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Abstract. Let G be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic
group with no rank one factors and X the associated Riemannian symmetric space. For any Zariski dense
discrete subgroup Γ<G , we prove that Vol(Γ\X ) =∞ if and only if no positive Laplace eigenfunction belongs
to L2(Γ\X ), or equivalently, the bottom of the L2-spectrum is not an atom of the spectral measure of the
negative Laplacian. This contrasts with the rank one situation where the square-integrability of the base
eigenfunction is determined by the size of the critical exponent relative to the volume entropy of X .

Résumé. Soit G un groupe algébrique réel simple de rang supérieur, ou plus généralement un groupe
algébrique réel semi-simple sans facteurs de rang un et X l’espace symétrique riemannien associé. Pour tout
sous-groupe discret dense de Zariski Γ<G , on prouve que Vol(Γ\X ) =∞ si et seulement si aucune fonction
propre de Laplacien positive appartient à L2(Γ\X ), ou de manière équivalente, le bas du spectre L2 n’est
pas un atome de la mesure spectrale du Laplacien négatif. Cela contraste avec la situation de rang un où
l’intégrabilité au carré de la fonction propre de base est déterminée par la taille de l’exposant critique par
rapport à l’entropie volumique de X .
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1. Introduction

Let M be a complete Riemannain manifold and let ∆ denote the Laplace–Beltrami operator on
M . Define the real number λ0(M ) ∈ [0,∞) by

λ0(M ) := inf

{∫
M ∥grad f ∥2 dvol∫

M | f |2 dvol
: f ∈C∞

c (M )

}
, (1.1)

where C∞
c (M ) denotes the space of all smooth functions with compact support. This number

λ0(M ) is known as the bottom of the L2-spectrum of the negative Laplacian −∆ and separates
the L2-spectrum and the positive spectrum [24, p. 329] (Figure 1).

Figure 1. λ0 separates the L2 and positive spectrum

More precisely, let L2(M ) denote the space of all square-integrable functions with respect to
the inner product 〈 f1, f2〉 =

∫
M f1 f2 dvol. Let W 1(M ) ⊂ L2(M ) denote the closure of C∞

c (M ) with
respect to the norm

∥ f ∥W 1 =
(∫

M
f 2 dvol+

∫
M

∥grad f ∥2 dvol

)1/2

.

There exists a unique self-adjoint operator on the space W 1(M ) extending the Laplacian ∆ on
C∞

c (M ), which we also denote by ∆ (cf. [11, Chapter 4.2]). The L2-spectrum of −∆ is the set
of all λ ∈ C such that ∆+ λ does not have a bounded inverse (∆+ λ)−1 : L2(M ) → W 1(M ).
Sullivan showed that the L2-spectrum of −∆ contains λ0(M ) and is contained in the positive
ray [λ0(M ),∞), that is, λ0(M ) is the bottom of the L2-spectrum, and moreover, there are no
positive eigenfunctions with eigenvalue strictly bigger than λ0(M ) [24, Theorem 2.1 and 2.2] (see
Figure 1). We will call an eigenfunction with eigenvalueλ0(M ) a base eigenfunction. Note that the
absence of a base eigenfunction in L2(M ) is the same as the absence of a positive eigenfunction
in L2(M ) [24, Corollary 2.9].

In this paper, we are concerned with locally symmetric spaces. Let G be a connected semisim-
ple real algebraic group and (X ,d) the associated Riemannian symmetric space. Let Γ < G be a
discrete torsion-free subgroup and let M = Γ\X the corresponding locally symmetric manifold.

For a rank one locally symmetric manifold M = Γ\X , the relation between λ0(M ) and the
critical exponent1 δΓ is well-known: if we denote by D = DX the volume entropy of X , then

λ0(M ) =
{

D2/4 if δΓ ≤ D/2

δΓ(D −δΓ) otherwise

([3, 7–9, 17–19, 24]). We refer to ([1, 2, 5, 15, 27]) for extensions of these results to higher ranks. We
remark that when G has Kazhdan’s property (T) (cf. [28, Theorem 7.4.2]), we have Vol(M ) =∞ if
and only if λ0(M ) > 0 ([3], [15]).

The goal of this article is to study the square-integrability of a base eigenfunction of locally
symmetric manifolds. The space of square-integrable base eigenfunctions is at most one dimen-
sional and generated by a positive function when non-trivial [24]. Based on this positivity prop-
erty and using their theory of conformal measures on the geometric boundary, Patterson and
Sullivan showed that if M is a geometrically finite real hyperbolic (n +1)-manifold, then M has

1the abscissa of convergence of the Poincare series s 7→∑
γ∈Γ e−sd(o,γo), o ∈ X .
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a square-integrable base eigenfunction if and only if the critical exponent δΓ is strictly greater
than n/2 ([20], [23], [24, Theorem 2.21]). More generally, the formula for λ0(M ) given above, to-
gether with [12, Corollary 3.2] (cf. also [16]) and [26, Theorem 1.1], implies that any rank one geo-
metrically finite manifold M has a square-integrable base eigenfunction if and only if the critical
exponent δΓ is strictly greater than DX /2.

The main theorem of this paper is the following surprising higher rank phenomenon that
contrasts with the rank one situation:

Theorem 1. Let G be a connected semisimple real algebraic group with no rank one factors. For
any Zariski dense discrete torsion-free subgroup Γ < G, we have Vol(Γ\X ) =∞ if and only if Γ\X
does not possess any square-integrable positive Laplace eigenfunction, that is, λ0(Γ\X ) > 0 is not
an atom for the spectral measure of −∆.

In other words, when Vol(Γ\X ) = ∞, no base eigenfunction is square-integrable (see also
Theorem 10 for a more general version). A special case of this theorem for Anosov subgroups
of higher rank semisimple Lie groups was proved in [5, Theorem 1.8]. See Theorem 10 for a more
general version.

Our proof of Theorem 1 is based on the higher rank version of Patterson–Sullivan theory
introduced by Quint [21], with a main new input being the recent theorem of Fraczyk and Lee
(Theorem 8, [10]). Suppose that Vol(Γ\X ) = ∞ and a base eigenfunction is square-integrable.
Using Sullivan’s work [24], it was then shown by Edwards and Oh [5] that there exists a Γ-
conformal density {νx : x ∈ X } on the Furstenberg boundary of G (see Definition 3) such that
any such base eigenfunction is proportional to the function Eν given by

Eν(x) = |νx | for all x ∈ X . (1.2)

Moreover, the following higher rank version of the smearing theorem of Thurston and Sullivan
([23, 25]) was also obtained by Edwards–Oh [5] (see Theorem 6):

|mν,ν|≪
∫
Γ\X

|Eν|2 dvol,

where mν,ν is a generalized Bowen–Margulis–Sullivan measure on Γ\G corresponding to the
pair (ν,ν); see Definition 3.3. On the other hand, the recent theorem of Fraczyk and Lee
(Theorem 8, [10]) which describes all discrete subgroups admitting finite BMS measures implies
that |mν,ν| = ∞, and consequently, Eν ∉ L2(Γ\X ), yielding a contradiction. We remark that the
integrand on the right hand side of (1.2) can be replaced by an O(1)-neighborhood of the support
of mν,ν and Sullivan used the rank one version of this to deduce the finiteness of the BMS measure
mν,ν attached to the (unique) Patterson–Sullivan measure ν from the the growth control of the
base eigenfunction for Γ geometrically finite [23].

We close the introduction by presenting a related question on the L2-spectrum. When Γ < G
is geometrically finite in a rank one Lie group and there is no positive square-integrable eigen-
function, there are no Laplace eigenfunctions in L2(Γ\X ) and the quasi-regular representation
L2(Γ\G) is tempered2 ([4, 14, 17, 23]). In view of this, we ask the following question: let G be a
semisimple real algebraic group with no rank one factors and Γ < G be a Zariski dense discrete
subgroup.

Question 2. When Γ<G is not a lattice, can there exist any Laplace eigenfunction in L2(Γ\X )?

2This means that L2(Γ\G) is weakly contained in L2(G), or equivalently, every matrix coefficient of L2(Γ\G) is L2+ε(G)-
integrable for any ε> 0.
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2. Positive eigenfuntions and conformal measures

Let G be a connected semisimple real algebraic group. We fix, once and for all, a Cartan involution
θ of the Lie algebra g of G , and decompose g as g = k⊕ p, where k and p are the +1 and −1
eigenspaces of θ, respectively. We denote by K the maximal compact subgroup of G with Lie
algebra k. We also choose a maximal abelian subalgebra a of p. We denote by 〈 · , ·〉 and ∥ · ∥
respectively the Weyl-group invariant inner product and norm on a induced from the Killing form
on g. We denote by X =G/K the corresponding Riemannian symmetric space equipped with the
Riemannian metric d induced by the Killing form on g. The Riemannian volume form on X is
denoted by dvol . We also use dx to denote this volume form, as well as for the Haar measure on G .

Let A := expa. Choosing a closed positive Weyl chamber a+ of a, let A+ = expa+. The
centralizer of A in K is denoted by M , and we set N to be the maximal horospherical subgroup for
A so that log(N ) is the sum of all positive root subspaces for our choice of a+. We set P = M AN ,
which is a minimal parabolic subgroup of G . The quotient

F =G/P

is known as the Furstenberg boundary of G , and since K acts transitively on F and K ∩P = M , we
may identify F with K /M .

Let Σ+ denote the set of all positive roots for (g,a+). We also write Π ⊂ Σ+ for the set of all
simple roots. For any g ∈ G , there exists a unique element µ(g ) ∈ a+ such that g ∈ K expµ(g )K .
The map µ : G → a+ is called the Cartan projection. Setting o = [K ] ∈ X , we then have ∥µ(g )∥ =
d(g o,o) for all g ∈G . Throughout the paper we will identify functions on X with right K -invariant
functions on G . For each g ∈G , we define the following visual maps:

g+ := g P ∈F and g− := g w0P ∈F , (2.1)

where w0 denotes the longest Weyl group element, i.e. the Weyl group element such that
Adw0 a

+ = −a+. The unique open G-orbit F (2) in F ×F under the diagonal G-action is given
by F (2) = G(e+,e−) = {(g+, g−) ∈ F ×F : g ∈ G}. Let G = K AN be the Iwasawa decomposition,
and define the Iwasawa cocycle H : G → a by the relation:

g ∈ K exp
(
H(g )

)
N .

The a-valued Busemann map is defined using the Iwasawa cocycle as follows: for all g ∈G and
[k] ∈F with k ∈ K , define

β[k](g (o),h(o)) := H(g−1k)−H(h−1k) ∈ a for all g ,h ∈G .

Conformal measures. We denote by a∗ the space of all real-valued linear forms on a. In the
rest of this section, let Γ<G be a discrete subgroup. The following notion of conformal densities
was introduced by Quint [21, Section 1.2], generalizing Patterson–Sullivan densities for rank one
groups ([20, Section 3], [22, Section 1]).

Definition 3. Let ψ ∈ a∗.

(1) A finite Borel measure ν on F = K /M is said to be a (Γ,ψ)-conformal measure (for the
basepoint o) if for all γ ∈ Γ and ξ= [k] ∈ K /M,

dγ∗ν
dν

(ξ) = e−ψ(βξ(γo,o)),

where γ∗ν(Q) = ν(γ−1Q) for any Borel subset Q ⊂F .
(2) A collection {νx : x ∈ X } of finite Borel measures on F is called a (Γ,ψ)-conformal density

if, for all x, y ∈ X , ξ ∈F and γ ∈ Γ,

dνx

dνy
(ξ) = e−ψ(βξ(x,y)) and dγ∗νx = dνγ(x). (2.2)
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A (Γ,ψ)-conformal measure ν defines a (Γ,ψ)-conformal density {νx : x ∈ X } by the formula:

dνx (ξ) = e−ψ(βξ(x,o)) dν(ξ),

and conversely any (Γ,ψ)-conformal density {νx } is uniquely determined by its member νo

by (2.2). By a Γ-conformal measure on F , we mean a (Γ,ψ)-conformal measure for some ψ ∈ a∗.

Definition 4. Letψ ∈ a∗. Associated to a (Γ,ψ)-conformal measure ν on F , we define the following
function Eν on G: for g ∈G,

Eν(g ) := |νg (o)| =
∫
F

e−ψ
(

H(g−1k)
)

dν([k]). (2.3)

Since |νγ(x)| = |νx | for all γ ∈ Γ and x ∈ X , the left Γ-invariance and right K -invariance of Eν are
clear. Hence we may consider Eν as a K -invariant function on Γ\G, or, equivalently, as a function
on Γ\X .

Let D = D(X ) denote the ring of all G-invariant differential operators on X . For each (Γ,ψ)-
conformal measure ν, Eν is a joint eigenfunction of D and conversely, any positive joint eigen-
function on Γ\X arises as Eν for some (Γ,ψ)-conformal measure ν [5, Proposition 3.3].

Let ∆ denote the Laplace–Beltrami operator on X or on Γ\X . Since ∆ is an elliptic differential
operator, an eigenfunction is always smooth. We say a smooth function f is λ-harmonic if

−∆ f =λ f .

Define the real number λ0 =λ0(Γ\X ) ∈ [0,∞) as follows:

λ0 := inf

{∫
Γ\X ∥grad f ∥2 dvol∫

Γ\X | f |2 dvol
: f ∈C∞

c (Γ\X ), f ̸= 0

}
. (2.4)

We call a λ0-harmonic function on Γ\X a base eigenfunction. In general, a λ-harmonic
function need not be a joint eigenfunction for the ring D(X ). However, a square-integrable λ0-
harmonic function turns out to be a positive joint eigenfunction, up to a constant multiple. The
following is obtained in [5, Corollary 6.6, Theorem 6.5] using Sullivan’s work [24] and [13].

Theorem 5 ([5]). If a base eigenfunction φ0 belongs to L2(Γ\X ), then there exists ψ ∈ a∗ and a
(Γ,ψ)-conformal measure ν on F such that φ0 is proportional to Eν.

Here the space L2(Γ\X ) consists of square-integrable functions with respect to the inner
product 〈 f1, f2〉 =

∫
Γ\X f1 f2 dvol.

3. Higher rank smearing theorem

Let G be a connected semisimple real algebraic group and Γ<G be a discrete subgroup. We recall
the definition of a generalized Bowen–Margulis–Sullivan measure, as was defined in [6, Section 3].

Fix a pair of linear formsψ1,ψ2 ∈ a∗. Letν1 andν2 be respectively (Γ,ψ1) and (Γ,ψ2) conformal
measures on F . Using the homeomorphism (called the Hopf parametrization) G/M → F (2) ×a
given by g M 7→ (g+, g−,b =βg− (o, g o)), define the following locally finite Borel measure m̃ν1,ν2 on
G/M as follows: for g = (g+, g−,b) ∈F (2) ×a,

dm̃ν1,ν2 (g ) = eψ1(βg+ (o,g o))+ψ2(βg− (o,g o)) dν1(g+)dν2(g−)db, (3.1)

where db = dℓ(b) is the Lebesgue measure on a induced from the inner product 〈·, ·〉. The
measure m̃ν1,ν2 is left Γ-invariant and right A-semi-invariant: for all a ∈ A,

a∗m̃ν1,ν2 = e(−ψ1+ψ2◦i)(log a) m̃ν1,ν2 , (3.2)
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where i denotes the opposition involution3 i : a → a (cf. [6, Lemma 3.6]). The measure m̃ν1,ν2

gives rise to a left Γ-invariant and right M-invariant measure on G by integrating along the fibers
of G → G/M with respect to the Haar measure on M . By abuse of notation, we will also denote
this measure by m̃ν1,ν2 . We denote by

mν1,ν2 (3.3)

the measure on Γ\G induced by m̃ν1,ν2 , and call it the generalized BMS-measure associated to the
pair (ν1,ν2).

The following theorem was proved in [5, Theorem 7.4], extending the smearing argument due
to Sullivan and Thurston ([23, Proposition 5], [4, Proof of Theorem 4.1]) to the higher rank setting.

Theorem 6 (Edwards–Oh, [5]). Letψ1,ψ2 ∈ a∗. There exists a constant c = c(ψ1,ψ2) > 0 such that
for any pair (ν1,ν2) of (Γ,ψ1) and (Γ,ψ2)-conformal measures on F respectively,

|mν1,ν2 | ≤ c
∫

1-neighborhood of suppmν1 ,ν2

Eν1 (x)Eν2 (x)dx.

Although [5, Theorem 7.4] was stated so that c depends on ν1,ν2, the formula for c given in its
proof shows that c depends only on the associated linear forms ψ1,ψ2.

An immediate corollary is as follows:

Corollary 7. Let ν be a Γ-conformal measure on F . If |mν,ν| =∞, then

Eν ∉ L2(Γ\X ).

4. Proof of Main theorem

As in Theorem 1, let G be a connected semisimple real algebraic group with no rank one factors
and Γ < G be a Zariski dense discrete torsion-free subgroup. We recall the following recent
theorem:

Theorem 8 (Fraczyk–Lee, [10]). Suppose that Vol(Γ\X ) =∞. Then for any pair (ν1,ν2) of (Γ,ψ)
and (Γ,ψ◦ i)-conformal measures for some ψ ∈ a∗,

mν1,ν2 (Γ\G) =∞.

Corollary 9. If Vol(Γ\X ) =∞, then for any pair (ν1,ν2) of Γ-conformal measures,

mν1,ν2 (Γ\G) =∞.

Proof. For k = 1,2, let νk be a (Γ,ψk )-conformal measure with ψk ∈ a∗. Suppose |mν1,ν2 | < ∞.
Since a∗mν1,ν2 = eψ1(log a)−ψ2(i log a)mν1,ν2 for all a ∈ A by (3.2), it follows that

|mν1,ν2 | = eψ1(log a)−ψ2(i log a) |mν1,ν2 |.
Since |mν1,ν2 | <∞, we must have

ψ2 =ψ1 ◦ i.

Therefore the claim follows from Theorem 8. □

Proof of Theorem 1. Suppose that Vol(Γ\X ) =∞ and φ0 is a base eigenfunction in L2(Γ\X ). By
Proposition 5, we may assume that φ0 = Eν for some Γ-conformal measure ν on F . Now by
Theorem 6 and Corollary 9,

∞= |mν,ν|≪ ∥Eν∥2
2.

This is a contradiction. □

3It is defined by i(u) =−Adw0 (u), where w0 is the longest Weyl element.
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Indeed, using a more precise version of the main theorem of [10] in replacement of Theorem 8,
we obtain the following without the hypothesis on no rank one factors.

Theorem 10. Let G be a connected semisimple real algebraic group and Γ<G be a Zariski dense
discrete subgroup. If Γ\X admits a square-integrable base eigenfunction, then G = G1G2, Γ is
commensurable with Γ1Γ2 where G1 (resp. G2) is an almost direct product of rank one (resp. higher
rank) factors of G, Γ1 <G1 is a discrete subgroup and Γ2 <G2 is a lattice.
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