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Abstract. The Generalised Baker–Schmidt Problem (1970) concerns the Hausdorff f -measure of the set of
Ψ-approximable points on a nondegenerate manifold. We refine and extend our previous work [Int. Math.
Res. Not. IMRN 2021, no. 12, 8845–8867] in which we settled the problem (for dual approximation) for
hypersurfaces. We verify the GBSP for certain classes of nondegenerate submanifolds of codimension greater
than 1. Concretely, for codimension two or three, we provide examples of manifolds where the dependent
variables can be chosen as quadratic forms. Our method requires the manifold to have even dimension at
least the minimum of four and half the dimension of the ambient space. We conjecture that these restrictions
on the dimension of the manifold are sufficient to provide similar examples in general.

Résumé. Le problème de Baker–Schmidt généralisé (1970) concerne la mesure de Hausdorff f de l’ensemble
des points Ψ-approximables sur une variété non dégénérée. Nous affinons et étendons notre travail pré-
cédent [Int. Math. Res. Not. IMRN 2021, no. 12, 8845-8867] dans lequel nous avons résolu le problème (pour
l’approximation duale) pour les hypersurfaces. Nous vérifions le GBSP pour certaines classes de sous-variétés
non dégénérées de codimension supérieure à 1. Concrètement, pour la codimension deux ou trois, nous don-
nons des exemples de variétés où les variables dépendantes peuvent être choisies comme des formes qua-
dratiques. Notre méthode exige que la variété ait une dimension paire au moins égale au minimum de quatre
et à la moitié de la dimension de l’espace ambiant.

Nous conjecturons que ces restrictions sur la dimension de la variété sont suffisantes pour fournir des
exemples similaires en général.
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1. Dual Diophantine approximation on manifolds

Let n ≥ 1 be a fixed integer, q := (q1, . . . , qn) ∈ Zn , and x = (x1, . . . , xn) ∈ Rn . Let Ψ : Zn → [0,∞)
be a multivariable approximating function, that is, Ψ has the property that Ψ(q) → 0 as ∥q∥ :=
max(|q1|, . . . , |qn |) →∞. Let θ be an arbitrary real number1. Consider the set

Dθ
n(Ψ) := {

x ∈Rn : |q ·x+p +θ| <Ψ(q) for i.m. (p,q) ∈Z×Zn }
,

where “i.m.” stands for “infinitely many”. A vector x ∈ Rn will be called (Ψ,θ)-approximable
if it lies in the set Dθ

n(Ψ). When θ = 0, the problem reduces to the homogeneous setting. We are
interested in the “size” of the set Dθ

n(Ψ) with respect to the f -dimensional Hausdorffmeasure H f

for some dimension function f . By a dimension function f we mean an increasing continuous
function f :R→Rwith f (0) = 0.

Diophantine approximation on manifolds concerns the study of approximation properties of
points in Rn which are functionally related or in other words restricted to a submanifold M of
Rn . To estimate the size of sets of points x ∈ Rn which lie on a k-dimensional, non-degenerate2,
analytic submanifold M ⊆ Rn is an intricate and challenging problem. The fundamental aim
is to estimate the size of the set M ∩Dθ

n(Ψ) in terms of Lebesgue measure, Hausdorff measure,
and Hausdorff dimension. When asking such questions it is natural to phrase them in terms of
a suitable measure supported on the manifold, since when k < n the n-dimensional Lebesgue
measure is zero irrespective of the approximating functions. For this reason, results in the
dependent Lebesgue theory (for example, Khintchine–Groshev type theorems for manifolds) are
posed in terms of the k-dimensional Lebesgue measure (equivalent to the Hausdorff measure)
on M .

In full generality, a complete Hausdorff measure treatment for manifolds M represents a
deep open problem referred to as the Generalised Baker–Schmidt Problem (GBSP) inspired
by the pioneering work of Baker and Schmidt [3]. There are two variants of this problem,
concerning simultaneous and dual approximation. In this paper we are concerned with the dual
approximation only. Ideally one would want to solve the following problem in full generality.

Generalised Baker–Schmidt Problem for Hausdorff Measure: dual setting. Let M be a non-
degenerate submanifold of Rn with dimM = k and n ≥ 2. LetΨ be a multivariable approximating
function. Let f be a dimension function such that r−k f (r ) →∞ as r → 0. Assume that r 7→ r−k f (r )
is decreasing and r 7→ r 1−k f (r ) is increasing. Prove that

H f (Dθ
n(Ψ)∩M ) =


0 if

∑
q∈Zn \{0}

∥q∥kΨ(q)1−k f
(
Ψ(q)
∥q∥

)
<∞;

∞ if
∑

q∈Zn \{0}
∥q∥kΨ(q)1−k f

(
Ψ(q)
∥q∥

)
=∞.

Note that H f is proportional to the standard Lebesgue measure when f (r ) = r n . In fact, the
GBSP is stated in the most idealistic format and solving it in this form is extremely challenging.
The main difficulties lie in the convergence case and therein constructing a suitable nice cover
for the set Dθ

n(Ψ)∩M . Recently (2021), the authors with David Simmons settled the GBSP for
hypersurfaces for both homogeneous and inhomogeneous settings with non-monotonic multi-
variable approximating functions [10]. We also proved several results for the one-dimensional
manifolds such as non-degenerate planar curves or for Veronese curves in [9] under some regu-
larity conditions on the dimension function. In this paper we refine our framework set out in [10]
and extend those results to certain classes of nondegenerate manifolds of higher codimension.

1We remark that, in fact, our results still apply for any sufficiently smooth function θ(x), as in [10], see Remark 2 below.
2In this context “non-degenerate” means suitably curved, see [4, 11] for precise formulations
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We refer the reader to [10, Subsection 1.1] for a description of the historical progression
towards the GBSP. Specifically, we refer the reader to [2, 3, 6–9, 11]. For the recent developments
of the GBSP for the simultaneous approximation, we refer the reader to [10, Remark 1.1] or [6].

1.1. Setup and main result

We first state some regularity conditions on the manifold M and the dimension function f . Let
M be a manifold of dimension n−l ≥ 1 inRn , with n ≥ 2 and l ≥ 1. Assume more precisely that M

is a graph of a C 2-map g : U → Rl , where U ⊂ Rn−l is a connected bounded open set. We denote
this as M = Γ(g ). By default we will assume that vectors are line vectors, and use superscript t for
their transpose. Let M be parametrised by

M = {(x1, . . . , xn−l , g1(x), . . . , gl (x)) : x = (x1, . . . , xn−l ) ∈U ⊆Rn−l }. (1)

Our conditions read as follows:

(I) Let f be a dimension function satisfying

f (x y)≲ xs f (y), for all y < 1 < x (2)

for some s < 2(n − l −1).
(II) The real symmetric (n − l )× (n − l ) matrixΛ=Λ(g , s,x) with entries

Λ j ,i =
l∑

u=1
su · ∂2gu

∂xi∂x j
(x), 1 ≤ i , j ≤ n − l ,

for g as above is regular for any choice of real s = (s1, s2, . . . , sl ) ̸= 0 and all x ∈ U \ SM

outside a set SM of f -measure 0.

While (II) turns out to be rather complicated, we point out that (I) holds as soon as the
manifold has dimension at least three. This follows from the assumption that r → r−k f ( f )
is decreasing, as in [10], see paragraph 2.1 below. Section 2 of this paper is reserved for a
more detailed discussion on the conditions, followed by examples of manifolds satisfying the
hypotheses in Section 3. Our new criterion for the convergence part of the GBSP to be proved in
Section 4 reads as follows.

Theorem 1. Let Ψ be a multivariable approximating function. Let f be a dimension function
satisfying (I) and let g : Rn−l → Rl be a C 2-function satisfying (II). Then if M is given via g by (1),
then

H f (Dθ
n(Ψ)∩M ) = 0

if the series ∑
q∈Zn \{0}

∥q∥n−lΨ(q)l+1−n f

(
Ψ(q)

∥q∥
)

converges.

Remark 2. It is possible to formulate a variant of Theorem 1 with a functional inhomogenity θ(x)
as in [10], however condition (II) becomes more technical and less natural.

1.2. Corollaries (from a combination with the divergence results)

In this section, we detail some of the corollaries of our theorem along with some of the conse-
quences. We begin by summarising the notation used.

Notation. In the case where the dimension function is of the form f (r ) := r s for some s < k, H f

is simply denoted as H s . On occasions we will consider functions of the form Ψ(q) = ψ(∥q∥),
and in this case we use W θ

n (ψ) as a shorthand for W θ
n (Ψ). The function ψ : R>0 → R>0 is called
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a single-variable approximating function. Bn(x,r ) denotes a ball centred at the point x ∈ Rn of
radius r . For real quantities A,B and a parameter t , we write A ≲t B if A ≤ c(t )B for a constant
c(t ) > 0 that depends on t only (while A and B may depend on other parameters). We write A ≍t B
if A ≲t B ≲t A. If the constant c > 0 depends only on parameters that are constant throughout a
proof, we simply write A ≲B and B ≍ A.

The divergence part of the GBSP was proved by Badziahin–Beresnevich–Velani [1] for the
s-dimensional Hausdorff measure3 and for multivariable approximating functions satisfying a
certain property P for any non-degenerate manifolds. Following the terminology of [1], we say
that an approximating function Ψ satisfies property P if it is of the form Ψ(q) = ψ(∥q∥v) for a
monotonically decreasing function ψ : R>0 → R>0 (single-variable approximation function), v =
(v1, . . . , vn) with vi > 0 and

∑
1≤i≤n vi = n, and ∥·∥v defined as the quasi-norm ∥q∥v = maxi |qi |1/vi .

When combined with Theorem 1 we obtain the following implication on the GBSP problem for
non-degenerate (see [1]) manifolds for dimensions not less than 3.

Corollary 3. Let Ψ be a decreasing multivariable approximating function satisfying property P.
Let f be a dimension function satisfying (I) and let g be a C 2-function satisfying (II). Let M be a
non-degenerate manifold in Rn of dimension n − l , given via g by (1). Then

H f (Dθ
n(Ψ)∩M ) =


0 if

∑
q∈Zn \{0}

∥q∥n−lΨ(q)l+1−n f
(
Ψ(q)
∥q∥

)
<∞;

∞ if
∑

q∈Zn \{0}
∥q∥n−lΨ(q)l+1−n f

(
Ψ(q)
∥q∥

)
=∞.

We emphasise again that only the divergence case, treated in [1], assumes monotonicity on
the approximating functionΨ.

Corollary 4. Let M andΨ be as in Corollary 3 and let s be a real number satisfying s < 2(n−l −1).
Then

H s (Dθ
n(Ψ)∩M ) =


0 if

∑
q∈Zn \{0}

∥q∥
(
Ψ(q)
∥q∥

)s+l+1−n <∞;

∞ if
∑

q∈Zn \{0}
∥q∥

(
Ψ(q)
∥q∥

)s+l+1−n =∞.

For l = 1,n = 2 where M is a planar curve, while the corollary and its proof are formally valid,
the involved parameter range for s is empty. We refer the reader to [9] for the GBSP type results
on non-degenerate curves such as Veronese curves, i.e. sets of the form {(x, x2, . . . , xn) : x ∈R}. We
remark that in view of Corollary 4, Conjecture 7 below would imply the GBSP for a large class of
manifolds and anyΨwith property P.

One of the consequences of Corollary 4 is the following Hausdorff dimension result. Let τΨ be
the lower order at infinity of 1/Ψ, that is,

τΨ := liminf
t→∞

log(1/Ψ(t ))

log t
, where Ψ(t ) = inf

x∈Zn :∥x∥≤t
Ψ(x),

and we may assume τΨ ≥ n > 0. Then from the definition of Hausdorff measure, Theorem 1
implies that for any approximating functionΨwith lower order at infinity τΨ and for M as above
(that is, with property (II) of dimension dimM ≥ 3, we have

dimH (W θ
n (Ψ)∩M ) ≤ dimM −1+ n +1

τΨ+1
.

This Hausdorff dimension result was previously only known for either the planar curve [2, 6, 8],
Veronese curve [5], or for the hypersurface [10].

3It is to be noted that the techniques used in proving [1, Theorem 2] also work for the f -dimensional Hausdorff
measure situation.



Mumtaz Hussain and Johannes Schleischitz 821

2. On conditions (I) and (II)

2.1. On Condition (I)

Note that in the statement of the GBSP, the standard condition on the dimension function f that
f (q)q−(n−l ) (recall n − l = dimM ) is decreasing is assumed. With this condition in hand, the
condition (I) is satisfied as soon as

n − l ≥ 3.

From the aforementioned decay property we see that f (x y) ≤ xn−l f (y) for y < 1 < x. Since
n− l < 2(n− l −1) as soon as n− l ≥ 3, indeed we infer that (2) holds in the non-empty parameter
range s ∈ [n−l ,2(n−l−1)). On the other hand, condition (I) excludes all curves (one dimensional
manifolds), as well as all two dimensional manifolds, for many interesting functions f .

2.2. On Condition (II)

Condition (II) is more delicate. It replaces and generalises the non-vanishing of the determinant
of the Hessian ∇2g ∈R(n−1)×(n−1) condition within U from [10] when l = 1. The determinant of Λ
in (II) becomes a multivariate, homogeneous polynomial P of total degree n − l in the variables
s1, . . . , sl ; with coefficients (as functions) in the ℓ · (n−l+1

2

)
second order partial derivatives of g

(using symmetry of Λ), evaluated at x ∈ U . In other words, for (II) we need that some form of
degree n − l in l variables is positive (or negative) definite at any point in U . This definiteness
problem of forms seems related to Hilbert’s XVII-th problem, whose positive answer in particular
implies that P above must have a presentation as a sum of squares. It is evident that the
complexity of the problem increases fast as l and n grow.

A priori, it is not clear if, generally, g satisfying hypothesis (II) exists when l ≥ 2. However, for
certain pairs (l ,n) we provide examples below. It is evident from the form ofΛ that, provided that
examples exists at all, we can choose the coordinate functions g j as quadratic forms, defined on
the entire space U = Rn−l . Moreover, we can perturb any such example by adding any functions
with small enough second order derivatives by absolute value uniformly on Rn−l to the g j . For
simplicity of presentation, we introduce the following notion.

Definition 5. Call a pair of integers (l ,n) with n > l ≥ 1 a good pair if (II) holds for some
g :Rn−l →Rl as in the introduction.

By the above observation, the induced g of any good pair can be taken a quadratic form
defined globally. It is obvious that any pair (1,n) is good. For larger l , the following general going-
up and going-down properties for good pairs are straightforward.

Proposition 6. If (l ,n) is a good pair, then so is

(i) the pair (l − t ,n − t ) for any integer 0 ≤ t ≤ l −1.
(ii) the pair (l , ñ) with ñ = n + t (n − l ) for any integer t ≥ 0.

Claim (i) can be seen by specialisation of t variables, for example via putting s1 = ·· · = st+1.
The proof of (ii) will become apparent from the examples in Section 3. On the other hand, it is in
general unclear if (l ,n) being a good pair will imply the same for (l , ñ) with a general larger ñ > n,
even if ñ − l is even (see Obstruction 1 below).

On the other hand, condition (II) has some natural limitations, as captured in the following
obstructions.
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Obstruction 1. If l ≥ 2 and n − l is odd, then (l ,n) is not a good pair, that is, the condition (II)
cannot hold.

While a short proof seems to follow directly from the positive answer to Hilbert’s XVII’th problem,
we want to explicitly explain how this special case can be handled. First assume l = 2. Indeed,
if either the coefficient of xn−l

1 or xn−l
2 of the polynomial P (x1, x2) defined above vanishes, then

we may take x1 arbitrary and x2 = 0 or vice versa, hence we get non-trivial solutions for detΛ =
P (x1, x2) = 0. If otherwise both coefficients are not 0, then by choosing any x2 ̸= 0 we get a single-
variable polynomial in x1 of odd degree with non-zero constant term, again inducing a non-trivial
solution for detΛ = P (x1, x2) = 0. Finally if l > 2, by specialising l −2 variables x3 = ·· · = xl = 0,
we get a polynomial Q(x1, x2) in two variables. Regardless if Q ≡ 0 is the constant 0 polynomial or
not, by the observations for l = 2 above, we may choose at least one of x1, x2 (almost) arbitrary for
a solution of detΛ= 0. Thus we again find a non-trivial solution for detΛ= 0 in s1, . . . , sl .

Obstruction 2. We require n ≥ 2l for (l ,n) being a good pair.
Otherwise if n − l < l then we can annihilate a line of Λ on a linear subspace of dimension at

least 1 of s ∈Rl , regardless of the choice of g ,x. More precisely, in case of n−l < l , we find a subspace
of dimension at least one in Rl consisting of s = (s1, . . . , sl ) so that for the first line ofΛwe have

Λ1,i =
l∑

u=1
su ·σu,i = 0, 1 ≤ i ≤ n − l , (3)

where we have put

σu,i := ∂2gu

∂xi∂x1
(x).

Indeed, then (3) is a homogeneous linear equation system in more variables than equations, hence
it has a non-trivial solution in s. Clearly any resulting matrixΛ is singular.

Obstruction 2 means that the manifold must have at least half the dimension of the ambient
space. We believe that these are the only obstructions. In view of Theorem 1 and the observations
in Section 2.1 we therefore go on to state the following conjecture.

Conjecture 7. The following claims hold

(i) If l ≥ 2 and n ≥ 2l and n − l is even, then (l ,n) is a good pair.
(ii) If l ≥ 2 and n ≥ 2l and n − l ≥ 4 is even, then there exists g with coordinate functions g j

quadratic forms such that (I), (II) holds on Rn−l , hence the convergence part of the GBSP
holds for the induced manifolds.

Clearly it would suffice to verify (i), claim (ii) is just stated for completeness. We will verify the
conjecture for l = 2 in Section 3. Moreover, for l = 3 we establish the partial result that n− l being
a positive multiple of 4 is sufficient. The simplest cases where Conjecture 7 remains open are
l = 3,n = 9 and l = 4,n = 8.

3. Examples

3.1. Special case l = 2

We start with an example to illustrate condition (II) in the case n = 4, l = 2. Unfortunately, since
dimM = 2, condition (I) does not hold in this context, see Section 2.1.

Example 8. Let l = 2, n = 4, so that M is a two-dimensional manifold with codimension two.
Using multilinearity of the determinant and after some calculations, we see that the polynomial
representing detΛ becomes

P (s1, s2) = s2
1 A1(g ,x)+ s2

2 A2(g ,x)+ s1s2 A3(g ,x)
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where

A1(g ,x) = ∂2g1

∂2x1
(x) · ∂

2g1

∂2x2
(x)− (

∂2g1

∂x1∂x2
(x))2,

A2(g ,x) = ∂2g2

∂2x1
(x) · ∂

2g2

∂2x2
(x)− (

∂2g2

∂x1∂x2
(x))2,

and

A3(g ,x) = ∂2g1

∂2x1
(x) · ∂

2g2

∂2x2
(x)−2

∂2g1

∂x1∂x2
(x) · ∂2g2

∂x1∂x2
(x)+ ∂2g2

∂2x1
(x) · ∂

2g1

∂2x2
(x).

By the criterion of minors to test definiteness of a quadratic form with respect to the correspond-
ing symmetric matrix with rows (A1(g ,x), A3(g ,x)/2) and (A3(g ,x)/2, A2(g ,x)), then the criterion
of condition (II) that P is positive (or negative) definite becomes

A3(g ,x)2 < 4A1(g ,x)A2(g ,x). (4)

A sufficient criterion for second order derivatives is given by

∂2g1

∂2x1
(x) · ∂

2g1

∂2x2
(x) = ∂2g2

∂2x1
(x) · ∂

2g2

∂2x2
(x) < 0,

∂2g1

∂x1∂x2
(x) ̸= ∂2g2

∂x1∂x2
(x)

as then we may write inequality (4) equivalently as

4
∂2g2

∂2x1
(x) · ∂

2g2

∂2x2
(x) ·

(
∂2g1

∂x1∂x2
(x)− ∂2g2

∂x1∂x2
(x)

)2

< 0.

Specialising further, if for example, we can take at some x ∈U the derivates

∂2g1

∂2x1
(x) = ∂2g2

∂2x1
(x) = 2,

∂2g1

∂2x2
(x) = ∂2g2

∂2x2
(x) =−2,

∂2g1

∂x1∂x2
(x) ̸= ∂2g2

∂x1∂x2
(x),

then it will be true in some neighbourhood of x. For example when n = 4, l = 2 and δ ̸= 0, then

g (x) = g (x, y) = (x2 − y2 +δx y, x2 − y2)

satisfies this for all (x, y) in R2. The arising parametrised manifolds becomes

Mδ = {(x, y, x2 − y2 +δx y, x2 − y2) : x, y ∈R}, where δ ̸= 0. (5)

We remark that δ ̸= 0 is necessary for the convergence part of GBSP as otherwise the manifold lies
in the rational subspace of R4 defined by x3 = x4.

We now present some examples satisfying both (I) and (II). Keeping l = 2, we can extend the
previous example to general even n ≥ 6 by essentially building Cartesian products. A possible
class of manifolds derived from this method that verifies Conjecture 7 for l = 2 is captured in the
following example.

Example 9. Let l = 2,n − l = 2t for t ≥ 2. Then for any δ1, . . . ,δt ̸= 0 the manifold

M =
{(

x1, y1, . . . , xt , yt ,
t∑

u=1
x2

u − y2
u +δu xu yu ,

t∑
u=1

x2
u − y2

u

)
: xi , yi ∈R

}
,

satisfies (I) and (II). Hence the GBSP holds for any decreasingΨwith property P.

Indeed, the critical determinant det(Λ) in Example 9 decomposes as a product of t determi-
nants as in Example 8, which we found all to be non-zero, so (II) holds. Since n − l ≥ 4 condi-
tion (I) holds too. Clearly Example 9 can be generalised in terms of parameter ranges for the co-
efficients of the quadratic forms. By Obstruction 1, the condition that n − l is even is necessary
for (II) (unless n − l = 1, the hypersurface case). A similar argument proves Proposition 6.
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3.2. The case l > 2

Now let us consider l > 2. Together with the restrictions

n − l ≡ 0 mod 2, n − l ≥ 3, n ≥ 2l ,

from Section 2.1 and Obstructions 1 and 2, the easiest example is l = 3,n = 7.
The following general criterion for (II), or good pairs, involving “definite determinants” essen-

tially comes from specialising certain variables (second order derivatives of g ).

Lemma 10. Let n > l ≥ 1 be integers. Assume there exists a symmetric (n − l )× (n − l ) matrix Ml ,n

with the entries
Ml ,n(i , j ) ∈ {0,±z1, . . . ,±zl }, 1 ≤ i , j ≤ n − l ,

for formal variables zv , 1 ≤ v ≤ l , so that det Ml ,n ̸= 0 for any choice of real zv not all 0. Then (l ,n)
is a good pair.

Hence the existence of Ml ,n as in the lemma implies that there exist (n − l )-dimensional
submanifolds of Rn , defined as in (1) via g = (g1, . . . , gl ) with g j (x) real quadratic forms, that
satisfy (II) on U =Rn−l . Again, the hypothesis of Lemma 10 forces n ≥ 2l and n − l to be even.

Remark 11. More generally, instead of Ml ,n(i , j ) = ±zv or 0, we may take the matrix entries
arbitrary linear combinations of the zv , for the same conclusion. This generalised condition is
in fact equivalent to (II). The proof is essentially the same as below.

Proof of Lemma 10. Choose any set of l linearly independent (overR) vectors Lv = (a1,v , . . . , al ,v ),
1 ≤ v ≤ l , in Rl and define the linear forms in l variables s1, . . . , sl

Lv · s = a1,v s1 +·· ·+al ,v sl , 1 ≤ v ≤ l .

Given Ml ,n as in the lemma, we construct a matrix M ′
l ,n with entries in formal variables s1, . . . , sl

as follows: We identify zv with Lv · s, that is, if for a pair (i , j ) the index v = v(i , j ) is so that
Ml ,n(i , j ) =±zv , then we choose the entry at position (i , j ) of M ′

l ,n equal to M ′
l ,n(i , j ) =±Lv ·s, with

the same sign choice as above. Else if Ml ,n(i , j ) = 0 then keep the value M ′
l ,n(i , j ) = 0. Then M ′

l ,n
is well-defined and depends on s1, . . . , sl . By linear independence of the Lv and the hypothesis of
the lemma, for any non-trivial choice of real numbers s1, . . . , sl , the matrix M ′

l ,n has non-zero
determinant. We finally notice that there is a one-to-one correspondence between any such
collection of coefficient vectors Lv and a collection of quadratic forms g1, . . . , gl via identifying
for v = v(i , j ) as above au,v = ∂2gu/∂xi∂x j for 1 ≤ u ≤ l . In other words, au,v xi x j if i ̸= j and
(au,v /2)x2

i if i = j is the term containing xi x j resp. x2
i in the quadratic form gu(x) =∑

i , j au,v xi x j .
Hence (II) holds for the globally defined function g = (g1, . . . , gl ), so (l ,n) is a good pair. □

In the proof, we may just let Lv the canonical base vector in Rl for 1 ≤ v ≤ l so that essentially
zv equals sv , however the proof contains more information.

Hence the problem (II) can be relaxed to finding suitable matrices Ml ,n as in the lemma. For
l = 2,n = 4 we can take the matrix

M2,4 =
(

z1 z2

z2 −z1

)
which leads to Example 8. More generally, for l = 2 and n = 2v with v ≥ 2 an even integer, we may
take a matrix consisting of v −1 copies of 2×2 “diagonal” blocks as above and zeros elsewhere,
similar to Example 9 and Proposition 6.

For l = 3,n = 7 we can take

M3,7 =


z1 z2 z3 −z3

z2 −z1 z3 z3

z3 z3 z1 z2

−z3 z3 z2 −z1

 (6)
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which has determinant det(M3,7) = (z2
1 + z2

2)2 + 4z4
3 . Our construction leads to the following

example.

Example 12. Let l = 3,n = 7. Taking the linear forms Lv from the proof of Lemma 10 the
canonical base vectors (1,0,0), (0,1,0), (0,0,1) of R3 and inserting for the zv in M3,7 from (6), leads
to g = (g1, g2, g3) with quadratic form entries gu(x) = gu(x1, x2, x3, x4) given by

g1(x) = x2
1 −x2

2 +x2
3 −x2

4

2
,

g2(x) = x1x2 +x3x4,

g3(x) = x1x3 +x2x3 +x2x4 −x1x4.

So, the manifold becomes

M = {(x1, x2, x3, x4, g1(x), g2(x), g3(x) : xi ∈R},

which satisfies (I) and (II), and thus GBSP for any decreasingΨwith property P.

For l = 3 we may take any n ∈ {7,11,15,19, . . .} again by repeating this 4×4-block matrix M3,7

along the “diagonal”. It is unclear if l = 3 and n ∈ {9,13,17, . . .} can be achieved. It would suffice
to verify this for n = 9 to infer the claim for all n in the list by considering matrices decomposing
into two types of diagonal blocks, M3,7 and the vacant M3,9. This would confirm Conjecture 7 for
l = 3 as well. Unfortunately, we are unable to find a suitable matrix M3,9.

The above discussion on Lemma 10 motivates the following problem implicitly stated within
Conjecture 7.

Problem 13. Given l ≥ 3, what is the minimum n so that a matrix Ml ,n as in Lemma 10 exists?
Equivalently, given even n− l , what is the largest l for which the hypothesis holds for some matrix.

It is unclear if such n exists at all if l ≥ 4. As remarked in Section 2.2, in all examples of Section 3,
we can manipulate the manifold by adding any functions with uniformly (in absolute value)
small enough second order derivatives to the l functionally dependent variables. In particular,
for any analytic functions defined on a neighbourhood of 0 ∈Rn−l with quadratic terms as in our
examples above, GBSP holds upon possibly shrinking the neighbourhood.

4. Proof of Theorem 1

Let us first clarify some notation. With g as above, write

g (x) = (g1(x), . . . , gl (x)) ∈Rl , x ∈U ,

which we will assume as a row vector. Furthermore, write ∇g t for the (n − l ) × l matrix with
i -th partial derivative vector in Rl of the transpose of g (thus a column vector) in the i -th
column (1 ≤ i ≤ n − l ). Denote by ∇2g t

u ∈R(n−l )×(n−l ) the Hessians of the (transposed) coordinate
functions g t

u , 1 ≤ u ≤ l , where again the i -th column consists of the partial derivative vector
∂gu/∂xi , 1 ≤ i ≤ n − l .

The proof is a refinement and extension of arguments presented in our previous paper [10].
Here we only detail some modifications and other necessary details.

For any q ∈Zn and p ∈Z, analogously to [10] we define

S(q, p) = SΨ,θ(q, p) = {x ∈ K : |q · (x, g (x))t −p −θ| <Ψ(q)},

where K is a compact subset of U . However, notice that our g (x) is a vector here. Write q = q̃ ·(r, s)
for

q̃ = max
n−l+1≤i≤n

|qi |
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for r ∈Qn−l and s ∈Ql . Let a = a(q) = (p +θ)/q̃ and ρ =Ψ(q)/|q̃ | if q̃ ̸= 0 (assume this for now).
Then ∥s∥ = 1, and q̃ ≤ ∥q∥ by definition. For any q ∈ Zn and p ∈ Z, we will bound the size of this
set which is equivalently given as

S(q, p) = {x ∈ K : |r ·xt + s · g (x)t −a| < ρ}.

Similarly as in [10], for fixed p and q, define a function h :Rn−l →R by

h(x) = r ·xt + s · g (x)t −a,

for r, s, a induced by q, p as above. Finally in case q̃ = 0, we instead let

r = (q1, . . . , qn−l ), h(x) = r ·xt −p −θ, ρ =Ψ(q).

As in [10] we see that in either case

S(q, p) = {x ∈ K : |h(x)| < ρ}.

We now identify ∇2h with the matrix Λ of the theorem by the following calculation: For 1 ≤ i ≤
n − l , the i -th entry of the vector ∇h(x) equals ri + s ·Gi (x)t with

Gi (x)t = (∂g t /∂xi )(x) = (∂g1/∂xi (x), . . . ,∂gl /∂xi (x))t

the i -th column of ∇g t evaluated at x if q̃ ̸= 0, and ∇h(x)i = ri if q̃ = 0. In the sequel we assume
q̃ ̸= 0, else similarly the argument is analogous to [10]. So this i -th entry of ∇h(x), denote it by
∇h(x)i , reads

∇h(x)i = ri + s ·
(
∂g

∂xi
(x)

)t

= ri +
l∑

u=1
su · (∂gu/∂xi (x)), 1 ≤ i ≤ n − l .

Then

∇h(x)−
n−l∑
i=1

ri ei =
n−l∑
i=1

s ·
(
∂g

∂xi
(x)

)t

·ei =
n−l∑
i=1

l∑
u=1

su · (∂gu/∂xi (x)) ·ei ,

with ei the canonical base vectors in Rn−l . Hence the quadratic matrix ∇2h(x) with j -th line
∂∇h(x)/∂x j has entries

∇2h(x) j ,i =
l∑

u=1
su · ∂2gu

∂xi∂x j
(x), 1 ≤ i , j ≤ n − l , (7)

(and vanishes if q̃ = 0). Thus indeed we may identify ∇2h with Λ. In contrast to [10], the matrix
∇2h(x) now also depends on q ∈Zn via its dependence on the induced rational vector s, however
by a compactness argument we will deal with this issue.

By assumption of (II), for any unit vector s ∈Rl and any x ∈ K , the determinant of ∇2h(x) does
not vanish. For simplicity assume for the moment q and thus s are fixed. Then as in [10], for some
ε> 0, the matrices ∇2h(x) with x ∈ K belong to a compact, convex set of matrices (identified with
R(n−l )×(n−l )) with determinants at least ε. Now the same argument as in [10] based on the mean
value inequality gives the analogue of [10, Claim 2.3], which reads:

Claim. If the norm of q ∈Zn is large enough, then either there exists v ∈Rn−l such that

∥∇h(x)∥ ≍ ∥x−v∥, x ∈ K ,

or
∥∇h(x)∥ ≍ ∥(r, s)∥ ≍ ∥(r,1)∥, x ∈ K .

Either way, we have ∥∇h(x)∥≪ 1 for all x ∈ K .
We remark that the last claim is obvious by ∥s∥ = 1 and (7). It should be pointed out that

following the proof in [10], the implied constants in the lemma will still depend on q in the
form of the dependence on s. However, by the continuous dependence of ∇2h(x) on s and the
compactness of the set {s ∈Rl : ∥s∥ = 1}, it is easily seen that we can find uniform constants.
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The remainder of the proof of Theorem 1 works analogously as in [10], where we consider two
cases and we replace n by n − l + 1 consistently and omit ∇θ(x) and ∇2θ(x), as we consider θ
constant. It is worth noticing that in Case 1 we apply the analogue of [10, Lemma 2.4], which we
again want to state explicitly for convenience:

Lemma 14 (Hussain, Schleischitz, Simmons). Assume n, l are positive integers satisfying n >
l +1. Let φ : U ⊂ Rn−l → R be a C 2 function. Fix α > 0, δ > 0, and x ∈U such that Bn−l (x,α) ⊂U .
There exists a constant C > 0 depending only on n such that if

∥∇φ(x)∥ ≥Cαsup
z∈U

∥∇2φ(z)∥, (8)

then the set
S(φ,δ) = {y ∈ Bn−l (x,α) : |φ(y)| < ∥∇φ(x)∥δ}

can be covered by ≍ (α/δ)n−l−1 balls of radius δ.

Indeed, this is precisely [10, Lemma 2.4], upon replacing n by n − l + 1. Rest of the proof of
Theorem follows just like [10] with obvious adaptations mentioned above. Specifically, by taking
into account the observation that the implied constants in the Claim above are independent of
p,q (or s). That ultimately leads to the sufficient condition s < 2(n − l −1) in place of s < 2n −2
from [10], which agrees with condition (I).
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