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Abstract. The present paper introduces multiplicative reduced bases for hyperelasticity relying on a trun-
cated version of the Baker–Campbell–Hausdorff’s expansion. We show such a construction is equally inter-
polatory (in a multiplicative way) for the fields of deformation gradients, surfacic and volumetric deforma-
tion measures involved in large deformation mechanics. The method is naturally derived from a fully consis-
tent variational setting and we establish an upper bound of the error in the energy norm. From a computa-
tional standpoint, the approach achieves efficient Kolmogorov n-width decay when very large rotations and
incompressibility are involved.

Résumé. Cet article introduit un principe de bases réduites multiplicatives en hyperélasticité s’appuyant
sur le développement de Baker–Campbell–Hausdorff. Nous montrons que cette construction produit des
interpolations identiques pour les gradients de déformation, et les mesures de déformation surfaciques et
volumiques en grandes déformations. Cette méthode est établie dans un cadre variationel consistant et
nous montrons une borne supérieure pour l’erreur en norme de l’énergie. Numériquement, l’approche se
distingue par une décroissance efficace de la n-épaisseur de Kolmogorov, particulièrement en présence de
grandes rotations pour des comportements incompressibles.

Manuscript received 3 August 2023, revised 14 October 2023, accepted 20 October 2023.

1. Introduction

Reduced bases approaches rely on low dimensional spaces to represent the solutions of a given
model over its full range of parameters. They are particularly relevant whenever the manifold
of solutions, as parameters vary, possesses a Kolmogorov n-width whose decay is sufficiently
fast as n → +∞; cf. [7, 11, 15]. Diverse applications have been developed overtime for elliptic
problems [26, 29, 32, 37], Navier–Stokes equations [16] or Quantum Mechanics [13, 31] in
order to diminish the computational cost associated to the exploration of solutions. Once a
set of solutions is computed for selected parameters, reduced bases can be obtained by greedy
procedures [15], proper decompositions [1] including the Karhunen–Loeve decomposition [9].
See [27] and the references therein for a global overview.
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This being said, the reduced problem is potentially difficult to resolve when the dependance
in the parameters is highly nonlinear, which has led to empirical interpolation procedures
and “Magic Points” identification [5, 28]. Besides, some highly nonlinear problems exhibit
poor Kolmogorov n-width decay, such as turbulent flows (cf. Farhat [33]) or contact problems
(cf. [6, 18]), for which local enrichment is required to achieve the desired accuracy. Also,
some geometric properties may not be well approximated, such as energy conservation for
Hamiltonian systems [22].

Large deformation solid mechanics possesses several geometric features that are not naturally
respected by classical reduced bases. Here are several facts that inspire the present work.

• Deformation gradients naturally exhibit a multiplicative character that is in general
exploited to formulate inelastic material laws [24, 25, 34, 35].

• The set of large rotations is a Lie manifold that is poorly approximated through vector
spaces.

• The preservation of volumes and surfaces is hardly achieved by classical reduced models.

The key idea, as F1 and F2 stand for two deformation gradients fields, is to use the multiplicative
field Fα1

1 Fα2
2 as an approximation space; its appeal lies in that surface and volume deformation

measures preserve the same structure: cof
(
Fα1

1 Fα2
2

) = cof(F1)α1 cof(F2)α2 and det
(
Fα1

1 Fα2
2

) =
det(F1)α1 det(F2)α2 . In order to circumvent the combinatorics implied by this idea for large
bases, we rely on the Baker–Campbell–Hausdorff’s expansion [3, 12, 17, 21], that Fα1

1 Fα2
2 =

exp
(
α1 logF1 +α2 logF2 +α1α2[logF1, logF2]+ . . .

)
. It is issued from non-commutative geometry

and possesses many applications from operator splitting to physics [8, 36]. Herein, we will restrict
ourselves to the first order variant, i.e. without commutators whose added value proves to be in
general limited for practical applications while being computationally quite expensive.

The paper is organized as follows. Section 2 presents the basics of hyperelasticity and intro-
duces a mixed formulation involving deformation gradients as a distinct field; the curl-free con-
dition is enforced under weak form and displacements reconstruction naturally follows. Sec-
tion 3 proposes a multiplicative reduced based on Baker–Campbell–Hausdorff’s expansion; this
construction is proved to be equally interpolatory (in a multiplicative way) for the fields of defor-
mation gradients, surfacic and volumetric deformation measures. It facilitates the obtention of
an upper bound for the error in energy norm. Section 4 provides a simple numerical illustration
that testify the benefit from the approach when large local rotations and incompressibility are
concerned, on the case of a purely twisted bar.

2. From the problem setting to a mixed formulation involving deformation gradients

2.1. Hyperelasticity framework

Let ΦD = {
ϕ ∈W 1,p (Ω)3, ϕ≡ϕD on ΓD , Dϕ ∈F

}
be the set of admissible deformation fields,

where ΓD ⊂ ∂Ω has positive measure and

F = {
F ∈ Lp (Ω)3×3, cofF ∈ Lq (Ω)3×3, detF ∈ Lr (Ω)3×3, detF > 0 a.e. inΩ

}
stands for the set of admissible deformation gradients; ϕD ∈W 1−1/p,p (ΓD )3 denotes the Dirichlet
boundary condition. For every deformation field ϕ ∈ΦD , the total energy is defined as

J (ϕ) =
∫
Ω

W (x,Dϕ(x))dx −L(ϕ),

where L ∈ Lp∗
(Ω) expresses external forces. We assume the stored energy density W :Ω×R3×3 →R

is polyconvex in the sense that for almost every x ∈Ω and every F ∈R3×3, one can write

W (x,F ) =W(x,F,cofF,detF )
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where the functionW :Ω×R3×3×R3×3×R→R is convex with respect to the extended deformation
measure

F= (F,cofF,detF ) ∈R3×3 ×R3×3 ×R.

Ball’s existence theorem [4, 14, 25] establishes the existence of minimisers for J .

Remark 1. The set of admissible deformation gradients can be restricted to incompressible
fields, i.e.

F = {
F ∈ Lp (Ω)3×3, cofF ∈ Lq (Ω)3×3, detF ≡ 1 a.e. inΩ

}
,

and the existence result still holds.

2.2. Discrete Euler’s problem

Since ΦD is not a manifold in general, one cannot properly define Euler’s problem associated to
the minimisation of J . Still, as a minimizer, the solution ϕ is well approximated by a sequence
(ϕh)h>0 of discrete solutions built over the meshes (Th)h>0 of the domain Ω, for which Euler’s
equation holds.

Compressible setting. Let Uh ⊂ W 1,s (Ω)3 be a finite element space for the displacement field
built over Th and

U0,h = {vh ∈Uh , vh ≡ 0 on ΓD } .

For simplicity, we will assume thatϕD can be represented exactly by the traces of functions in Uh

over ΓD ; we also denote as ϕD one of the functions in Uh admitting ϕD as a trace over ΓD . Under
mild technical assumptions (e.g. [25]), one can prove there exists ϕh ∈ϕD ⊕U0,h such that∫

Ω

∂W

∂F
(x,Dϕh(x)) : Dδϕh(x)dx = L(δϕh), ∀ δϕh ∈U0,h . (1)

Let us define, for every ϕ,ψ ∈ΦD ,

∆(ϕ,ψ) = ∥ϕ−ψ∥Lp (Ω)3 +∥cofDϕ−cofDψ∥Lq (Ω)3×3 +∥detDϕ−detDψ∥Lr (Ω),

and assume J admits an isolated minimizer ϕ ∈ΦD in the sense that for some ρ > 0,

J (ϕ) < J (ψ), ∀ψ ∈ΦD such that ∆(ϕ,ψ) ≤ ρ.

Then, there exists a sequence (ϕh)h>0 with ϕh ∈ϕD ⊕U0,h such that

lim
h→0

∆(ϕ,ϕh) = 0. (2)

We refer to [25] for a complete proof.

Incompressible setting. In order to solve the incompressible problem, one has to define spaces
Ph of hydrostatic pressures such that the following inf-sup condition is satisfied [2, 10, 23]:

sup
vh∈U0,h \{0}

∫
Ω qh cof(Dϕh) : Dvh

∥vh∥W 1,s (Ω)3
≥β(h) > 0,

for everyϕh ∈ϕD ⊕U0,h , h > 0. The associated problem looks forϕh ∈ϕD ⊕U0,h and ph ∈ Ph such
that ∫

Ω

∂W

∂F
(Dϕh) : Dδϕh +

∫
Ω

ph cof(Dϕh) : Dδϕh = L(δϕh), ∀ δϕh ∈U0,h , (3)∫
Ω

qh
(
detDϕh −1

)= 0, ∀ qh ∈ Ph . (4)

Under some technical assumptions (see [25]), and for every isolated minimizer ϕ ∈ ΦD , there
exists a sequence (ϕh)h>0 with ϕh ∈ϕD ⊕U0,h such that (2) holds.
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2.3. Mixed formulation involving deformation gradients

Let us introduce a mixed formulation derived from the discrete problem (1) where both the
deformation map ϕh ∈ϕD ⊕U0,h and the deformation gradient are involved. The Lagrange–Hu–
Washizu principle leads us to look for Fh ∈Fh , ϕh ∈ϕD ⊕U0,h ,Πh ∈Ph , which stationnarize

L (Fh ,ϕh ,Πh) =
∫
Ω

W (Fh)−L(ϕh)−
∫
Ω
Πh : (Fh −Dϕh). (5)

As a consequence, ∫
Ω
Πh : δFh =

∫
Ω
∂F W (Fh) : δFh , ∀ δFh ∈Fh , (6)∫

Ω
Dϕh : δΠh =

∫
Ω

Fh : δΠh , ∀ δΠh ∈Ph , (7)∫
Ω
Πh : Dδϕh = L(δϕh), ∀ δϕh ∈U0,h . (8)

Let us introduce for everyΠh ∈Ph , the following L2-orthogonal decomposition

Πh = Dwh +θh , (9)

where wh ∈U0,h is uniquely defined as the solution of∫
Ω

Dwh : Dδwh =
∫
Ω
Πh : Dδwh , ∀ δwh ∈U0,h .

Relying on decomposition (9), Equation (8) reduces to finding wh ∈U0,h such that∫
Ω

Dwh : Dδϕh = L(δϕh), ∀ δϕh ∈U0,h , (10)

and we denote L♯ := Dwh . We therefore look forΠh = L♯+θh for some θh ∈Θh where

Θh =
{
θh ∈Ph ,

∫
Ω

Dwh : θh = 0, ∀ wh ∈U0,h

}
.

The mixed problem of interest boils down to determining

Fh ∈FD,h :=
{

Gh ∈Fh , Gh ×n = DϕD ×n a.e. on ΓD

}
,

where n stands for the unit normal vector on ΓD , and θh ∈Θh such that∫
Ω
∂F W (Fh) : δFh =

∫
Ω

(
L♯+θh

)
: δFh , ∀ δFh ∈Fh , (11)∫

Ω
Fh : δθh =

∫
Ω

DϕD : δθh , ∀ δθh ∈Θh . (12)

The reconstruction of ϕh ∈ ϕD ⊕U0,h is naturally performed by the resolution of the Laplace
problem ∫

Ω
Dϕh : Dδwh =

∫
Ω

Fh : Dδwh , ∀ δwh ∈U0,h , (13)

which we denote as ϕh =H (Fh).
The computation of L♯ and the reconstruction ofϕh involve the resolution of the same Laplace

problem with different right-hand-sides, and this Laplace problem can be factorized once for all
independently of the implicit parameters λ ∈ Λ of the problem (material parameters, domain
shape. . . ). We therefore focus on the resolution of the mixed problem (11)–(12).

The formulation presented in this section will be exclusively employed with reduced bases
throughout the paper, the sampled solutions being exclusively computed from formulations (1)
or (3)–(4).
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3. Multiplicative Reduced Bases

3.1. Preliminaries

For every matrix A ∈Rn×n , the exponential and logarithm operators are defined as

exp(A) =
+∞∑
k=0

Ak

k !
, log(I − A) =−

+∞∑
k=1

Ak

k
, (14)

with respective convergence radii +∞ and 1, in the norm ∥A∥ = supx∈Rn \{0} |Ax|/|x|. Introducing
the complex valued diagonalization A = P−1DP , one has log A = P−1 log(D)P where the diagonal
elements read log(D)mm = log(Dmm) = log(ϱ)+ iψ mod 2iπ, 1 ≤ m ≤ n, for Dmm = ϱexp(iψ) in
which ϱ ∈R+ and ψ ∈ [0,2π). We arbitrarily choose the principal value log(D)mm = log(ϱ)+ iψ.

The following theorem is fundamental for the sequel. It relies on the work of Baker [3],
Campbell [12] and Hausdorff [21]; the explicit form hereunder is due to Dynkin [17]. This result
underlies multiple applications from linear PDEs to Numerical Analysis and several monographs
are dedicated to it (Bonfiglioli & Fulci [8], Varadarajan [36], see also the developments in [20]).

Theorem 2 (BCH). Let X ,Y ∈Rn×n be square matrices. There exists a matrix Z ∈Rn×n such that

exp(X )exp(Y ) = exp(Z ),

which is given by the following formal series

Z =
+∞∑
k=1

(−1)k+1

k

∑
ri+si>0
1≤i≤k

[
X (r1),Y (s1), . . . , X (rk ),Y (sk )

](∑k
i=1(ri + si )

) ∏k
i=1 ri !si !

, (15)

where the last sum is over the indices (ri ) ∈N and (si ) ∈N, 1 ≤ i ≤ k, such that ri + si has positive
value for every 1 ≤ i ≤ k. Besides, the following notation holds:

[A1, . . . , Am] = [A1, [. . . , [Am−2, [Am−1, Am]]]],

where [A,B ] = AB −B A is the matrix commutator and A(r ) = A, A, . . . , A︸ ︷︷ ︸
r times

. The convergence of the

series (15) holds whenever ∥X ∥+∥Y ∥ < log2.

Let us now proceed to the estimation of the coefficients from the BCH formula at all orders. It
can be rewritten as

Z = X +Y + ∑
n≥2

∑
m≥1

∑
w∈Wm,n (X ,Y )

1

n
gw [w],

where words w ∈Wm,n(X ,Y ) of length n with m parts are expressions of the form

Xσ1 Y σ2 . . . (X ∨Y )σm or Y σ1 Xσ2 . . . (X ∨Y )σm ,

that end with X or Y ; (σi )1≤i≤m ∈ N are such that
∑m

i=1σi = n. The notation [w] refers to the
iterated commutators, for instance [X (σ1),Y (σ2), . . . , (X ∨Y )(σm )], as defined in Theorem 2.

Following Goldberg [19] and So [30], one has

γn = 1

n

n∑
m=1

∑
w∈Wm,n (X ,Y )

|gw | ≤ 2

n
. (16)

Observe that the estimate (16) is suboptimal because, cf. [20], γ1 = 1/2, γ2 = 1/6, γ3 = 1/24,
γ4 = 1/40.

As a result, assuming that ∥X ∥ ≤ M and ∥Y ∥ ≤ M , one has

∥Z∥ ≤ 2M + ∑
n≥2

1

n
(2M)n =− log(1−2M)



598 Patrice Hauret

since ∥[w]∥ ≤ 2n−1M n . The upper bound imposes the condition 2M < 1 to comply with the
convergence radius of the log series. The resulting condition M < 1/2 is slightly worse than the
(log2)/2 stated in Theorem 2.

3.2. Reduced bases for deformation gradients

Herein, we define low dimensional manifolds based on the multiplicative combinations of the
deformation gradient fields, relying on the truncated Baker–Campbell–Hausdorff’s [3, 12, 17, 21]
expansion.

Definition 3. Let (λi )1≤i≤I ∈ Λ be a collection of selected parameters for the system, and Fλi =
Dϕλi ∈Fh , 1 ≤ i ≤ I be the solutions; in order to filter out the boundary conditions, we introduce

Fλi = Fλi Dϕ−1
D .

Let us define the following reduced manifold

FI =
{

exp

( ∑
1≤i≤I

αi logFλi

)
DϕD ; (αi ) ∈R

}
.

Owing to the identity log det = tr log and its counterpart detexp = exp tr, the multiplicative
structure conveys to surface and volume deformation measures:

Lemma 4. For every F ∈FI with the above notation, one has

cofF = exp

( ∑
1≤i≤I

αi logcofFλi

)
cofDϕD ,

detF = exp

( ∑
1≤i≤I

αi logdetFλi

)
detDϕD =

( ∏
1≤i≤I

detFαi
λi

)
detDϕD .

3.3. Reduced formulation

In order to control the compatibility of reduced deformation gradient fields, let us define

θλi = ∂F W (Fλi )−L#
λi

, 1 ≤ i ≤ I ,

that span the spaceΘI = span{θλi ;1 ≤ i ≤ I }. The mixed problem of interest will determine F̃ ∈FI

and θ̃ ∈ΘI , such that∫
Ω
∂F W (F̃ ) : δF̃ =

∫
Ω

(
L♯+ θ̃

)
: δF̃ , ∀ δF̃ ∈ TF̃ FI , (17)∫

Ω
F̃ : δθ̃ = 0, ∀ δθ̃ ∈ΘI . (18)

3.4. Kolmogorov n-width, choice of bases vectors and convergence

In the present setting, the notion of Kolmogorov width naturally extends to the following defini-
tion

dI (F (Λ)) = inf
(Fλi

)1≤i≤I
sup
λ∈Λ

inf
F̃∈FI

∆
(
F̃ ,Fλ

)
,

where

∆(F̃ ,Fλ) = ∥∥F̃ F−1
λ − Id

∥∥
Lp +

∥∥cof
(
F̃ F−1

λ

)− Id
∥∥

Lq +
∥∥det

(
F̃ F−1

λ

)−1
∥∥

Lr .
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It represents the best approximation of the solution manifold F (Λ) = {Fλ;λ ∈ Λ} by our multi-
plicative reduced bases in the distance implied by the stored energy functions. This definition
naturally inspires a greedy algorithm to select the bases vectors:

λ1 = argmax
λ∈Λ

∆ (Id,Fλ) ,

λi+1 = argmax
λ∈Λ

inf
F̃∈Fi

∆
(
F̃ ,Fλ

)
, i ≥ 1.

In practice, the selection of λi+1 can be performed among a large set of precomputed solutions.

Notation. Let us introduce

M1 = sup
1≤i≤I

∥∥logFi
∥∥ , Mk = sup

1≤i1,...,ik≤I

∥∥[
logFi1 , logFi2 , .., logFik

]∥∥ , ∀ k > 1,

M cof
1 = sup

1≤i≤I

∥∥logcofFi
∥∥ , M cof

k = sup
1≤i1,...,ik≤I

∥∥[
logcofFi1 , logcofFi2 , .., logcofFik

]∥∥ , ∀ k > 1,

and assume Mk ,M cof
k ∈ L∞(Ω) for every k ≥ 1. It is clear that Mk ≤ 2k−1 (M1)k and M cof

k ≤
2k−1 (M cof

1 )k a.e. onΩ.
Proving that dI (F (Λ)) decays significantly faster than its classical linear counterpart as I grows

is a difficult task, even though the numerics shows it is the case for highly nonlinear problems.
Still, owing to the multiplicative structure, the error can be bounded in the energy norm, as
exemplified in the following exercise.

Theorem 5. With the above notation, for every F ∈Fh which decomposes as

F = exp

(+∞∑
i=1

αi logFλi

)
DϕD , (αi ) ∈R, (19)

one has

inf
F̃∈FI

∆(F̃ ,F ) ≤
∥∥∥exp(R I )−1

∥∥∥
Lp

+
∥∥∥exp(Rcof

I )−1
∥∥∥

Lq
+

∥∥∥Rdet
I −1

∥∥∥
Lr

,

where for almost every x ∈Ω,

R I (x) ≤
( +∞∑

i ′=I+1

|αi ′ |
)(

M1(x)+
+∞∑
n=2

2

n

(+∞∑
i=1

|αi |
)n−1

Mn(x)

)
.

The upper bound on Rcof
I is identical, (Mk ) being replaced by (M cof

k ), and Rdet
I ≤∏+∞

i ′=I+1

(
detFλi ′

)|αi ′ |.

The proof of the above theorem relies on Baker–Campbell–Hausdorff’s expansion ; cf. Sec-
tion 3.1.

Remark 6 (Convergence of the method). The convergence of the multiplicative reduced basis
approximation requires that

• ∑+∞
i ′=I+1 |αi ′ |→ 0 as I increases, i.e. the efficiency of the selected basis (Fλi ),

• the amplitude of the iterated commutators Mk (x) decays exponentially fast as k →∞.

The same naturally holds for Rcof
I (x), whereas Rdet

I (x) does not involve any restriction on
commutators. Whenever these conditions are satisfied, convergence is achieved for the method
and no restriction holds on the norms of F and F̃ in order to respect the convergence radius of
the general BCH formula.
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3.5. Summary of the method

In order to solve efficiently problem (1) over a wide range of parameters, the proposed method
proceeds with the following steps.

• Offline stage
– Solve problem (1) for selected parameters (λi )1≤i≤I .
– Assemble and factorise the matrix Ah of the Laplace operator from Eq. (10) that

readsAh wh = L.
• Online stage; for every targeted state of the system, described by the parameter λ ∈Λ,

– Lift the right hand side – Compute wλ,h ∈U0,h such asAh wλ,h = Lλ, as in Eq. (10).
– Solve the reduced problem – Determine F̃ ∈FI and θ̃ ∈ΘI according to Eqs. (17)-(18),

i.e. ∫
Ω
∂F Wλ(F̃ ) : δF̃ =

∫
Ω

(
Dwλ,h + θ̃)

: δF̃ , ∀ δF̃ ∈ TF̃ FI ,∫
Ω

F̃ : δθ̃ = 0, ∀ δθ̃ ∈ΘI .

– Reconstruct displacements – The displacement field ϕλ,h ∈ ϕλ,D ⊕U0,h reconstructs
as in Eq. (13) as we solveAhϕλ,h = D∗F̃ , with the right hand side

D∗F̃ ·wh =
∫
Ω

F̃ : Dδwh , ∀ δwh ∈U0,h .

4. A simple numerical illustration: twisted bar

In this section, we illustrate on a simple but very nonlinear case, the characteristics and the main
assets of the proposed reduced basis approach.

4.1. The manifold of purely twisted states

We compute herein the torsion of a bar (1m×3m×20m) along its main axis e2, by the imposition
of pure rotations R(β) and R(−β) of its tips, β ∈ [0,π]. The employed material obeys the Mooney–
Rivlin constitutive law W (F ) = |F |2 + |cofF |2, under the incompressibility constraint detF ≡ 1.
The finite element discretisation is built on a tetrahedral mesh (mesh-size h = 0.5m) using P2

displacements fields and P1 continuous hydrostatic pressures. Figure 1 displays the correspond-
ing deformation states, as β increases from 0 to π. We arbitrarily select the deformation field ϕβ0

with β0 = π
4 and compare the classical reduced basis line

{
φα := id+α(

ϕβ0 − id
)

;α ∈R
}

, with the
smallest reduced manifold built in this paper,{

φ̃α :=H
(
Fα
β0

)
;α ∈R

}
.

Figure 2 displays the reduced bases approximationsφα and φ̃α forα= 0.5,2,4. The multiplicative
version described herein clearly shows a better representation of deformation fields, since α

describes the torsion level of the bar whereas for classical reduced bases, α only parameterizes
the amplitude.

We denote F̃α = Fα
β0

and Fα = id+α (
Fβ0 − id

)
. Table 1 shows that F̃β/β0 provides a good

approximation of Fβ, even when approximated by piecewise-constant values. From a numerical
standpoint, the best approximation F̃α of Fβ is computed as the minimizer of the penalized
problem,

inf
α

∫
Ω

W (F̃α)+K
∫
ΓD

∣∣(F̃α−R(±β)
)×n

∣∣2
, K = 106 J/m2, (20)
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Figure 1. Deformation states of a bar undergoing torsion along its main axis, by the
imposition of pure rotations R(β) and R(−β) of its tips. Snapshots correspond to β =
0,π/4,π/2,π.

Figure 2. Deformations spanned by the reduced bases φα (top) and φ̃α (bottom) for α =
0.5,2,4.

which shows indeed that α = β/β0 provides the best approximation, with excellent numerical
accuracy. In Table 1, we also display the norm ∥DH (F̃α)−F̃α∥L2(Ω) as an indicator of the curl-free
constraint violation for F̃α; it is where the most part of the approximation error is concentrated
in the P0 case. In the P2 case, this reconstruction error does not introduce any noticeable error
in the energy norm of the solution. Table 2 displays the situation for the classical 1D vector
reduced basis approach. It reveals the impossibility for the 1D classical reduced basis, to provide
a reasonable approximation of the deformation states and the boundary condition at the same
time.
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Table 1. Approximation provided by the 1D multiplicative reduced basis relying on the pre-
computed solution Fπ/4 for P0 (left) and P2 (right) approximations of deformation gradi-
ents.

Approx. space for Fβ0 ,β0 =π/4 P0 P2

β π/8 π/2 π π/8 π/2 π

α 0.5 2.0 4.0 0.5 2.0 4.0

∥F̃α−Fβ∥0,Ω/∥Fβ∥0,Ω 2,63610−03 2,06910−02 1,12110−01 2,95310−03 2,30910−02 1,24310−01

∥cof F̃α−cofFβ∥0,Ω/∥cofFβ∥0,Ω 2,63810−03 2,07010−02 1,12110−01 2,95610−03 2,31410−02 1,24410−01

∥det F̃α−detFβ∥0,Ω/∥detFβ∥0,Ω 1,66410−04 1,24810−03 6,31510−03 1,90710−04 1,41910−03 7,28810−03

∥DH (F̃α)− F̃α∥0,Ω/∥F̃α∥0,Ω 2,22510−02 8,85210−02 1,82410−01 .2,14710−03 1,67010−02 8,96710−02∫
Ω(det F̃α−detFβ)/

∫
ΩdetFβ 1,65410−04 −1,23810−03 −6,22410−03 −2,66710−07 2,08710−05 3,52610−04

∥(F −FD )×N∥0,ΓD /∥FD ×N∥0,ΓD 6,03910−06 3,78010−04 1,14610−02 8,31610−06 5,15110−04 1,53310−02

∥Dφ̃α−Fβ∥0,Ω/∥Fβ∥0,Ω 2,22810−02 8,89110−02 1,86710−01 2,02810−03 1,59510−02 8,61810−02

∥cofDφ̃α−cofFβ∥0,Ω/∥Fβ∥0,Ω 2,23010−02 8,96010−02 1,90810−01 2,18510−03 1,70110−02 9,02910−02

∥detDφ̃α−detFβ∥0,Ω/∥Fβ∥0,Ω 1,68610−03 2,07110−02 8,58610−02 1,41210−03 1,03610−02 4,94410−02

Table 2. Approximation provided by the 1D classical reduced basis relying on the pre-
computed solution Fπ/4 for P0 (left) and P2 (right) approximations of the deformation
gradient fields.

Approx. space for Fβ0
,β0 =π/4 P0 P2

β π/8. π/2 π. π/8 π/2 π

α α= 0,5 α= 1,80050302 α= 1,87869848 α= 0,5004963 α= 1,7998276 α= 1,86640859

∥Fα −Fβ∥0,Ω/∥Fβ∥0,Ω 3,07210−02 2,24410−01 9,27610−01 3,09710−02 2,26110−01 9,30510−01

∥cofFα −cofFβ∥0,Ω/∥cofFβ∥0,Ω 5,18910−02 3,30410−01 9,81710−01 5,22110−02 3,31510−01 9,78110−01

∥detFα −detFβ∥0,Ω/∥detFβ∥0,Ω 7,24810−02 4,20010−01 4,89410−01 7,28510−02 4,20410−01 4,72310−01

∥DH (Fα)−Fα∥0,Ω/∥Fα∥0,Ω 2,25810−02 7,23710−02 7,45710−02 2,68810−15 8,47310−15 8,72910−15∫
Ω(detFα −detFβ)/

∫
Ω detFβ 5,55410−02 −3,22010−01 −3,77210−01 5,57010−02 −3,21410−01 −3,61110−01

∥(F −FD )×N∥0,ΓD
/∥FD ×N∥0,ΓD

1,41610−03 7,60010−02 1,314 1,44010−03 7,71010−02 1,316

∥Dφα −Fβ∥0,Ω/∥Fβ∥0,Ω 3,76410−02 2,38610−01 9,30610−01 3,09710−02 2,26110−01 9,30510−01

∥cofDφα −cofFβ∥0,Ω/∥Fβ∥0,Ω 5,60910−02 3,35910−01 9,82310−01 5,22110−02 3,31510−01 9,78110−01

∥detDφα −detFβ∥0,Ω/∥Fβ∥0,Ω 7,21810−02 4,08210−01 4,76110−01 7,28510−02 4,20410−01 4,72310−01

4.2. Efficient approximation of purely twisted states

Finally, we assess the ability of multiplicative reduced bases to approximate accurately the whole
range of solutions asβ varies. We make the choice of the most relevant bases vectors by the greedy
procedure presented in Section 3.4 on the basis of the P2 approximation of gradients. Table 3
displays the convergence of relative errors; they prove to achieve better values, by almost 2 orders
of magnitude, and a better convergence rate than the one achieved by the classical reduced basis
method.
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Table 3. Convergence of the multiplicative approach (left) as I increases for the bar torsion
case as compared to the classical approach (right). The table displays the worse relative
errors obtained for the considered reduced space.

F̃ 1 F̃ 2 F̃ 3 F 1 F 2 F 3

∥F̃α−Fβ∥0,Ω/∥Fβ∥0,Ω 4,8510−02 5,7310−03 5,4510−04 3,8310−01 5,8010−02 1,9810−02

∥cof F̃α−cofFβ∥0,Ω/∥cofFβ∥0,Ω 4,8610−02 5,6610−03 5,4710−04 5,1910−01 6,9710−02 2,6610−02

∥det F̃α−detFβ∥0,Ω/∥detFβ∥0,Ω 2,1410−03 4,3610−04 2,5010−05 6,1110−01 6,6110−02 3,0710−02

∥DH (F̃α)− F̃α∥0,Ω/∥F̃α∥0,Ω 3,4310−02 4,0810−03 3,5910−04 0 0 0∫
Ω(detFα−detFβ)/

∫
ΩdetFβ −1,6910−04 −1,4410−05 −5,5510−07 5.0210−01 −5,5910−02 2,6110−02

∥(F −FD )×N∥0,ΓD /∥FD ×N∥0,ΓD 2,5510−03 3,7310−05 5,4710−07 2,2110−01 4,9410−03 5,8010−04

∥Dφ̃α−Fβ∥0,Ω/∥Fβ∥0,Ω 3,4210−02 4,0210−03 4,1010−04 3,8310−01 5,8010−02 1,9810−02

∥cofDφ̃α−cofFβ∥0,Ω/∥Fβ∥0,Ω 3,6910−02 4,1910−03 4,5910−04 5,1910−01 6,9710−02 2,6610−02

∥detDφ̃α−detFβ∥0,Ω/∥Fβ∥0,Ω 2,3610−02 2,3910−03 3,6710−04 6,1110−01 6,6110−02 3,0710−02

5. Conclusion

The present paper derives and exemplifies the use of multiplicative reduced bases for nonlinear
elasticity. The benefit is particularly obvious when local rotations or incompressibility phenom-
ena are involved due to the respect of the Lie group structure of solutions. Natural extensions
to inelasticity or shape optimisation can be envisioned as additional tensor fields play mul-
tiplicative roles. Finally, extension to elastodynamics can be derived similarly through the
classical action

S(ϕ) =
∫ T

0

∫
Ω

[
1

2
ϱϕ̇2 −W

(
∂ϕ

∂x

)]
−

∫ T

0
L(t ,ϕ(t ))dt

to stationarize, where the following space-time mapping φ : [0,T ] ×Ω → [0,T ] × R3 can be
plugged-in, and the weak equality F≡ Dφ can be enforced. All the rest follows readily, the lifting
and reconstruction operations being chosen so as to involve the wave equation.
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