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Équation des milieux granulaires avec potentiel externe
à double puits : état stationnaire limite
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Abstract. In this paper, we give a simple condition on the initial state of the granular media equation which
ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do
so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which corresponds to the
probabilistic interpretation of the granular media equation).

Résumé. Dans ce papier, nous donnons une condition simple portant sur l’état initial de l’équation des
milieux granulaires qui assure que la limite en temps long est l’unique probabilité invariante avec un centre
de masse strictement positif. Pour ce faire, nous utilisons des inégalités fonctionnelles, la méthode de Laplace
et la diffusion de McKean–Vlasov (qui correspond à l’interprétation probabiliste de l’équation des milieux
granulaires).
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In this work, we are interested in the long-time behavior of the following granular media
equation in the one-dimensional setting:

∂

∂t
µσt (x) = σ2

2

∂2

∂x2µ
σ
t (x)+ ∂

∂x

{
µσt (x)

(∇V (x)+α(
x −mσ

1 (t )
))}

(1)

with α> 0 and mσ
1 (t ) := ∫

R xµσt (d x). Since mσ
1 (t ) depends on µσt , (1) is nonlinear. We assume the

following on V :

(V-1) Polynomial function: V is a polynomial function with deg(V ) ≥ 4.
(V-2) Symmetry: V is an even function.
(V-3) Double-well potential: The equation V ′(x) = 0 admits exactly three solutions: a, −a and

0 with a > 0; V ′′(a) > 0 and V ′′(0) < 0. The bottoms of the wells are reached for x = a and
x =−a. Moreover, V (2k)(0) ≥ 0, for all k ≥ 2.

(V-4) limx→±∞V ′′(x) =+∞ and for any x ≥ a, V ′′(x) > 0.
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The nonconvexity of V is measured by the following constant: θ := supR−V ′′. We also assume,
eventually, that synchronization occurs that means: α > θ. The initial measure µσ0 is assumed
to be absolutely continuous with respect to the Lebesgue measure with a density that we denote
for simplicity by µσ0 . Moreover,

∫
R x2kµσ0 (x)d x <∞ for any k ∈N and

∫
Rµ

σ
0 (x) log(µσ0 (x))d x <+∞

that is the initial entropy is finite and so the same is true for the initial free-energy.
In this setting, it is well-known that if σ is small enough, then there are several steady states,

see [4, 7]. We have proven that if µσ is a steady state with total mass equal to 1 of the granular
media equation (1) then there exists m ∈R such thatµσ =µm,σ where the measureµm,σ is defined
as

µm,σ(d x) :=
exp

[
− 2
σ2

(
V (x)+ α

2 x2 −αmx
)]

∫
R exp

[
− 2
σ2

(
V (y)+ α

2 y2 −αmy
)]

d y
d x .

Moreover, m is a zero of the following function:

χσ(m) :=
∫
R x exp

[
− 2
σ2

(
V (x)+ α

2 x2 −αmx
)]

d x∫
R exp

[
− 2
σ2

(
V (x)+ α

2 x2 −αmx
)]

d x
−m .

In [7], we have shown that ifσ<σc (α), then there exists m(σ) > 0 such thatχσ is positive on the
interval (0;m(σ)) and negative on (m(σ);+∞). Thus, due to the symmetry of V , there exist exactly
three steady states : νσ+ with positive expectation, νσ− with negative expectation and νσ0 with zero
expectation. We point out that we can extend our work to non symmetrical case provided that
χσ is positive on the interval (0;m(σ)). Despite this non-uniqueness, the convergence towards
one of the invariant probability measures has been proven in [6]. Nevertheless, very few is known
about the basins of attraction. Here, we exhibit a simple condition ensuring that µσt converges
towards νσ+.

Theorem 1. We assume there exists δ ∈ (0;m(σ)) such that
∫
R xµσ0 (d x) > m(σ)−δ and

χσ(m(σ)−δ) >
{
W2

(
µσ0 ;µm(σ)−δ,σ

)
if α> θ

L2
(
µσ0 ;µm(σ)−δ,σ

)
if α≤ θ , (2)

whereW2 stands for the quadratic Wasserstein distance. Then, µσt weakly converges towards νσ+ as
t goes to infinity.

Proof. We introduce the self-stabilizing diffusion:

Xσ
t = X0 +σBt −

∫ t

0
∇V (Xσ

s )d s −α
∫ t

0

(
Xσ

s −E[
Xσ

s

])
d s . (3)

Here, X0 is a random variable, independent from the Brownian motion B and we assume that
X0 follows the law µσ0 . This kind of processes has been introduced in the seminal work [5]. We
do not discuss the wellposedness of Equation (3). About this, we refer to [3]. We point out that
L (Xσ

t ) =µσt for any t ≥ 0. We can rewrite the equation in this way: Xσ
t = X0+σBt−

∫ t
0 ∇V (Xσ

s )d s−
α

∫ t
0 (Xσ

s −mσ
1 (s))d s. We introduce the following diffusion

Y σ
t = X0 +σBt −

∫ t

0
∇V

(
Y σ

s

)
d s −α

∫ t

0

(
Y σ

s − (m(σ)−δ)
)

d s . (4)

We consider the deterministic time Tσ
0 := inf{t ≥ 0 : E(Xσ

t ) ≤ m(σ)−δ} where Xσ is defined
in Equation (3). Then, for any t ∈ [0;Tσ

0 ), we have Xσ
t ≥ Y σ

t so E(Xσ
t ) ≥ E(Y σ

t ). We remark
E(Y σ

t ) = E(Y σ∞)+E(Y σ
t −Y σ∞) where Y σ∞ follows the law µm(σ)−δ,σ, which is the unique invariant

probability of Diffusion (4).
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On the one hand, we assume that α > θ. Then, x 7→ V (x)+ α
2 (x − (m(σ)−δ))2 is uniformly

convex. Also, the unique invariant probability measure of Equation (4) is the measure µm(σ)−δ,σ.
Hence, by applying [2, Theorem 2.1.], we deduce:

W2

(
L

(
Y σ

t

)
;µm(σ)−δ,σ

)
≤ e−(α−θ)tW2

(
L (X0) ;µm(σ)−δ,σ

)
.

With Ỹ σ∞ and Ỹ σ
t realizing the optimal coupling inW2, we have:

E
(
Y σ

t −Y σ
∞

)=E(
Ỹ σ

t − Ỹ σ∞
)
≥−E

(∣∣∣Ỹ σ
t − Ỹ σ∞

∣∣∣)≥−W2

(
L

(
Y σ

t

)
;µm(σ)−δ,σ

)
≥−e−(α−θ)tW2

(
L (X0) ;µm(σ)−δ,σ

)
≥−W2

(
L (X0) ;µm(σ)−δ,σ

)
.

Hence, for any t ≤ Tσ
0 , we have E(Y σ

t ) ≥ ∫
R xµm(σ)−δ,σ(d x)−W2

(
L (X0) ;µm(σ)−δ,σ

)
. We deduce

E(Y σ
t ) ≥ (m(σ)−δ)+χσ (m(σ)−δ)−W2

(
L (X0) ;µm(σ)−δ,σ

)
. Consequently, for any t ≤ Tσ

0 , we have

E(Xσ
t ) ≥ (m(σ)−δ)+χσ (m(σ)−δ)−W2

(
L (X0) ;µm(σ)−δ,σ

)
> m(σ)−δ .

Hence, Tσ
0 =+∞ so that for any t ≥ 0: E(Xσ

t ) ≥ m(σ)−δ.
By applying main theorem in [6], we deduce that L (Xσ

t ) weakly converges towards one of the
steady state: νσ−, νσ0 or νσ+.

Since
∫

xνσ−(d x) < 0 = ∫
xνσ0 (d x) < ∫

xL (Xσ
t )(d x) for any t ≥ 0, we deduce that L (Xσ

t ) does
not converge towards either νσ− nor νσ0 . Consequently, L (Xσ

t ) weakly converges towards νσ+ as t
goes to infinity.

On the other hand, if α ≤ θ, we can use Poincaré inequality from [1, Corollary 1.6.] since
V ′′(x)+α> 0 for sufficiently large x. We deduce the existence of C (σ) > 0 such that

L2

(
L

(
Y σ

t

)
;µm(σ)−δ,σ

)
≤ e−C (σ)t L2

(
L (X0) ;µm(σ)−δ,σ

)
so that

W2

(
L

(
Y σ

t

)
;µm(σ)−δ,σ

)
≤ e−C (σ)t L2

(
L (X0) ;µm(σ)−δ,σ

)
.

We then complete the proof as previously with

L2

(
L (X0);µm(σ)−δ,σ

)
instead ofW2

(
L (X0);µm(σ)−δ,σ

)
. □

As mentioned above, χσ(m) ≤ 0 for any m ≥ m(σ) so we immediately deduce that the theorem
can not be applied if

∫
R xµσ0 (d x) ≥ m(σ). We have an immediate corollary:

Corollary 2. We assume that there exists m ∈ (0;m(σ)) such that µσ0 = µm,σ. Then, µσt weakly
converges towards νσ+ as t goes to infinity.

Proof. Hypothesis (2) is satisfied since for any m ∈ (0;m(σ)), there exists δ ∈ (0;m(σ)) satisfying
m = m(σ)−δ. Then, we just remark:

χσ(m(σ)−δ) > 0 =W2

(
µm(σ)−δ,σ;µm(σ)−δ,σ

)
= L2

(
µm(σ)−δ,σ;µm(σ)−δ,σ

)
.

First condition is also satisfied due to
∫
R xµm(σ)−δ,σ(d x) = m(σ)−δ+χσ(m(σ)−δ) > m(σ)−δ.

Thus, we may apply Theorem 1. □

We stress that we only used the decrease of the Wasserstein distance in the proof of the
theorem. Hence, it is not a priori required that the decay is exponential.

We point out that we have a similar result with the other half-line: if µσ0 =µ−m(σ)+δ,σ. Then, µσt
converges weakly towards νσ− as t goes to infinity.
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