nρ̇ j (t0))+V n
j (t0)−V n

i (t0)

≤V n
j (t0)−V n

i (t0) ≤ sup
t∈[0,T ]

V n
j (t )−V n

i (t ),

Consequently, n(ρi (t0)−ρ j (t0)) is bounded by supt∈[0,T ] V n
j (t )−V n

i (t ).
(ii) If the maximum is reached at t = 0 we have

nρi (t )−nρ j (t ) ≤ nan
i −an

j

using the Dirichlet condition.
(iii) If the maximum is reached at t = T we have

nρi (t )−nρ j (t ) ≤ nbn
i −bn

j

using the other Dirichlet condition.

The claim follows by putting together the three cases. □

Theorem 11. Let ρ be a minimizer of (33) and ω a function such that

1

c0
(V (t , x)−V (t , x ′)),ms (x)−ms (x ′) ≤ω(x −x ′)

for all t , x, x ′ with s = 0,T . Suppose either that ω is a constant or that limz→0ω(z) = 0 (i.e., ω is a
modulus of continuity).

Then we have for a.e. t , x, x ′

ρ(t , x)−ρ(t , x ′) ≤ω(x −x ′).

Proof. We first consider the curves ρn minimizing (34). We write the estimate from Lemma 10 in
terms of the densities ρn(t , x) = nρi (t ). We obtain

ρn(t , x)−ρn(t , x ′) ≤ω(x −x ′)+εn .

Indeed, if the function ω is a constant M , then the oscillations of V
c0

, a and b are bounded by M

and so nρi −nρ j ≤ M as well. Otherwise, if ω is a modulus of continuity, then the functions V
c0

, a
and b are continuous and their averages on small pieces An

i can be replaced by the values at the
center of these pieces up to a small error εn (which also takes into account that x and x ′ can differ
from the centers of the corresponding pieces).

The family (ρn)n is bounded in L2([0,T ]×Ω). Differently from the case of Section 3, we do not
have Lipschitz estimates in time (note that this is not the same approximation as in Section 3,
since we impose the Dirichlet boundary conditions instead of penalizing them), but luckily we
will not need them. Indeed, the equicontinuity in time was essential to obtain uniform and
pointwise bounds and deal with the boundary terms. Here we just use weak convegence in
L2([−1,T +1]×Ω) after extending ρn to a on [−1,0] and to b on [T,T +1]. It is easy to see that ρn

admits a weakly converging subsequence and that the limit solves (33). Note that the extension
before t = 0 and after t = T is needed to include the possible jump at those instants of time in the
total variation and hence play the role of the Dirichlet boundary condition.

The conclusion comes from the following Lemma 12. □
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Lemma 12. Let ρn be a sequence weakly converging to ρ in L2([0,T ]×Ω) and suppose that there
exists a function ω such that

∀ n ∈N∗, ∀ t ∈ [0,T ], ∀ x, x ′ ∈Ω, ρn(t , x)−ρn(t , x ′) ≤ω(x −x ′)+εn

for a sequence εn → 0.
Then we have

ρ(t , x)−ρ(t , x ′) ≤ω(x −x ′)
whenever (t , x) and (t , x ′) are Lebesgue points of ρ.

Proof. Let us take (t0, x0) and (t0, y0) in [0,T ]×Ω, two Lebesgue points of ρ. Let r > 0 be such
that ]t0 − r, t0 + r [⊂ [0,T ], B(x0,r ) ⊂Ω and B(y0,r ) ⊂Ω, we have in particular t0+r

t0−r

 
B(x0,r )

ρn(t , x)dxdt −→
n→∞

 t0+r

t0−r

 
B(x0,r )

ρ(t , x)dxdt , (37)

and

 t0+r

t0−r

 
B(y0,r )

ρn(t , x)dxdt −→
n→∞

 t0+r

t0−r

 
B(y0,r )

ρ(t , x)dxdt . (38)

By assumption we have the inequality
 t0+r

t0−r

( 
B(x0,r )

ρn(t , x)dx −
 

B(y0,r )
ρn(t , x ′)dx ′

)
dt

=
 t0+r

t0−r

 
B(x0,r )

(
ρn(t , x)−ρn(t , x −x0 + y0)

)
dxdt

≤ω(x0 − y0)+εn

By taking the limit n →∞ and applying (37) and (38) to the left-hand side of the inequality, we get t0+r

t0−r

( 
B(x0,r )

ρ(t , x)dx −
 

B(y0,r )
ρ(t , x ′)dx ′

)
dt ≤ω(x0 − y0).

Since (t0, x0) and (t0, y0) are Lebesgue points, we can pass to the limit r → 0 and obtain

ρ(t0, x0)−ρ(t0, y0) ≤ω(x0 − y0). □

The case where the Dirichlet conditions are replaced by penalizations are harder to deal with.
The only case that is easy to consider requires that the transversality condition is the same for
ρi and ρ j . We can obtain the following results for which we just sketch the modifications to the
previous proofs.

Theorem 13. Let ρ be a minimizer of

min
ρ∈E

ρ(0,· )=m0,
∀t∈[0,T ],

´
Ω ρ(t ,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt +
ˆ
ΨTρ(T, x).

Let A ⊂Ω be a set whereΨT is constant. Suppose thatω is a function (either constant or a modulus
of continuity) such that 1

c0
(V (t , x)−V (t , x ′)),m0(x)−m0(x ′) ≤ω(x−x ′) for all t , x, x ′. Then we have

for a.e. x, x ′ ∈ A
ρ(t , x)−ρ(t , x ′) ≤ω(x −x ′).

Proof. The approximation will be the same as before, but the Dirichlet boundary condition at
t = T is replaced by a transversality condition. Choosing a decomposition into pieces An

i such
that x, x ′ belong to two pieces contained in A, this transversality condition will be the same for
the two curves ρi (t ) and ρ j (t ) that we need to consider to estimate ρ(t , x)−ρ(t , x ′). In particular,
we will have ρ̇i (T ) = ρ̇ j (T ). Hence, when considering maxt ρi (t )−ρ j (t ), the maximum could be
attained on t0 = T but in this case the first-order optimality condition will be satisfied, and this
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allows to obtain the second-order one, which is the main tool to estimate ρi (t0)−ρ j (t0). The rest
of the analysis goes as in the rest of the Section. □

Theorem 14. Let ρ be a minimizer of

min
ρ∈E∞

ρ(0,· )=m0,
∀t∈R+,

´
Ω ρ(t ,x)dx=1

ˆ ∞

0
e−r t

ˆ
Ω

(|ρ̇(t , x)|+V (t , x)ρ(t , x)+ f (ρ(t , x))
)

dxdt := F (ρ).

Suppose that ω is a function (either constant or a modulus of continuity) such that 1
c0

(V (t , x)−
V (t , x ′)),m0(x)−m0(x ′) ≤ω(x −x ′) for all t , x, x ′. Then we have for a.e. x, x ′

ρ(t , x)−ρ(t , x ′) ≤ω(x −x ′).

Proof. We first replace F with FT as in Section 4. Then, the claim is the same as in Theorem 13
withΨT = 0 (hence we can take A =Ω) with the only difference that have an extra coefficient e−r t .
This lets an extra term −r L′

ε(nρ̇i ) appear in the Euler–Lagrangian equation, but this term cancels
when taking the difference between i and j because of the first-order optimality condition for
t0. The rest of the analysis goes as in Theorem 13 and in the rest of the Section. This provides a
uniform estimate on ρT , independent of T , and we can then take the limit T →∞. □

We conclude summarizing the result that we can obtain in terms of spatial regularity:

• For the problem with two Dirichlet boundary conditions, if V ,m0, and mT are continu-
ous, then the solution ρ shares the same modulus of continuity of V

c0
,m0, and mT . Com-

bining this with the L2 Lipschitz regularity in time obtained in Section 3 this gives a uni-
form continuity result in (t , x).

• In the same problem, if V ,m0, and mT are only bounded, then ρ is bounded, since its
oscillation is bounded by that of V

c0
,m0, and mT and its L2 norm is also bounded.

• For the problem with a Dirichlet boundary condition at t = 0 and a penalization ΨT at
t = T , if ΨT is piecewise constant and V and m0 are continuous, then ρ is piecewise
continuous, and hence bounded. The solution ρ is also bounded if we only assume V
and m0 to be bounded, and ΨT to be piecewise constant.

• In the infinite-horizon problem with Dirichlet boundary condition at t = 0, the solution
shares the same modulus of continuity of V

c0
and m0 and is uniformly continuous in (t , x).

It is uniformly bounded if V and m0 are bounded.
• In the periodic case (which we briefly presented in Section 2 but did not develop here)

the solution ρ shares the same continuity or boundedness of V
c0

.

All the above continuity results are crucial for applications to the theory of Mean Field Games,
since the variational problem we studied, with a congestion penalization in the form of f (ρ),
corresponds to a MFG where every agent minimizes a cost over trajectories γ involving the
integral of a running cost of the form

´ T
0 (V + f ′(ρ))(t ,γ(t ))dt . This cost is not even well-defined if

ρ(t , x) is not a continuous function of x! When ρ is not continuous but it is bounded, a clever
construction due to Ambrosio and Figalli ([1]) and re-used in the frameworks of MFG in [9]
allows to choose a particular representative of this running cost for which it is possible to prove
the desired equilibrium results. This explains our interest for the spatial regularity and/or the
boundedness of ρ.
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6. Numerical approximation

In this section, numerical simulations are carried out on the following problem

min
ρ∈E

∀t∈[0,T ],
´
Ω ρ(t ,x)dx=1
ρ≥0

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t , x)|+V (t , x)ρ(t , x)+ ρ(t , x)2

2

)
dxdt +ψ0(ρ(0))+ψT (ρ(T )) := F (ρ)

(39)
and on some of its variants (Dirichlet conditions, periodic case. . . ). We study a particular case
of F where f (ρ) = ρ2/2. The parameter λ > 0 allows us to add more or less importance to the
L1-norm.

For these numerical examples, we take the domain Ω := [0,S] to be one-dimensional with
S > 0. In this section, we study the following cases:

• periodic solutions in 1D (only the time variable, Section 6.2, Figure 2).
• periodic solutions in 2D (periodic in time, Section 6.3, Figures 3, 4).
• non-periodic solutions in 2D, with or without Dirichlet conditions or penalizations at the

time boundary (Section 6.4, Figures 5, 6, and 7).

6.1. The numerical method

Let {t0, . . . , tK } and {x0, . . . , xN } be the regular subdivisions of respectively [0,T ] and [0,S]. To
approximate the integral in F , the left-rectangle method will be used, hence we will consider
solutions (ρ(ti , x j ))0≤i≤K−1

0≤ j≤N−1
in the vector space RK ·N . With an abuse of notations, we also write

V ∈ RK ·N the vector (V (ti , x j ))0≤i≤K−1
0≤ j≤N−1

. In the following, the notations 〈 · | · 〉 and ∥·∥ designate

respectively the scalar product and the euclidean norm in a vector space of finite dimension.
The problem that will be numerically solved can be written in the form

min
ρ∈RK ·N

f (ρ)+ g (A ρ),

where, of course, f and g have nothing to do with the functions introduced in the previous

sections. Here ρ ∈RK ·N , f (ρ) = h〈V |ρ〉+h ∥ρ∥2

2 is a proper, closed and h-strongly convex function
and g (ρ0,ρ1,ρ2) = λ∥ρ0∥1 + δC0 (ρ1) + δC1 (ρ2) is a proper, closed and convex function. The
notation ∥·∥1 refers to the l1-norm in a vector space of finite dimension and δCi is the indicator
function defined by

δCi (ρ) =
{

0, ρ ∈Ci ,

+∞, ρ ∉Ci ,

where C0 = (R+)K ·N and C1 = {ρ ∈ RK ·N ;∀ i ∈ {0, . . . ,K − 1},
∑N−1

j=0 ρ(ti , x j ) · l = 1} are the sets of
constraints. The linear transformation A is A (ρ) = (Aρ,ρ,ρ), where the matrix A will be detailed
for each case.

An algorithm to approximate the solution of this problem is already known and is called (Fast)
Dual Proximal Gradient Method which can be found in [3]. We will use its primal representation
which does not involve the dual representation of the problem.

Since g is a sum of separable functions, its proximal operator is

proxg (ρ0,ρ1,ρ2) =
(
proxλ∥·∥1

(ρ0),proxδC0
(ρ1),proxδC1

(ρ2)
)

.

We remind that for all x ∈R,

proxλ| · |(x) = [|x|−λ]+ sgn(x) and proxδC
(x) = PC (x)

where PC is the projection on the set C .
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The algorithm is described below.

Initialization: L ≥ ∥A ∥2

h , w0 = y0 ∈ (RK ·N )3, t0 = 1.
Step for k ≥ 0:

• uk = argmaxu{〈u,A T wk〉− f (u)} = A T wk

h −V

= 1
h (AT wk

0 +wk
1 +wk

2 )−V

• yk+1
0 = wk

0 − 1
L Auk + 1

L proxLλ∥·∥1
(Auk −Lwk

0 )

• yk+1
1 = wk

1 − 1
L uk + 1

L proxLδC0
(uk −Lwk

1 )

• yk+1
2 = wk

2 − 1
L uk + 1

L proxLδC1
(uk −Lwk

2 )

• t k+1 = k+1+a
a

• wk+1 = yk+1 + t k−1
t k+1 (yk+1 − yk )

The role of the parameter t k is to accelerate the algorithm, in the spirit of Nesterov’s acceler-
ated gradient or (in the proximal case) of the FISTA algorithm (see [4, 17]). The constant a is a
constant greater or equal than 2 and its value is displayed in Table 1 and 2.

Note that our problem is essentially, up to minor modifications and the presence of extra
constraints (unit mass, positivity, Dirichlet conditions), a simplified version of some standard
problems in image denoising based on total variation (see, for instance, the classical paper [18]):
here,whether the problem is 1D or 2D or higher-dimensional, the main feature is that the total
variation is only computed in time.

The following sections describe different examples of solutions to (39) by using this algorithm.
For each case, the differences with the description above will be specified.

6.2. 1D-periodic

When we consider the periodic problem (in time, so that the interval [0,T ] becomes a circle of
length T ), and we assume S = T and V (t , x) = v(t − x) for an S-periodic function v , it is possible
to reduce the problem to the one dimensional case, namely a problem with one only variable
in [0,T ] instead of [0,T ] × [0,S]. One expects the solution ρ(t , x) = u(t − x) to be transported
according to time. The uniqueness of the solution and the symmetry with respect to translations
in both time and space (replacing (t , x) with (t +δ, x +δ)) show that the solution should indeed
be of this form. Then, a change of variables y = t −x can be carried out in F as following:

F (ρ) =
ˆ T

0

ˆ S

0

(
λ|u̇(t −x)|+ v(t −x)u(t −x)+ u(t −x)2

2

)
dxdt

=
ˆ T

0

ˆ t−S

t
−

(
λ|u̇(y)|+ v(y)u(y)+ u(y)2

2

)
dydt

= T

ˆ S

0

(
λ|u̇(y)|+ v(y)u(y)+ u(y)2

2

)
dy .

The problem reduces hence to the search of an S-periodic solution with one variable. By the
way, up to multiplicative and additive constants this problem is equivalent to minimizingˆ S

0

(
λ|u̇(y)|+ |u(y)+ v(y)|2

2

)
dy,

which is exactly the problem described as an example at the end of Section 2, withω=−v , except
for the constraints

´ S
0 u(y)dy = 1 and u ≥ 0.

In the following subsections, we will see that the solution obtained through numerical simu-
lations coincide with u computed as above.
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For the numerical simulation shown in Figure 2 we take v(y) =−a0 cos( 2π
S y) and the choice of

the parameters are shown in Table 1.
Let {y0, . . . , yK } be a regular subdivision of [0,S] and h := y1−y0 the step-size of the subdivision.

By the left-rectangle method, the problem is approximated by
K−1∑
i=0

(
λ|u(yi+1)−u(yi )|+ v(yi )u(yi )h + u(yi )2

2
h

)
+δC0 (u)+δC1 (u).

Figure 2. The simulation of the solution u to the 1D periodic case with v(y) =−a0 cos( 2π
S y).

The parameters are displayed in Table 1. The blue solid line corresponds to the solution u,
while the red dashed line is the profile of c − v with c = 1/S.

Table 1. Parameters for the solution to the problem in Figure 2.

Parameter Value
S 10
K 500
h 0.02
a 200
L 6/h
a0 0.1
λ 0.1

We observe that with this choice of parameters the solution u is strictly positive and “follows”
the profile of c−v for a constant c which appears as a Lagrange multiplier for the mass constraint
and allows to obtain unit mass. The function u is also a solution of the problem at the end of
Section 2 withω= c−v and its profile, shown in Figure 2, is consistent with the explicit description
of the solution which we gave.
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Remark 15. If v(y) =−a0 cos( 2π
S y), it is possible to compute the critical λ at which the aspect of

the solution u switches from Figure 2 to the constant solution. The Euler–Lagrange equation of

min
u∈BV([0,S];R);´ S

0 u(y)dy=1, u≥0

ˆ S

0

(
λ|u̇(y)|+ v(y)u(y)+ u(y)2

2

)
dy

is z ′ = v + u − c on [0,S] where z(y) ∈ ∂(λ| · |)(u′(y)) and c = 1/S is the constant due to the
mass constraint

´ S
0 u(y)dy = 1. Assuming that the solution becomes constant when ϵ = S

4 and
extending the solution periodically on [−S,0], we integrate the equation z ′ = v +u−c over [−ϵ,ϵ]:

−2λ=
ˆ ϵ

−ϵ
z ′(y)dy =

ˆ ϵ

−ϵ
(v(y)+u(y)− c)dy =

ˆ ϵ

−ϵ
(v(y)− v(ϵ))dy

=
ˆ ϵ

−ϵ

(
−a0 cos

(
2π

S
y

)
+a0 cos

(
2π

S
ϵ

))
dy =−a0

S

π
sin

(
2π

S
ϵ

)
+2ϵa0 cos

(
2π

S
ϵ

)
.

By taking ϵ= S
4 , we obtain that λ= a0S

2π .
When λ > a0S

2π , the solution u is constant equal to c. While the condition λ < a0S
2π gives the

solution u as in Figure 2. This explains the choice of parameter λ.

6.3. 2D periodic in time

We consider now the case where we keep two variables, but we assume the time domain to be
periodic. This case is slightly simpler to handle from the point of view of the discretization of the
time derivative.

By using the subdivisions described in Section 6.1, we approximate the integral F by the left-
rectangle method as following:

K−1∑
i=0

N−1∑
j=0

(
λ
∣∣ρ(ti+1, x j )−ρ(ti , x j )

∣∣l +V (ti , x j )ρ(ti , x j )hl + ρ(ti , x j )2

2
hl

)
,

where h := t1 − t0 and l := x1 − x0 are the step-sizes of each subdivision. We will consider that
ρ(t0, x j ) = ρ(tK , x j ) for all j ∈ {0, N −1}.

With this discretization, we look for a solution in the space RK ·N where ρ is viewed as a vector.
The discretized problem is

min
ρ∈RK ·N

K−1∑
i=0

N−1∑
j=0

(
λ
∣∣ρ(ti+1, x j )−ρ(ti , x j )

∣∣l +V (ti , x j )ρ(ti , x j )hl + ρ(ti , x j )2

2
hl

)
+δC0 (ρ)+δC1 (ρ).

(40)
To avoid numerical errors due to small values, searching a minimizer of (40) is the same as

searching a minimizer to the problem divided by l :

min
ρ∈RK ·N

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, x j )−ρ(ti , x j )|+V (ti , x j )ρ(ti , x j )h + ρ(ti , x j )2

2
h

)
+δC0 (ρ)+δC1 (ρ).

The function f : RK ·N →R defined by

f (ρ) =
K−1∑
i=0

N−1∑
j=0

(
V (ti , x j )ρ(ti , x j )h + ρ(ti , x j )2

2
h

)
= h〈V |ρ〉+h

∥ρ∥2

2
(41)

corresponds to the function f described in Section 6.1.
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The linear transformation A : RK ·N → (RK ·N )3 is the same as in Section 6.1. The squared
matrix A is of order K ·N and its coordinates are

Ai , j =


−1 if j = i ,

1 if j ≡ i +N [K ·N ],

0 otherwise,

namely

A =


−IN IN

. . .
. . .

−IN IN

IN −IN


where IN is the identity matrix of order N and blank space corresponds to zeros.

The function g : (RK ·N )3 →R is defined as in Section 6.1:

g (ρ0,ρ1,ρ2) =
K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti , x j )|+δC0 (ρ1)+δC1 (ρ2)

=λ∥ρ0∥1 +δC0 (ρ1)+δC1 (ρ2).

(42)

Figure 3. Profile of the solution to (39) with V (t , x) = −a0 cos( 2π
S (t − x)) at times t = 0, 2,

4, 6, 8, 9.9. The blue solid line describes the solution ρ at each specified time and the red
dashed line is the profile of 0.1−V at each time. The parameters are displayed in Table 2.

In Figure 3, we consider the same case as in Figure 2, but with a 2D approach. The profile
of the solution ρ at time 0 is the same as in Figure 2. In Figure 2 the problem is viewed on one
dimensional space and here we can see that the solution is transported according to time from
the left to the right.
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Table 2. Parameters for the numerical simulation of the solution to (39).

Parameter Value
T 10
S 10
K 100
N 500
a 200
h 0.02
L 6/h
a0 0.1
λ 0.1

The next case (see Figure 4) we show is different. Here we impose a Dirichlet boundary
condition at time 0 which corresponds here to m0 being the constant density equal to 1/S. This
is the same as studying the non-periodic problem on [0,T ] and imposing two Dirichlet boundary
conditions, which are (by chance) equal. In this case, keeping the periodic structure allows to use
a simpler form of the matrix A.

Let m0 ∈RN a vector verifying the constraints, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0, j l = 1.

Let us define the new set C2 = {ρ ∈ RK ·N ; ∀ j ∈ {0, . . . , N − 1},ρ(0, x j ) = m0, j } which encodes the
constraint ρ(0) = m0.

The function f is the same as in (41). The linear transformation is now A ρ = (Aρ,ρ,ρ,ρ) and
the function g : (RK ·N )4 →R is

g (ρ0,ρ1,ρ2,ρ3) =
K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti , x j )|+δC0 (ρ1)+δC1 (ρ2)+δC2 (ρ3)

=λ∥ρ0∥1 +δC0 (ρ1)+δC1 (ρ2)+δC2 (ρ3).

(43)

In Figure 4 we see that the Dirichlet condition is indeed verified at t = 0 and then, immediately,
the solution jumps (coherently with Remark 3) from the constant state to t = 0.1. One can notice
that the profile is different from Figure 3 in a way that on the subintervals where the solution does
not follow 0.1−V , it is not constant anymore. However, between times t = 4 and t = 6, the solution
comes back to the profile when there is no boundary condition, namely, it is constant when it
does not follow 0.1−V . When t ≥ 6, the profile of the solution varies again on the subintervals
where it should be constant.

6.4. 2D, non periodic

Unlike Sections 6.2 and 6.3, we do not impose anymore a periodic time behavior, and the value
ρ(tK , x j ) of the solution ρ ∈ R(K+1)·N may be different from ρ(t0, x j ). The integral in F is now
approximated by:

N−1∑
j=0

(
K−1∑
i=0

λ
∣∣ρ(ti+1, x j )−ρ(ti , x j )

∣∣l + K∑
i=0

(
V (ti , x j )ρ(ti , x j )hl + ρ(ti , x j )2

2
hl

))
. (44)
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Figure 4. Simulation of the solution to (39) at times t = 0, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9.9
with V (t , x) = −a0 cos( 2π

S (t − x)) and m0(x) = 1/S with parameters from Table 2 except for
parameter L where L = 7/h. The blue solid line is the profile of the solution ρ and the red
dashed line corresponds to 0.1−V taken at each time t .

Remark 16. The formula (44) is different from (40) in the sense that there is the additional term∑N−1
j=0 V (tK , x j )ρ(tK , x j )hl + ρ(tK ,x j )2

2 hl that depends on tK which should not appear in the left-
rectangle method. However, with this choice of discretization, the function f is strongly convex
in ρ ∈R(K+1)·N which allows us to apply the algorithm and the formula (44) still converges towards

the integral
´ T

0

´ S
0

(
λ|ρ̇|+V ρ+ ρ2

2

)
as h → 0 and l → 0.

The new function f is

f (ρ) : R(K+1)·N −→R (45)

ρ 7−→ h〈V |ρ〉+h
∥ρ∥2

2
=

K∑
i=0

N−1∑
j=0

(
V (ti , x j )ρ(ti , x j )h + ρ(ti , x j )2

2
h

)
.
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The function g is defined as in (42) and A is the same as in Section 6.1 with a different matrix A
which is rectangle of dimension (K ·N )× ((K +1) ·N ) such that

Ai , j =


−1 if i = j ,

1 if j = i +N ,

0 otherwise,

namely

A =

−IN IN

. . .
. . .

−IN IN

 .

Figure 5. The simulation of the solution to (39) at times t = 0, 0.2, 0.4, 0.5, 1, 1.5, 5, 8.3, 8.8,
9, 9.5, 10 with V (t , x) = (t−x)2 and parameters from Table 2. The blue solid line corresponds
to the solution ρ at different times.
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Figure 5 shows the simulation of the solution ρ to the problem (39) with a given V which is
not periodic anymore. No Dirichlet boundary conditions nor penalizations ψt at t = 0,T are
considered. The different times are chosen to show the most significant changes in the profile of
ρ. Since V (t , x) is minimal at x = t , the general behavior is that the solution is transported from
the left to the right. Between times t = 1.5 and t = 8.3, the solution either follows c −V (where c is
a constant to define) or it is constant. Close to the time boundaries, the behavior is different.

Remark 17. The constant c such that ρ follows c −V depends on λ. The parameter λ can be
studied as in remark 15. Different values of λ can either imply that ρ follows c −V or that it
follows c −V and is constant in the middle.

The next case that we present (Figure 6) involves Dirichlet conditions in time. Let m0 ∈RN and
mT ∈RN be two vectors verifying the boundary conditions, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0, j l = 1,

mT ∈ (R+)N and
N−1∑
j=0

mT, j l = 1.

Let us define the new set of constraints by C2 = {
ρ ∈ RK ·N ; ∀ j ∈ {0, . . . , N − 1},ρ(0, x j ) = m0, j

and ρ(T, x j ) = mT, j
}
. The function f is defined as in (45), A ρ = (Aρ,ρ,ρ,ρ) and the function

g : (RK ·N )4 →R is

g (ρ0,ρ1,ρ2,ρ3) =
K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti , x j )|+δC0 (ρ1)+δC1 (ρ2)+δC2 (ρ3)

=λ∥ρ0∥1 +δC0 (ρ1)+δC1 (ρ2)+δC2 (ρ3).

Remark 18. Instead of adding the constraint ρ(0) = m0 in the problem, one could have dis-
cretized the integral with the right-rectangle method in time and directly used that ρ(0) = m0 in
the algorithm.

The profile of Figure 6 is quite similar to Figure 5 and mainly differs around t = 0,T . Again, a
jump in time is observed.

The very last example we consider is non-periodic in time and involves both a Dirichlet
condition at t = 0 and penalization at t = T . We consider the penalization

ψT (ρ(T )) =
ˆ S

0
ΨT (x)ρ(T, x)dx.

The left-rectangle method applied to ψT gives

ψT (ρ(T )) =
N−1∑
j=0

ΨT (x j )ρ(T, x j )l .

We use the discretization from (44). The difference is in the definition of V . We shall take Ṽ such
that

Ṽ =V +
(
0, . . . ,0,

ΨT

h

)
.
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Figure 6. The simulation of the solution to (39) at times t = 0, 0.1, 1, 1.7, 2.4, 5, 8.3, 8.8, 9.1,
9.5, 9.9, 10 with V (t , x) = (t − x)2, m0(x) = mT (x) = 1/S and parameters from Table 2 except
from L which is L = 7/h. The blue solid line corresponds to the solution ρ at different times.

Again, the profile of Figure 7 is similar to Figures 5 and 6 except for the behavior close to the
time boundaries. In Figure 7, we have put penalization at times 0 and T such that it costs less
to be close to 0 in space, hence the concentration of the mass at time 0 in x = 0 and the jump at
time T .
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Figure 7. The simulation of the solution to (39) at times t = 0, 0.1, 0.3, 0.6, 1, 1.5, 5, 8.3,
9, 9.4, 9.9, 10 with V (t , x) = (t − x)2, m0(x) = 1/S, ϕT (x) = x2 and parameters from Table 2
except from L which is 7/h. The blue solid line corresponds to the solution ρ at different
times.
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