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Abstract. We consider lacunarity properties of sequence of partial quotients for real numbers in their contin-
ued fraction expansions. Hausdorff dimension of the sets of points with different lacunarity conditions on
their partial quotients are calculated.

Résumé. Nous considérons des propriétés de lacunarité de la suite des quotients partiels du développement
en fraction continue de nombres réels. Nous calculons la dimension de Hausdorff d’ensembles de points
dont la suite des quotients partiels satisfait à différentes conditions de lacunarité.
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1. Introduction

Continued fraction expansion is induced by the Gauss transformation T : [0,1) → [0,1) given by

T (0) := 0, T (x) = 1

x
mod 1, x ∈ (0,1).
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Then every irrational number x ∈ [0,1) can be uniquely expanded into an infinite continued
fraction:

x = 1

a1(x)+ 1

a2(x)+ . . .

:= [a1(x), a2(x), . . . , ],

where a1(x) = ⌊1/x⌋ and an(x) = a1
(
T n−1(x)

)
for n ≥ 2 are called the partial quotients of x. The

finite truncation

pn(x)

qn(x)
= [a1(x), . . . , an(x)]

is called the nth convergent of x.
It is well-known that continued fraction expansion plays an important role in Diophantine

approximation and dynamical systems:

• In Diophantine approximation, how well an irrational number can be approximated by
rationals depends on the growth rate of the partial quotients. For example, the classic
Jarník set [12] can be expressed as

K (ψ) =
{

x ∈ [0,1) : an+1(x) ≥ψ(qn(x)), for infinitely many n ∈N
}

.

• In dynamical system, continued fraction is a classic dynamics with infinitely many
branches [17].

As said above, the growth rate of the partial quotient is tightly related to the Diophantine
properties of an irrational number. Many metric results have been achieved in this aspect, such
as the Borel–Bernstein theorem that deals with Lebesgue measure theory on the growth rate of
{an(x)}n≥1. Hausdorff dimension of sets obeying some restrictions on the partial quotients have
been well established in Good [6], Łcuzak [16], Wang & Wu [18], etc.

Very recently, it was found by Kleinbock and Wadleigh [14] that the Dirichlet improvable set
is highly related to the growth rate of the product of two consecutive partial quotients in the
following sense. Let ψ : [t0,∞) → R+ be non-increasing with t0 > 1 is fixed and tψ(t ) < 1 for all
t ≥ t0. The ψ-Dirichlet improvavable set is defined as

D(ψ) =
{

x ∈ [0,1) : min
1≤q<Q

∥qx∥ <ψ(Q), for all Q ≫ 1
}

.

Then by takingΨ(q) = qψ(q)
1−qψ(q) , one has

G(Ψ) ⊂ [0,1) \D(ψ) ⊂G

(
Ψ

4

)
where

G(Ψ) =
{

x ∈ [0,1) : an+1(x)an(x) ≥Ψ(qn(x)), for infinitely many n ∈N
}

.

Since then, the metric theory relating the growth of two consecutive partial quotients are
extensively studied in [1–3, 7–10, 15].

In this note, we take another turn by studying the relative growth rate of two consecutive
partial quotients. All the above mentioned works are concerning the size of limsup sets, however,
the sets we will consider below are of liminf nature. So the method used here is different from
the above works (see [10] for a unified way of dealing with the Hausdorff dimension of the above
mentioned works). These liminf sets concerns the points with partial quotients increasing very
fast, so can be uniformly well approximated by their convergents. At first, we give some notations.
Let {sn}n≥1 be a sequence of strictly increasing sequence of integers.
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• call it a sub-lacunary sequence, if

lim
n→∞ sn+1/sn = 1;

• call it lacunary if ∃c > 1 such that

sn+1/sn ≥ c, for all n ≫ 1;

– log-lacunary if for some t > 0,
sn+1

sn
≥ (logn)t , for all n ≫ 1;

– polynomial-lacunary if for some t > 0,
sn+1

sn
≥ nt , for all n ≫ 1;

– exponential-lacunary if for some b > 1,
sn+1

sn
≥ bn , for all n ≫ 1.

At first, we give an auxiliary set to be compliant with the set of points with strictly increasing
partial quotients.

G =
{

x ∈ [0,1) : {an(x)} is a strictly increasing sequence
}

. (1)

Then we define

SG =
{

x ∈G : {an(x)} is sub-lacunary
}

,

LG =
{

x ∈G : {an(x)} is log-lacunary
}

,

PG =
{

x ∈G : {an(x)} is polynomial-lacunary
}

,

EG =
{

x ∈G : {an(x)} is exponential-lacunary
}

.

In this note, we show that

Theorem 1. By denoting dimH the Hausdorff dimension, we have

dimH SG = dimH LG = dimH PG = dimH EG = 1/2.

2. Preliminaries

Recall that pn(x)/qn(x) is the nth convergent of x. The numerator and denominator of
pn(x)/qn(x) can be determined recursively: for any k ≥ 1

pk (x) = ak (x)pk−1(x)+pk−2(x), qk (x) = ak (x)qk−1(x)+qk−2(x) (2)

with the conventions p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.
For simplicity, we write

pn(x) = pn (a1, . . . , an) = pn , qn(x) = qn (a1, . . . , an) = qn (3)

when the partial quotients a1, . . . , an are clear.
For any positive integers a1, . . . , an , define

In (a1, . . . , an) := {x ∈ [0,1) : a1 (x) = a1, . . . , an (x) = an}

and call it a cylinder of order n. We use In(x) to denote the nth order cylinder containing x.
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Proposition 2 (Khinchin [13]). For any n ≥ 1 and (a1, . . . , an) ∈Nn , pk , qk are defined recursively
by (2) for 0 ≤ k ≤ n. Then

In (a1, . . . , an) =


[

pn

qn
,

pn +pn−1

qn +qn−1

)
if n is even(

pn +pn−1

qn +qn−1
,

pn

qn

]
if n is odd.

(4)

Therefore, the length of a cylinder of order n is given by

|In (a1, . . . , an)| = 1

qn
(
qn +qn−1

) .

The next lemma relates a ball with the cylinders, basically following from Proposition 2 on the
distribution of cylinders [11].

Proposition 3. Let x ∈ In(a1, . . . , an) with an ≥ 2. Then

B(x, |In(a1, . . . , an)|) ⊂
2⋃

i=−1
In(a1, . . . , an + i ).

Next, we introduce the mass distribution principle which is a classic method in estimating the
Hausdorff dimension of a set from below.

Proposition 4 ([4]). Let E be a Borel set and µ be a measure with µ (E) > 0. Suppose that for any
x ∈ E,

liminf
r→0

logµ(B(x,r ))

logr
≥ s (5)

where B (x,r ) denotes an open ball centered at x and radius r , then dimH E ≥ s.

3. Proof of Theorem 1

Good [6] showed that the Hausdorff dimension of G defined in (1) is one-half, so by the simple
inclusion

G ⊃SG , and G ⊃LG ⊃PG ⊃ EG ,

it is sufficient to show that

dimH SG ≥ 1/2 and dimH EG ≥ 1/2.

Lemma 5. Let α> 1. Define

Eα =
{

x ∈ [0,1) : (2n −1)α ≤ an(x) < (2n)α, for all n ≥ 1
}

.

Then

dimH Eα = α−1

2α
.

Proof.

(I) For the upper bound of dimH Eα, we consider a natural cover of Eα. It is clear that for any
N ≥ 1, the family of intervals ⋃

a1,...,aN :(2n−1)α≤an (x)<(2n)α, 1≤n≤N
IN (a1, . . . , aN )
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covers Eα. Therefore, for any s > 0, the s-Hausdorffmeasure of Eα can be estimated from
above by

H s (Eα) ≤ liminf
N→∞

∑
a1,...,aN :(2n−1)α≤an (x)<(2n)α,1≤n≤N

|IN (a1, . . . , an)|s

≤ liminf
N→∞

∑
a1,...,aN :(2n−1)α≤an<(2n)α,1≤n≤N

N∏
n=1

1

a2s
n

= liminf
N→∞

N∏
n=1

∑
(2n−1)α≤an<(2n)α

1

a2s
n

.

For any s > α−1
2α , one can choose no such that for all n ≥ no ,∑

(2n−1)α≤an<(2n)α

1

a2s
n

≤ (2n)α− (2n −1)α

(2n −1)2αs ≤ 2α · (2n)α−1

(2n −1)2αs < 1,

and thus it follows that

H s (Eα) ≤
no∏

n=1

∑
(2n−1)α≤an<(2n)α

1

a2s
n

<∞.

As a result,

dimH Eα ≤ α−1

2α
.

(II) For the lower bound of dimH Eα, notice that the set Eα has a nice Cantor structure. For
each n ≥ 1, let

En =
{

In(a1, . . . , an) : (2k −1)α ≤ ak < (2k)α, for all 1 ≤ k ≤ n
}

.

Then

E =
∞⋂

n=1

⋃
In (a1,...,an )∈En

In(a1, . . . , an),

and every element in In−1(a1, . . . , an−1) in En−1 contains exactly

c1nα−1 ≤ Dn := (2n)α− (2n −1)α ≤ c2nα−1.

elements In(a1, . . . , an) in En .
Then, we distribute a mass supported on Eα by setting

µ(In(a1, . . . , an)) = 1

D1 · · ·Dn
,

for all n ≥ 1 and In(a1, . . . , an) in En .
For any x ∈ Eα, for each r > 0 small enough, let n be the integer such that

|In+1(x)| < r ≤ |In(x)|.
Then, by Proposition 3, the ball B(x,r ) can intersect at most three cylinders of order n,
thus

liminf
r→∞

logµ(B(x,r ))

logr
≥ liminf

n→∞
log[3 · (D1 · · ·Dn)−1]

log |In+1(x)| .

By the recursive relation of qn(x), it follows that

qn+1(x) ≤
n+1∏
k=1

(ak (x)+1) ≤
n+1∏
k=1

(2k)α ≤ cn
n+1∏
k=1

kα;

on the other hand,
n∏

k=1
Dk ≥ cn

1

n∏
k=1

kα−1.
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Thus it follows that

liminf
r→0

logµ((x,r ))

logr
≥ liminf

n→∞
log

∏n
k=1 kα−1

log
(∏n+1

k=1 kα
)2 = α−1

2α
.

Finally by Proposition 4, one has

dimH Eα ≥ α−1

2α
. □

By a result in [5] or the same line of the argument as above, except minor modifications on
notation, one can show the following.

Lemma 6. Let b > 1. Define

Fb =
{

x ∈ [0,1) : b1+2+···+n ≤ an(x) < 2 ·b1+2+···+n , for all n ≥ 1
}

.

Then dimH Fb = 1/2.

Proof of Theorem 1. It is clear that for any α> 1,

Eα ⊂SG , and so, dimH SG ≥ lim
α→∞

α−1

2α
= 1

2
.

It is also clear that for any b > 1,

Fb ⊂ EG , and so, dimH EG ≥ 1

2
. □
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