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Abstract. In this paper we consider the problem of estimation of oscillatory integrals with Mittag-Leffler
functions in two variables. The generalisation is that we replace the exponential function with the Mittag-
Leffler-type function, to study oscillatory type integrals.

Résumé. Dans cet article, nous considérons le problème de l’estimation des intégrales oscillatoires avec les
fonctions de Mittag-Leffler à deux variables. La généralisation est que l’on remplace la fonction exponentielle
par la fonction de type Mittag-Leffler, pour étudier les intégrales de type oscillatoire.
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1. Introduction

The function Eα(z) is named after the Swedish mathematican Gösta Magnus Mittag-Leffler
(1846-1927) who defined it by a power series

Eα(z) =
∞∑

k=0

zk

Γ(αk +1)
, α ∈C,Re(α) > 0, (1)
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and studied its properties in 1902-1905 in several subsequent notes [19–22] in connection with
his summation method for divergent series.

A classical generalization of the Mittag-Leffler function, namely the two-parametric Mittag-
Leffler function is

Eα,β(z) =
∞∑

k=0

zk

Γ
(
αk +β) , α,β ∈C,Re(α) > 0, (2)

which was deeply investigated independently by Humbert and Agarval in 1953 [1, 11, 12] and by
Dzherbashyan in 1954 [5–7] as well as in [8].

It has the property that

E1,1(x) = ex ,and we can refer to [24] for other properties. (3)

In harmonic analysis one of the most important estimates for oscillatory integral is van der
Corput lemma [4, 25, 26, 28]. Estimates for oscillatory integrals with polynomial phases can be
found, for instance, in papers [2, 13, 17, 30–33]. In the current paper we replace the exponential
function with the Mittag-Leffler-type function and study oscillatory type integrals (6). In the
papers [28] and [29] analogues of the van der Corput lemmas involving Mittag-Leffler functions
for one dimensional integrals have been considered. We extend results of [28] and [29] for
two-dimensional integrals with phase having some simple singularities. Analogous problem on
estimates for Mittag-Leffler functions with the smooth phase functions of two variables having
simple singularities was considered in [27] and [34].

2. Preliminaries

Definition 1. An oscillatory integral with phase f and amplitude a is an integral of the form

J (λ, f , a) =
∫
Rn

a(x)e iλ f (x)d x, (4)

where a ∈C∞
0 (Rn) and λ ∈R.

If the support of a lies in a sufficiently small neighborhood of the origin and f is an analytic
function at x = 0, then for λ→∞ the following asymptotic expansion holds ([18]):

J (λ, f , a) ≈ e iλ f (0)
∑

s

n−1∑
k=0

bs,k (a)λs (lnλ)k , (5)

where s belongs to a finite number of arithmetic progressions, independent of a, composed of
negative rational numbers, bs,k is a distribution with support in the critical set {x : ∇ f (x) = 0}.

Inspired by the terminology from [3], we refer to the maximal value of s, denoting it by α in
this case, as the growth index of f , or the oscillation index at the origin, and the corresponding
value of k is referred to as the multiplicity.

More precisely, the multiplicity of the oscillation index of an analytic phase at a critical point
is the maximal number k possessing the property: for any neighbourhood of the critical point
there is an amplitude with support in this neighbourhood for which in the asymptotic series (5)
the coefficient bs,k (a) is not equal to zero. The multiplicity of the oscillation index will be denoted
by m (see [3]).

Let f be a smooth real-valued function defined on a neighborhood of the origin in R2 with
f (0,0) = 0, ∇ f (0,0) = 0, and consider the associated Taylor series

f (x1, x2) ∼
∞∑

j ,k=0
c j k x j

1 xk
2
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of f centered at the origin. The set

ℑ( f ) :=
{

( j ,k) ∈Z2
+ : c j k = 1

j !k !
∂

j
x1
∂k

x2
f (0,0) ̸= 0

}
is called the Taylor support of f at (0,0). We shall always assume that

ℑ( f ) ̸= ;,

i.e., that the function f is of finite type at the origin. If f is real analytic, so that the Taylor series
converges to f near the origin, this just means that f ̸= 0. The Newton polyhedron ℵ( f ) of f
at the origin is defined to be the convex hull of the union of all the quadrants ( j ,k)+R2+, with
( j ,k) ∈ℑ( f ). The associated Newton diagram ℵd ( f ) in the sense of Varchenko [35] is the union of
all compact faces of the Newton polyhedron; here, by a face, we mean an edge or a vertex.

We shall use coordinates (t1, t2) for points in the plane containing the Newton polyhedron, in
order to distinguish this plane from the (x1, x2) - plane.

The distance d = d( f ) between the Newton polyhedron and the origin in the sense of
Varchenko is given by the coordinate d of the point (d ,d) at which the bisectrix t1 = t2 intersects
the boundary of the Newton polyhedron, where d ≥ 1.

The principal face π( f ) of the Newton polyhedron of f is the face of minimal dimension
containing the point (d ,d). Deviating from the notation in [35], we shall call the series

fp (x1, x2) := ∑
j ,k ∈π( f )

c j k x j
1 xk

2

the principal part of f . In the case that π( f ) is compact, fπ is a mixed homogeneous polynomial;
otherwise, we shall consider fπ as a formal power series.

Note that the distance between the Newton polyhedron and the origin depends on the
chosen local coordinate system in which f is expressed. By a local analytic (respectively smooth)
coordinate system at the origin we shall mean an analytic (respectively smooth) coordinate system
defined near the origin which preserves 0. If we work in the category of smooth functions f , we
shall always consider smooth coordinate systems, and if f is analytic, then one usually restricts
oneself to analytic coordinate systems (even though this will not really be necessary for the
questions we are going to study, as we will see). The height of the analytic (respectively smooth)
function f is defined by

h := h( f ) := sup{dx },

where the supremum is taken over all local analytic (respectively smooth) coordinate systems x
at the origin, and where dx is the distance between the Newton polyhedron and the origin in the
coordinates x, also h ≥ 1.

A given coordinate system x is said to be adapted to f if h( f ) = dx .
Letπbe the principal face. We assume thatπ is a point or a compact edge, then fπ is a weighted

homogeneous polynomial. Denote by ν the maximal order of roots of fπ on the unit circle at the
origin, so

ν := max
S1

or d( fπ).

If there exists a coordinate system x such that ν = dx then we set m = 1. It can be shown that in
this case x is adapted to f (see [16]). Otherwise we take m = 0. Following A. N. Varchenko we call
m the multiplicity of the Newton polyhedron. One may connect the multiplicity of the Newton
polyhedron and the asymptotic expansions for the oscillatory integrals as

J (λ, f , a) =O
(
λ− 1

h (lnλ)m
)

, asλ→+∞.

In the classical paper by A. N. Varchenko [35], he obtained the sharp estimates for oscillatory
integrals in terms of the height. Also in the paper [14] the height was used to get the sharp bound
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for maximal operators associated to smooth surfaces in R3. It turns out that analogous quantities
can be used for oscillatory integrals with the Mittag-Leffler function.

We consider the following integral with phase f and amplitude ψ, of the form

Iα,β =
∫

U
Eα,β

(
iλ f (x)

)
ψ(x)d x, (6)

where 0 < α < 1, β > 0, U is a sufficiently small neighborhood of the origin. We are interested in
particular in the behavior of Iα,β when λ is large, as for small λ the integral is just bounded. In
particular if α= 1 and β= 1 we have oscillatory integral (4).

The main result of the work is the following.

Theorem 2. Let f be a smooth finite type function of two variables defined in a sufficiently small
neighborhood of the origin and let ψ ∈C∞

0 (U ).
Let h be the height of the function f , and let m = 0,1 be the multiplicity of its Newton

polyhedron. If 1
2 <α< 1, β> 0, h > 1, and λ≫ 1 then we have the estimate∣∣∣∣∫

U
Eα,β

(
iλ f (x1, x2)

)
ψ(x)d x

∣∣∣∣≤ C | lnλ|m∥ψ∥L∞(U )

λ
1
h

. (7)

If 1
2 <α< 1, β> 0, h = 1 and λ≫ 1, then we have following estimate∣∣∣∣∫

U
Eα,β

(
iλ f (x1, x2)

)
ψ(x)d x

∣∣∣∣≤ C | lnλ|2∥ψ∥L∞(U )

λ
, (8)

where the constants C are independent of the phase, amplitude and λ.

Remark 3. Note that the inequalities (7) and (8) do not hold for the caseα=β= 1 of the classical
oscillatory integrals, because we have estimates with the L∞ norm of the amplitude function.

3. Auxiliary statements

We first recall some useful properties.

Proposition 4. If 0 < α < 2,β is an arbitrary real number, µ is such that πα/2 < µ < min{π,πα},
then there is C > 0, such that we have∣∣Eα,β(z)

∣∣≤ C

1+|z| , z ∈C, µ≤ ∣∣arg(z)
∣∣≤π. (9)

See [7, 8, 24].

Proposition 5. LetΩ be an open, bounded subset ofR2, and let f :Ω→R be a measurable function
such that for all λ≫ 1 and for some positive δ ̸= 1, we have∣∣∣∣∫

Ω
e iλ f (x)d x

∣∣∣∣≤C |λ|−δ| lnλ|m , (10)

with m ≥ 0. Then, we have ∣∣∣x ∈Ω :
∣∣ f (x)

∣∣≤ ε| ≤Cδε
δ| lnε|m , for δ< 1,

for 0 < ε≪ 1, and for δ> 1, |x ∈Ω :
∣∣ f (x)

∣∣≤ ε| ≤Cδε ,

for δ= 1,
∣∣x ∈Ω : | f (x)| ≤ ε| ≤Cδε |lnε|m+1 ,

where Cδ depends only on δ, |A| means the Lebesgue measure of a set A. See [9].
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Proof. For the convenience of the reader we give an independent proof of Proposition 5. We
consider an even non-negative smooth function

ω(x) =
{

1, when |x| ≤ 1,
0, when |x| ≥ 2.

For the characteristic function ofΩwithΩ⊂U , the following inequality holds true

|x ∈Ω :
∣∣ f (x)

∣∣≤ ε| = ∫
Ω
χ[0,1]

( | f (x)|
ε

)
d x ≤

∫
Ω
ω

(
f (x)

ε

)
d x.

Now we will use the Fourier inversion formula, and rewrite the last integral as∫
Ω
ω

(
f (x)

ε

)
d x = 1

2π

∫
Ω

∫ ∞

−∞
ω̌(ξ)e iξ f (x)

ε dξd x.

As ω̌(ξ) is a Schwartz function, we can use Fubini theorem and change the order of integration.
So we have ∫

Ω

∫ ∞

−∞
ω̌(ξ)e iξ f (x)

ε dξd x =
∫ ∞

−∞
ω̌(ξ)

∫
Ω

e iξ f (x)
ε d xdξ.

We use inequality (10) for the inner integral and get∣∣∣∣∫
Ω

e iξ f (x)
ε d x

∣∣∣∣≤ C
∣∣∣ln(

2+ ξ
ε

)∣∣∣m

(
1+| ξε |

)δ .

As ω̌(ξ) is a Schwartz function, we also have

|ω̌(ξ)| ≤ C

1+|ξ| .

So ∣∣∣∣∣∣∣
∫ ∞

−∞

C ω̌(ξ)
∣∣∣ln(

2+ ξ
ε

)∣∣∣m

(
2+

∣∣∣ ξε ∣∣∣)δ dξ

∣∣∣∣∣∣∣≲
∫ ∞

0

2C
∣∣∣ln(

ξ
ε

)∣∣∣m

(1+|ξ|)
(
2+

∣∣∣ ξε ∣∣∣)δ dξ.

Now we change the variable as ξ= ηε, and we get∫ ∞

0

∣∣∣ln(
ξ
ε

)∣∣∣m

(1+|ξ|)
(
2+

∣∣∣ ξε ∣∣∣)δ dξ=
∫ ∞

0

ε| lnη|m
(1+|εη|)(2+|η|)δ dη.

Now we estimate the last integral for different values of δ.
If δ< 1 then we have∫ ∞

0

ε| lnη|m(
1+|εη|)(2+|η|)δ dη≤Cε

∫ 1
ε

0

| lnη|mdη

(2+η)δ
+Cε

∫ ∞
1
ε

| lnη|mdη

εηδ+1
.

We represent 1
(2+η)δ

= 1
ηδ(1+ 2

η )δ
= 1

ηδ
+O( 1

ηδ+1 ). So

Cε
∫ 1

ε

0

| lnη|mdη

(2+η)δ
= ε

∫ 2

0

| lnη|mdη

(2+η)δ
+ε

∫ 1
ε

2

| lnη|mdη

(2+η)δ
.

Integrating by parts we obtain

ε

∫ 1
ε

2

| lnη|mdη

(2+η)δ
≤ ε

∫ 1
ε

2

| lnη|mdη

ηδ
≤Cεδ| lnε|m .

As δ< 1, the integrals
∫ 2

0
| lnη|m dη

(2+η)δ
and

∫ ∞
1
ε

| lnη|m dη
εηδ+1 convergence.
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If δ> 1 then we trivially obtain∣∣∣∣∣
∫ ∞

0

Cε| lnη|m(
1+|εη|)(2+|η|)δ dη

∣∣∣∣∣≤Cε.

If δ= 1 then assuming 0 < ε< 1
2 we get |εη| < 1 (for |η| < 2), then write the integral as the sum of

three integrals and obtain∣∣∣∣∫ ∞

0

Cε| lnη|m(
1+|εη|)(1+|η|)dη

∣∣∣∣≤ ∣∣∣∣∫ 2

0
Cε

∣∣lnη∣∣m dη

∣∣∣∣+
∣∣∣∣∣
∫ 1

ε

2

Cε
∣∣lnη∣∣m

η
dη

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

1
ε

Cε
∣∣lnη∣∣m

η
dη

∣∣∣∣∣ .

Then we have ∣∣∣∣∫ 2

0
Cε

∣∣lnη∣∣m dη

∣∣∣∣≤Cε,

and we get with simple calculating that∣∣∣∣∣
∫ 1

ε

2

Cε
∣∣lnη∣∣m

η
dη

∣∣∣∣∣≤Cε| lnε|m+1.

We use the formula of integrating by parts several times, to get∣∣∣∣∣
∫ ∞

1
ε

Cε| lnη|m
η

dη

∣∣∣∣∣≤Cε| lnε|m ,

completing the proof of Proposition 5. □

From Proposition 5 we get the following corollaries.

Corollary 6. Let f (x1, x2) be a smooth function with f (0,0) = 0, ∇ f (0,0) = 0, and h be the height
of the function f (x1, x2), and let m = 0,1 be the multiplicity of its Newton polyhedron. Let also

a(x) =
{

1, when |x| ≤σ,
0, when |x| ≥ 2σ,

σ> 0,

and a(x) ≥ 0 with a ∈ C∞
0 (R2). If for all real λ ≫ 1 and for any positive δ ̸= 1, the following

inequality holds ∣∣∣∣∫
R2

e iλ f (x)a(x)d x

∣∣∣∣≤C |λ|−δ| lnλ|m , (11)

then we have ∣∣|x| ≤σ :
∣∣ f (x)

∣∣≤ ε∣∣≤Cεδ| lnε|m ,

where m ≥ 0. See [10, 15, 16, 23].

Corollary 7. Let f (x1, x2) be a smooth function with f (0,0) = 0, ∇ f (0,0) = 0, and let Ω be a
sufficiently small compact set around the origin. Let also h be the height of the function f (x1, x2),
and let m = 0,1 be the multiplicity of its Newton polyhedron. Then for all 0 < ε≪ 1 we have

|x ∈Ω : | f (x)| ≤ ε| ≤Cε
1
h | lnε|m ,

where h is the height of f and m is its multiplicity [10].
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4. Proof of the main result

Proof of Theorem 2. As for λ < 2 the integral (6) is just bounded, we consider the case λ ≥ 2.
Without loss of generality, we can consider the integral over U . Using inequality (9), we have∣∣Eα,β

(
iλ f (x)

)∣∣≤ C

1+λ ∣∣ f (x)
∣∣ . (12)

We then use (12) for the integral (6), and get that∣∣Iα,β
∣∣≤ ∣∣∣∣∫

U
Eα,β

(
iλ f (x)

)
ψ(x)d x

∣∣∣∣≤C
∫

U

|ψ(x)|d x

1+λ ∣∣ f (x)
∣∣ . (13)

Now we represent the integral Iα,β over the union of sets Ω1 := Ω∩ {λ| f (x1, x2)| < M } and
Ω2 :=Ω∩ {λ| f (x1, x2)| ≥ M } respectively, where M is a positive real number.

We estimate the integral Iα,β over the setsΩ1 andΩ2, respectively,∣∣Iα,β
∣∣≤C

∫
U

|ψ(x)|d x

1+λ ∣∣ f (x)
∣∣ = J1 + J2 :=C

∫
Ω1

|ψ(x)|d x

1+λ ∣∣ f (x)
∣∣ +C

∫
Ω2

|ψ(x)|d x

1+λ ∣∣ f (x)
∣∣ .

First we estimate the integral over the setΩ1. Using Corollary 7 we obtain

|J1| =C
∫
Ω1

|ψ(x)|d x

1+λ ∣∣ f (x)
∣∣ ≤ C | lnλ|m∥ψ∥L∞(Ω1)

λ
1
h

.

Lemma 8. Let f ∈ C∞ and h be the height of the function f , and let m = 0,1 be the multiplicity
of its Newton polyhedron. For any smooth function a = a(x, y) with sufficiently small support and
for h > 1 the following inequality holds

I :=
∫
{| f (x,y)|≥ M

λ

} a(x, y)

1+λ ∣∣ f
(
x, y

)∣∣d xd y ≤
C | lnλ|m∥a∥L∞(U )

λ
1
h

, (14)

where supp{a(x, y)} =U .

Proof. Let h > 1. Consider the sets

Ak =
{

x ∈U :
2k

λ
≤ ∣∣ f (x)

∣∣≤ 2k+1

λ

}
.

For the measure of a set of smaller values we use Corollary 7, and we have

µ

(∣∣ f (x)
∣∣≤ 2k+1

λ
, x ∈U

)
≤C

(
2k+1

λ

) 1
h (

ln

∣∣∣∣ λ

2k+1

∣∣∣∣)m

.

Let

Ik :=
∫

Ak

a(x, y)

1+λ ∣∣ f (x, y)
∣∣d xd y.

For the integral ∑
2k ≤λ| f (x)|≤2k+1

Ik =
∫
Ω2

a(x, y)

1+λ ∣∣ f (x, y)
∣∣d xd y,

we find the following estimate:

|Ik | =
∣∣∣∣∫

Ak

a(x, y)

1+λ ∣∣ f (x, y)
∣∣d xd y

∣∣∣∣≤C∥a∥
L∞

(
U

) (2k+1

λ

) 1
h

∣∣∣∣∣ln 2k+1

λ

∣∣∣∣∣
m

2−k .

From here we find the sum of Ik and, by estimating the integral I , we get

I ≤ ∥a∥
L∞

(
U

) ∞∑
k=1

Ik ≤ ∥a∥
L∞

(
U

) ∞∑
k=1

(
2k+1

λ

) 1
h

∣∣∣∣∣ln 2k+1

λ

∣∣∣∣∣
m

2−k ≤ ∥a∥
L∞

(
U

) |lnλ|m
λ

1
h

∞∑
k=1

2
k+1

h −k km .

As h > 1, the last series is convergent, proving the lemma. □
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Remark 9. Consider the case h = 1. The smooth function has non-degenerate critical point
at the origin if and only if h = 1. As f (x, y) is a smooth function with ∇ f (0,0) = 0, using
Morse lemma we have f ∼ x2 ± y2. So in this case we estimate two sets ∆ = ∆1 ∪∆2, where
∆1 := {(x, y) : λ|x2 ± y2| ≤ M , |x| ≤ 1, |y | ≤ 1} and ∆2 := {(x, y) : λ|x2 ± y2| > M , |x| ≤ 1, |y | ≤ 1}.
First we consider the integral over the set ∆1. Then we have∣∣∣∣∫

∆1

a(x, y)

1+λ|x2 ± y2|d xd y

∣∣∣∣≤C∥a∥L∞(∆1)

∣∣∣∣∫
∆1

d xd y

∣∣∣∣ .

Now we estimate the last integral as∣∣∣∣∫
λ|x2+y2|≤M

d xd y

∣∣∣∣≤ C

λ
.

Then we estimate the measure of the set {|x2 − y2| ≤ εM }, where ε = 1
λ . We have, for simplicity

putting M = 1,∣∣∣∣∫|x2−y2|≤εM
d xd y

∣∣∣∣
≤C

∣∣∣∣∣
∫ p

1−ε
p
ε

d y
∫ p

y2+ε
p

y2−ε
d x

∣∣∣∣∣=
∣∣∣∣∣
∫ p

1−ε
p
ε

(√
y2 +ε−

√
y2 −ε

)
d y

∣∣∣∣∣
=

(
y

2

√
y2 +ε+ ε

2
ln

∣∣∣∣y +
√

y2 +ε
∣∣∣∣)∣∣∣∣p1−εp

ε
−

(
y

2

√
y2 −ε− ε

2
ln

∣∣∣∣y +
√

y2 −ε
∣∣∣∣)∣∣∣∣

p
1−ε

p
ε

=
∣∣∣∣∣
p

1−ε
2

+ ε

2
ln

p
1−ε+1p

ε
−
p

2

2
ε− ε

2
ln

∣∣∣pε(1+p
2)

∣∣∣−
−

(p
(1−ε)(1−2ε)

2
− ε

2
ln

∣∣∣p1−ε+p
1−2ε

∣∣∣+ε
2

ln
p
ε
∣∣∣)∣∣∣∣≤Cε lnε.

Now we consider the integral over the set ∆2. In this case we change the variables to polar
coordinate system and with easy calculating we get∣∣∣∣∫

{λ|x2+y2|≥M}

a(x, y)

1+λ ∣∣x2 + y2
∣∣d xd y

∣∣∣∣≤ C | lnλ|∥a∥L∞(∆2)

λ
(15)

and ∣∣∣∣∫
{λ|x2−y2|≥M}

a(x, y)

1+λ ∣∣x2 − y2
∣∣d xd y

∣∣∣∣≤ C | lnλ|2∥a∥L∞(∆2)

λ
. (16)

Now we continue the proof of Theorem 2. Let h > 1. We use Proposition 5 for the integral J1,
to get

|J1| ≤
C | lnλ|m∥a∥L∞(U )

λ
1
h

.

Let consider the integral J2. If h > 1, then using Lemma 8 we get

|J2| ≤
C | lnλ|∥a∥L∞(U )

λ
1
h

.

If h = 1, using the Remark 9 we get the inequality (8). The proof of Theorem 2. is complete. □

The proof of Theorem 2 shows that if h = 1, we can get a more precise result.

Proposition 10. If h = 1 and f has an extremal point at the point (0,0) (then f is diffeomorhic
equivalent to x2

1 +x2
2 or −x2

1 −x2
2), then we have

|Iα,β| ≤
C | lnλ|∥ψ∥L∞(U )

λ
,

for all λ≥ 2.
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