
Comptes Rendus

Mathématique

Frédéric Hecht and Olivier Pironneau

The Dual Characteristic-Galerkin Method

Volume 362 (2024), p. 1109-1119

Online since: 5 November 2024

https://doi.org/10.5802/crmath.598

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.598
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mathématique
2024, Vol. 362, p. 1109-1119

https://doi.org/10.5802/crmath.598

Research article / Article de recherche
Algorithmic and computer tools / Algorithmes et outils informatiques

The Dual Characteristic-Galerkin Method

La méthode des caractéristiques-Galerkin duale

Frédéric Hecht a and Olivier Pironneau ∗,a

a LJLL, Boite 187, Sorbonne Université, Place Jussieu, 75005 Paris, France

E-mails: Frederic.hecht@sorbonne-universite.fr, olivier.pironneau@academie-sciences.fr

Abstract. The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally
positive. We present the method and prove convergence and L2-stability in the case of Neumann boundary
conditions. In a 2D numerical finite element setting (FEM), the method is compared to Primal Characteristic-
Galerkin (PCGM), Streamline upwinding (SUPG), the Dual Discontinuous Galerkin method (DDG) and
centered FEM without upwinding. DCGM is difficult to implement numerically but, in the numerical context
of this note, it is far superior to all others.

Résumé. La méthode Dual Characteristic-Galerkin (DCGM) est conservative, précise et expérimentalement
positive. Nous prouvons la convergence et la stabilité L2. Dans le cadre numérique des méthodes d’éléments
finis (FEM) en 2D, la méthode est comparée à la méthode Primal Characteristic-Galerkin (PCGM), au
Streamline upwinding (SUPG), à la méthode Dual Discontinuous Galerkin (DDG) et à une discretisation FEM
sans décentrage. La méthode DCGM est difficile à mettre en œuvre numériquement, mais elle est de loin
supérieure à toutes les autres dans le cadre étudié dans cette note.
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Introduction

A good numerical method for the convection-diffusion equation is important in itself but it is
also a test bed for more complex systems such as the Navier–Stokes equations. A finite element
method (FEM) combined with a first or second order implicit in time discretization without
upwinding works only if a CFL condition is satisfied, a severe constraint if the viscous coefficient
is small (the method is also known as Arakawa’s scheme in meteorology [8]). Hence in the
eighties a number of upwinding schemes have been proposed in particular by K. Baba et al [1],
J.-P. Benque et al [2] T.J.R. Hughes [7] and O. Pironneau[11]. Later, in the nineties Finite Volume
methods and Discontinuous Galerkin methods were proposed for non-solenoidal convective
velocities (see for example A. Ern et al [4].)

Recently we were faced with the problem of finding a good method for the computation of
the probability density of a process via the Kolmogorov forward equation. Here positivity and
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conservativity are essential. A more subjective criteria is the numerical diffusivity. It became an
opportunity to review the state of the art forty years after the above mentioned methods were
proposed, what R. Glowinski would call a rear-guard battle. Nevertheless, the following methods
are popular:

• The Primal Characteristic-Galerkin method (PCGM) proposed in [11] is very precise but
known to diverge in some cases when the viscosity is zero [14] and it is not conservative.
It is convergent when mass-lumping is used [12] but then it is too diffusive.

• The Dual Characteristic-Galerkin method (DCGM) proposed in [2] by J.P. Benque et al.
was never shown to converge except possibly when the initial and convected triangula-
tions are intersected.

• T.J.R. Hughes’ streamline upwinding method (SUPG) [7], also called Galerkin Least-
square upwinding [9], is easy to implement, conservative and convergent but numeri-
cally diffusive, even when the upwinding parameter is tuned to the problem.

In the present note we study the DCGM with numerical quadrature for the nonlinear integral,
prove that it is conservative, L2-stable and convergent when the diffusion coefficient ν is not zero.
Proposition 5, below, shows that the method is O(h +h2/δt ) when ν≫ h2/δt ; δt is the time step
and h is the size of the edges of the triangulation.

The numerical section shows the superiority of DCGM over all 4 above cited methods. But
DCGM is difficult to program. Indeed it is hard (but not computer intensive) to find in which
element of the triangulation lies a given point, a well known problem of computational geome-
try [13].

Note also that the paper analyzes only the case of homogeneous Neumann condition. It
ends with a numerical test with non-homogenous Dirichlet conditions for the Navier–Stokes
equations, but the error analysis does not apply and it seems that it is numerically sensitive to
the choice of the time step.

1. The Dual Characteristic-Galerkin Method

Given a real parameter ν > 0, a bounded open set Ω of Rd , d = 2,3, a smooth velocity field
a : Ω× (0,T ) → Rd and an initial condition u0 : Rd → R, we wish to find u : Ω× (0,T ) → R such
that, at all time t ∈ (0,T ),

∂t u +a ·∇u −ν∆u = 0, u(0) = u0 inΩ, ∂nu = 0 on ∂Ω. (1)

Let a be the extension of a by zero outsideΩ. Define: η̇(t ) = a(η(t )), η(0) = x and η±(x) =η(±δt ).
Recall that

∂t u(x, t )+a(x) ·∇u(x, t ) = lim
δt→0

1

δt
[u(x, t )−u(η−(x), t −δt )].

We assume that∇·a = 0 and a·n = 0 at the boundaryΓ := ∂Ω, so thatη±(Ω) =Ω and det∇η± = 1.
Hence two variational formulations of the problem discretized in time are feasible,

∫

Ω

(
1

δt
(un û −un−1 ◦η− û)+ν∇un ·∇û

)
= 0 ∀û ∈ H 1(Ω), (Primal form),

∫

Ω

(
1

δt
(un û −un−1 û ◦η+)+ν∇un ·∇û

)
= 0 ∀û ∈ H 1(Ω), (Dual form). (2)

We have used η+(η−(x)) = x and,
∫

Ω
f (x)g (η−(x)) =

∫

η−(Ω)
g (y) f (η+(y))/det∇η−(y) =

∫

Ω
g (y) f (η+(y)). (3)
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A spatial discretization with the Finite Element Method (FEM) of the first line in (2) leads
to the Primal Characteristic-Galerkin method (PCGM); on the second line it leads to the Dual
Characteristic-Galerkin method (DCGM): finds un ∈Vh such that∫

Ω

(
un

h ûh +δtν∇un
h ·∇ûh

)=
∑
i∈I

un−1
h (ξi )ûh(ηi )ωi , ∀ûh ∈Vh , (4)

where,

• Ω is polygonal so as to be covered by a triangulation
⋃

k T k .
• The points {ξi }i∈I and positive weights {ωi }i∈I define a quadrature rule which must be

exact at least for continuous piecewise-P 2 functions on the triangulation. We assume
that the quadrature is defined on triangles so as to write∑

i∈I
f (ξi )ωi :=

∑
k

∑
i∈I (T k )

f (ξi )ωi
k , I =

⋃
k

I (T k ). (5)

Example 1. In 2D one may choose the quadrature points at the mid edges and ωi
k = 1

3 ,
but more precise formulae are permitted.

• ηi ∈Ω is an approximation of η+ with |ηi −η+(ξi )| ≤Cδt 2. For example

η+
a (x) = x+a(x)δt + σ

2
δt 2a(x) ·∇a(x), σ= 0 or 1, ηi =η+

a (ξi ). (6)

• Vh is the P 1 continuous finite element space.

Proposition 2. DCGM conserves mass in the sense that∫

Ω
un

h =
∫

Ω
u0

h , ∀n.

Proof. Simply replace ûh by 1 in the scheme. □

Proposition 3. Assume that the triangulation is regular, in the sense of [3, p. 131], i.e. for all
triangles, the ratio of largest edge to the radius of the inscribed circle is bounded independently of
h. Then DCGM is stable:

∥un
h∥νδt ≤

(
1+|detA|δt 2 +C

h2

ν

)
∥un−1

h ∥νδt

where ∥v∥νδt := (|v |20 +δtν|∇v |20)
1
2 , C is a generic constant and h is the length of the longest edges

in the triangulation.

Proof. The proof is given in 2D with the quadrature at the mid-edges (Example 1) and scheme (6).
The discrete Cauchy–Schwarz inequality applied to the right hand-side of (4) combined with

the choice ûh = un
h in (4), leads to

∥un
h∥2

νδt ≤
(∑

i∈I
un−1

h (ξi )2ωi

) 1
2
(∑

i∈I
un

h (ηi )2ωi

) 1
2

≤ ∥un−1
h ∥νδt

(∑
i∈I

un
h (ηi )2ωi

) 1
2

, (7)

because the quadrature is exact for (un−1
h )2 and because |un−1

h |0 ≤ ∥un−1
h ∥νδt . The map ξ→η+

a (ξ)
defined by (6) transforms a triangle T k of the triangulation into T̂ k and {ηi ,ωi }i∈I is a quadrature
rule which is almost exact on P 2 functions of T̂ k . We will show that, for some C ,

∑
k

∑
i∈I (T k )

un
h (ηi )2ωi

k ≤
(
1+C

(
h2

ν
+δt 2

))∥∥un
h

∥∥2
νδt . (8)

Proof of (8) in the linear case. Assume that a is linear in x = (x, y)T with ∇ ·a = 0, and consider
the case σ= 0 in (6),

η+(x) = x+δta(x) = x+δt

[
a0

1
a0

2

]
+δt

[
∂x a1x +∂y a1 y
∂x a2x −∂x a1 y

]
=η+

a (x).
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It is not quite an isometry because det∇(x+aδt ) = 1− [(∂x a1)2 +∂y a1∂x a2]δt 2.
Consider the quadrature at the mid edges with weight ωi

k = 1
3 |T k |, the area of T k . A triangle

(q1,q2,q3) is transformed by η+ into the triangle (q̂1, q̂2, q̂3) with

q̂ j = q j +δta0 +δt (∇a)T q j .

Obviously a mid edge 1
2 (q j1 +q j2 ) of T k is mapped into a mid edge of T̂ k . Therefore, the only

error is due to the variation of the area of the triangle: |T̂ k | =det∇(x+δta)|T k |. Indeed, as un
h (η+)

is affine on T k and because of (3),
∑

i∈I (T k )

un
h (ηi )2ωi

k = |(uh ◦η+)2|0,T̂ k = (1−δt 2 det∇a)|u2
h |0,T k ,

because the quadrature is exact for P 2 functions; | f |0,T is the integral of f on T .

Proof in the general case. For simplicity we consider the case σ = 0 in (6). Consider a triangle
T k and a Taylor expansion of a about x0, the center of T k ,

a(x) = a0 +A(x−x0)+ (x−x0)⊗ (x−x0) :Ψ(x),

for some bounded in x third order tensorΨ. Hence,

η+
a (x) =ηl (x)+δt (x−x0)⊗ (x−x0) :Ψ(x) where ηl (x) := x+δt (a0 +A(x−x0)) is affine.

Recall the notation ηi := η+
a (ξi ) and let ηi

l := ηl (ξi ). The segment [ηi
l ,ηi ] cuts a finite number

of edges of the triangulation. Let these intersections be {ξi
j }J−1

1 . With the convention that ξi
0 :=ηi

l

and ξi
J :=ηi , we can write

un
h (ηi )2 −un

h (ηi
l )2 =

∑
0≤ j≤J−1

(
un

h (ξi
j+1)2 −un

h (ξi
j )2

)
.

Each term is continuously differentiable, so the following Taylor expansion is valid,

un
h (ηi )2 −un

h (ηi
l )2 = 2

∑
0≤ j≤J−1

un
h (xi

j ) ·∇un
j (xi

j )(ξi
j+1 −ξi

j ) ≤ 2max
j

∣∣∣un
h (xi

j ) ·∇un
j (xi

j )
∣∣∣ |ηi −ηi

l |,

where xi
j ∈ [ξi

j ,ξi
j+1]. Let xi

M = argmax j |un
h (xi

j ) ·∇un
j (xi

j )|. Then we have found xi
M ∈ [ηi ,ηi

l ] such
that,

un
h (ηi )2 ≤ un

h (ηi
l )2 +2|un

h (xi
M ) ·∇un

j (xi
M )| |ηi −ηi

l |.
As ∇·a = 0, A is as in the linear case . Hence, x → ηl (x) being affine, by (7),

∑
i∈I (T k ) un

h (ηi
l )2ωi

k
is bounded by (1−detAδt 2)|un

h |20,T k . Now |ηi −ηi
l | = δt (ξi −x0)⊗ (ξi −x0) :Ψ|, so,

∑
i∈I (T k )

un
h (ηi )2ωi

k ≤ (1−detAδt 2)|un
h |20,T k +h2δt∥Ψ∥∞

∑
i∈I (T k )

2|un
h (xi

M ) ·∇un
h (xi

M )|ωi
k

A discrete Cauchy–Schwarz inequality leads to,

2
∣∣un

h (xi
M )

∣∣∣∣∇un
h (xi

M )
∣∣≤ un

h (xi
M )2 +

∣∣∇un
h (xi

M )
∣∣2 ≤ 1

νδt

(
un

h (xi
M )2 +νδt |∇un

h (xi
M )|2

)
.

At the cost of a multiplicative constant we may replace xi
M by ξ j (i ), the nearest quadrature point

in the triangle of xi
M and obtain,

∑
k

∑
i∈I (T k )

2|un
h (xi

M ) ·∇un
h (xi

M )|ωi
k ≤ C

νδt

∑
k

∑
i∈I (T k )

(
un

h (ξ j (i ))2 +νδt |∇un
h (ξ j (i ))|2

)
ωi

k ≤ C ′

νδt
∥un

h∥2
νδt .
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The last inequality holds for a regular triangulation because each quadrature point occurs at most
N times, finite, and the ωi

k differs from ω
j (i )
k at most by the ratio R of areas of triangles:

∑
k,i∈I (T k )

(
un

h (ξ j (i ))2 +νδt |∇un
h (ξ j (i ))|2

)
ωi

k ≤
∑

k,i∈I (T k )

max
ωi

k

ω
j (i )
k

(
un

h (ξ j (i ))2 +νδt |∇un
h (ξ j (i ))|2

)
ω

j (i )
k

≤ R N
∑

k,i∈I (T k )

(
un

h (ξi )2 +νδt |∇un
h (ξi )|2

)
ωi

k .

In the end,
∑
k

∑
i∈I (T k )

un
h (ηi )2ωi

k ≤
(
1+|detA|δt 2 +C

h2

ν

)
∥un

h∥2
νδt .

This proves (8) and completes the proof of Proposition 3. □

1.1. Error Estimates

Let un
e ∈ H 1(Ω) be the solution of the continuous problem (1) discretized in time and with the

same η+
a as in the discrete case; then let un

eh ∈Vh be the projection of un
e in the sense that

∫

Ω
(un

e û +νδt∇un
e ∇û) =

∫

Ω
un−1

e · û ◦η+
a , ∀û ∈ H 1(Ω),

∫

Ω
(un

eh ûh +νδt∇un
eh∇ûh) =

∫

Ω
(un

e ûh +νδt∇un
e ∇ûh) ∀ûh ∈Vh . (9)

Lemma 4. Let ϵn
h = un

h −un
eh defined by (9). Then,

∥ϵn
h∥2

νδt ≤
(
1+C

(
h2

ν
+δt 2

))
∥ϵn−1

h ∥2
νδt +C h2∥ϵn−1

h ∥νδt . (10)

Proof. Let Q be the quadrature (5),

QΩ(v, w) :=
∑
i∈I

v(ξi )w(ξi )ωi =
∑
k

QT k (v, w), QT k (v, w) =
∑

i∈I (T k )

v(ξi )w(ξi )ωi
k .

Then ∀ûh ∈Vh ,∫

Ω

(
ϵn

h ûh +δtν∇ϵn
h ·∇ûh

)=QΩ(un−1
h , ûh ◦η+

a )−
∫

Ω
un−1

e · ûh ◦η+
a

=QΩ(ϵn−1
h , ûh ◦η+

a )+QΩ(un−1
eh , ûh ◦η+

a )−
∫

Ω
un−1

e · ûh ◦η+
a

Consequently

∥ϵn
h∥2

νδt =QΩ(ϵn−1
h ,ϵn−1

h ◦η+
a )+QΩ(un−1

eh −un−1
e ,ϵn−1

h ◦η+
a )

+QΩ(un−1
e ,ϵn−1

h ◦η+
a )−

∫

Ω
un−1

e ·ϵn−1
h ◦η+

a .

A discrete Schwartz inequality is applied to the first term on the right and then (8),

QΩ(ϵn−1
h ,ϵn−1

h ◦η+
a ) ≤

(
1+C

(
h2

ν
+δt 2

))
∥ϵn−1

h ∥2
νδt

The second term is handled in the same way,

QΩ(un−1
eh −un−1

e ,ϵn−1
h ◦η+

a ) ≤
(
1+C

(
h2

ν
+δt 2

))
∥ϵn−1

h ∥νδt · ∥un−1
eh −un−1

e ∥0

≤C h2
(
1+C

(
h2

ν
+δt 2

))
∥ϵn−1

h ∥νδt .



1114 Frédéric Hecht and Olivier Pironneau

Finally the third term is bounded by the quadrature error on T̂ k for un−1
e ◦ (η+)−1,

QΩ(un−1
e ,ϵn−1

h ◦η+
a )−

∫

Ω
un−1

e ·ϵn−1
h ◦η+

a ≤ (1+Cδt 2)h2∥un−1
e ◦ (η+

a )−1∥3 · ∥ϵn−1
h ∥νδt .

Let us gather the pieces

∥ϵn
h∥2

νδt ≤
(
1+C (

h2

ν
+δt 2)

)
∥ϵn−1

h ∥2
νδt +C h2∥ϵn−1

h ∥νδt □

Proposition 5.

∥ϵn
h∥νδt ≤

(
∥ϵ0

h∥νδt +C
h2

δt

)(
1+C

(
h2

ν
+δt 2

))n

. (11)

Proof. Recurrence (10) is of the type

(εn)2 − (εn−1)2 ≤α(εn)2 +βεn

with εn = ∥ϵn
h∥νδt , β=C h2 and α=C ( h2

ν +δt 2). It is rewritten as

εn −εn−1 ≤ εn−1

εn +εn−1 (αεn−1 +β) ≤αεn−1 +β

⇒ εn ≤ ε0(1+α)n +C h2
n−1∑
j=0

(1+α) j ≤ ε0(1+α)n + (1+α)n −1

α
C h2.

The result derives from the fact that n ≤ T /δt and (1+α)n −1 ≤ nα(1+α)n−1. □

Remark 6. Notice that the sequence is closed to the solution of the ODE in time ε′ = 1
2δt (αε+β),

ε(t )+ β

α
=

(
ε(0)+β

α

)
exp

(
t
α

2δt

)
, approximated by ε(t )≈ε(0)

(
1+t

α

2δt

)
+t

β

2δt
when h2≪νδt ,

because then α
δt ≪ 1. So, at best, a tighter argument will only improve the constants in (11).

Remark 7. To derive the total error from ϵn
h is standard. The time discretization being first order

it produces and extra O(δt ) term , so the total error is of order δt + h2

ν , provided h2 < νδt . Notice
that here too, as for Primal Characterisic-Galerkin methods, δt should not be chosen too small.

2. Numerical Tests

2.1. The Rotating Gaussian Bell

A point x0 = (x0
1,x0

2)T convected by a(x) = (−x2,x1)T is in fact rotated at time t to x0(t ) = (x0
1 cos t +

x0
2 sin t ,−x0

1 sin t +x0
2 cos t )T . Consider

ue (x, t ) = e−
r |x−x0(t )|2

1+4νr t

1+4νr t
(12)

It verifies (1) and ∂nue ≈ 0 if r is large and ν is small.
A Delaunay–Voronoi mesh generator is used for the triangulations of the unit circle. We tested

3 meshes with 926, 3601 and 14071 vertices, corresponding respectively to N = 100, 200 and 400
boundary vertices. The corresponding number of time steps chosen are 33, 66 and 133.

The other parameters are x0
1 = 0.35, x0

2 = 0,T = 2π, ν= 10−4 or 0.01, r = 10.
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2.2. Convergence Study

In this section ν= 10−4.
The differential equation is discretized by (6) with σ = 1. Vh is constructed with the linear

continuous triangular finite element method and the nonlinear integral is approximated with
the mid-edges as quadrature points of Example 1 or a 9-points quadrature per triangle [5].

Figure 1 shows the convergence rate and Figure 2 shows the Gaussian bell after one turn. It is
difficult to see the difference with the exact solution.

A discontinuous function is subject to the rotating field to test the robustness with respect to
discontinuity. Results are on Figure 3. Finally, as shown by Figure 4 uh need not be zero at the
boundary. Figures 2, 3 and 4 have been computed with N = 200. Table 1 shows the positivity and
conservativity of the method.
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Figure 1. Plot (log-log scales) of L2

error versus vertices number and ef-
fect of quadratures on the precision.

Figure 2. Gaussian Bell after one
turn and exact solution. The level
lines of both surfaces are very near to
each others. Level lines values are as
in Fig. 3.

Figure 3. u0 = 1(x−0.3)2+y2<0.15and uT
h af-

ter one turn. Notice there is almost no os-
cillation and no numerical diffusion.

Figure 4. Gaussian bell
crossing the boundary, be-
cause initially x0 = 0.5, after
one turn and exact solution.
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2.2. Convergence Study

In this section ν= 10−4.
The differential equation is discretized by (6) with σ = 1. Vh is constructed with the linear

continuous triangular finite element method and the nonlinear integral is approximated with
the mid-edges as quadrature points of Example 1 or a 9-points quadrature per triangle [4].

Figure 1 shows the convergence rate and Figure 2 shows the Gaussian bell after one turn. It is
difficult to see the difference with the exact solution.

A discontinuous function is subject to the rotating field to test the robustness with respect to
discontinuity. Results are on Figure 3. Finally, as shown by Figure 4 uh need not be zero at the
boundary. Figures 2, 3 and 4 have been computed with N = 200. Table 1 shows the positivity and
conservativity of the method.
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Table 1. Positivity, Conservativity and Convergence

N minuh maxuh
∫
Ωuh L2-error

100 −1.13689e-08 0.643741 0.156945 0.0112869

200 1.94281e-11 0.664612 0.156998 0.00282539

400 1.94281e-11 0.665645 0.156962 0.000763338

Exact 1.94281e-11 0.665268 0.156965 0

3. Comparison with other methods

In this section ν= 0.01 and by default N = 200.
We ran the same tests with 4 other popular methods: PCGM [11], SUPG [7], DDG [4] and no

upwinding [8]. Streamline Upwinding Galerkin (SUPG) reads:
∫

Ω

(
un

h −un−1
h

δt
+a ·∇u

)
(wh +αa ·∇wh)+

∫

Ω
ν∇un

h ·∇wh = 0

for all wh ∈Vh ; α= 0.3 in the numerical test.
With homogeneous Dirichlet conditions the Dual Discontinuous-Galerkin (DDG) methods is:

∫

Ω

((
un

h −un−1
h

δt
+a ·∇un

h

)
wh +ν∇un

h ·∇wh

)
+

∫

E
wh(α|n ·a|− 1

2
n ·a)[un

h ] = 0

for all wh ∈ Vh ; α= 0.5 in the numerical test. Here E is the set of inner edges and [b] is the jump
of b across an edge of E .

Finally the centered method which keeps the convective terms as is
∫

Ω

((
un

h −un−1
h

δt
+a ·∇un

h

)
wh +ν∇un

h ·∇wh

)
= 0 ∀wh ∈Vh .

A CFL condition δt ≤ c(ν)h2 is necessary for stability, so the method is not viable for small ν.
Figure 5 shows the horizontal cross sections of the Gaussian bell in the x direction after one

turn for all 5 methods. Obviously PCGM and DCGM perform better, with the advantage that
DCGM is convervative and convergence is proved. The level lines of the Gaussian bell after one
turn are shown on Figures 6, 7, 8 and 10 and the positivity and conservativity on Table 2. Finally
the convergence rates are shown in Figure 9.
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Figure 5. Plot of x → uh(x,0) computed by the 5 methods, at N = 100 (left), N = 200
(middle) and N = 400 (right) .
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Figure 6. Bell com-
puted with N = 100
and with PCGM after
one turn and exact so-
lution (level lines are
essentially on top of
each other).
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Figure 7. Bell com-
puted with N = 100
and with SUPG after
one turn and exact so-
lution. Phase error,
flatness error and max-
imum error are visible.
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Figure 8. Bell com-
puted with N = 100
and with DDG ele-
ments after one turn
and exact solution.
Phase, flatness and
maximum error are
visible.
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Table 2. Comparison of the methods at N=200 after one turn.

Method minuh maxuh
∫
Ωuh L2-error

ue intorpolated 1.94281e-11 0.66339 0.156984
PCGM 1.94281e-11 0.662813 0.156777 0.00277886
DCGM 1.94281e-11 0.664612 0.156998 0.00282539
SUPG 1.94281e-11 0.40193 0.157103 0.0893023
DDG 2.27941e-06 0.448727 0.157102 0.0847009

Centered 1.94281e-11 0.400491 0.157099 0.0894042
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Figure 9. Plot (log-log scales) of
L2 error versus N . Both charac-
teristic methods are equally pre-
cise and the other methods (SUPG,
DDG, no upwding) are equally coarse.
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Figure 10. Bell computed with N =
100 and with the centered FEM (i.e.
without upwinding). There are ten
times more time steps to perform
a turn. Phase error, maximum error
and flatness error are visible.
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4. Application to the Kolmogorov Equation for Heston’s Model

Let E[ f ] be the expected value of a random f . In quantitative finance Heston’s model [6] is,

dX t = X t (r dt +
√

Yt dW 1
t ), dYt = κ(θ−Yt )dt +λ

√
Yt dW 2

t ,

E[dW 1
t dW 2

t ] = ρ, X0 =N(µ,σ), Y0 =N(µ′,σ′).

It is popular to set the (undiscounted) price of a “Put” to be PT = E(K − XT )+ at time T where K
is the “strike”. Here the random process t → {X t ,Yt } is driven by its initial conditions {X0,Y0} and
the two normal Brownian motions t → W i

t , i = 1,2 with correlation ρ. The initial conditions are
Gaussian random variables of means µ,µ′ and standard deviations σ,σ′. The parameters r,κ,θ
and λ are positive real numbers. Kolmogorov’s theorem gives the PDF u ∈ L2(R2

+) of {X t ,Yt }: for
all {x, y, t } ∈R2

+× (0,T ),

∂t u +∇·
[

r xu
κ(θ− y)u

]
−∇2 :

([
x2 y λx y
λx y λ2 y

]
u

2

)
= 0, u|t=0 =Gµ,σ(x)Gµ′,σ′ (y), (13)

where G is the Gaussian curve. Then PT = ∫
R2
+

(K − x)+uT (x, y). Computing PT for large T is a
challenge because it is essential to keep having

∫
R2
+

ut = 1 for all t and u(x, y) ≥ 0 for all x ≥ 0, y ≥ 0.
We computed uT at T = 10 with DCGM when r = 0.03, K = 75, µ = 50, κ = 2, θ = 0.1, λ = 0.2,

ρ = −0.5, µ′ = 0.75, σ = 10, σ′ = 0.1. The results are in Figure 11 after 1500 time iterations and a
mesh of 150×150 vertices. No negative values are observed and by construction

∫
R2
+

u = 1.
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Figure 11. The level lines of the PDF of Heston’s model at time T=10.

5. Non Homogeneous Dirichlet Conditions

Equation (3) is wrong when a ·n|Γ 6= 0. To compensate with the fact that η−(Ω) 6=Ω, a correction
must be added (resp. subtracted) outside (resp. inside) Γ if a ·n|Γ is negative (reps. positive). For
Dirichlet conditions u = uΓ, we propose to replace (4) by: find un

h −uΓ ∈V0h such that
∫

Ω

(
un

h ûh +δtν∇un
h ·∇ûh

)−
∫

Γ
δta ·nun

h ûh =
∑
i∈I

un−1
h (ξi )ûh(ηi )ωi , ∀ûh ∈V0h , (16)

This formulation was tested on the Navier-Stokes equations for the backward step problem,
using the P 2 −P 1 element. Results are on Figure 12. However the results are better without the
boundary integral on right, so the generalization to Dirichlet conditions is not straightforward,
the problem is open.
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Dirichlet conditions u = uΓ, we propose to replace (4) by: find un

h −uΓ ∈V0h such that

∫

Ω

(
un

h ûh +δtν∇un
h ·∇ûh

)−
∫

Γ
δta ·nun

h ûh =
∑
i∈I

un−1
h (ξi )ûh(ηi )ωi , ∀ûh ∈V0h , (14)

This formulation was tested on the Navier–Stokes equations for the backward step problem,
using the P 2 −P 1 element. Results are on Figure 12. However the results are better without the
boundary integral on right, so the generalization to Dirichlet conditions is not straightforward,
the problem is open.
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Figure 12. Stationary solution of the Navier-Stokes equation at Reynold 50. The level lines
of the horizontal component of the fluid velocity are shown. The color scale is the same as
that of Figure 3. The size of the recirculation is 3 times the height of the step as expected [10].
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