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Abstract. Let (X ,∆) be a compact Kähler klt pair, where KX +∆ is ample or numerically trivial, and ∆ has
standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for (X ,∆), then
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1. Introduction

Let X be an n-dimensional compact Kähler manifold and let us assume that either

(I) KX is ample (and X is thus projective), or
(II) KX is numerically trivial (equivalently, c1(X ) = 0 in H2(X ,R)).

As a consequence of the existence of a Kähler–Einstein metricωKE on X (proved by Aubin [4] and
Yau [43]), the Chern classes of X satisfy the Miyaoka–Yau inequality(

2(n +1)c2(X )−n c2
1(X )

) ·αn−2 ≥ 0. (MY)

where in case (I), we set α = [KX ], while in case (II), α can be an arbitrary Kähler class.
Furthermore, in case of equality, the universal cover π : X̃ → X is (biholomorphic to)

(I) the n-dimensional unit ball Bn = {
(z1, . . . , zn) ∈Cn

∣∣ |z1|2 +·· ·+ |zn |2 < 1
}
,

(II) the n-dimensional affine space Cn .

We can reformulate the above conclusion by saying that

(I) X = Bn/
Γ with Γ⊂ PU(1,n) = Aut(Bn),

(II) X = Cn/
Γ with Γ⊂Cn ⋊U(n) = Aut(Cn ,π∗ωKE),

where in both cases, the action of Γ on X̃ is fixed point-free. Not surprisingly, there is a beautiful
exposition of this circle of ideas by Jean-Pierre Demailly [18].

It seems natural to investigate the general case of quotients by cocompact lattices Γ⊂ Aut(X̃ )
(with X̃ =Bn or Cn endowed with the Bergman metric or the flat metric, respectively), the action
being of course assumed to be properly discontinuous. The corresponding quotients are then
naturally endowed with an orbifold structure that can be encoded in the datum of a Q-divisor
with standard coefficients (see Setup 1 below). To sum up, it is natural to consider pairs (X ,∆)
when dealing with these quotients.

The question of uniformizing spaces (as opposed to pairs) in the cases (I) and (II) has been
considered in the framework of klt singularities. To quote a few relevant papers: [15, 24, 27, 28,
29, 30, 38]. This article grew out of an attempt to understand the general situation with an orbifold
structure in codimension one.

Unfortunately, the parallels between cases (I) and (II) cannot be pursued throughout this
introductory section since the difficulties (when dealing with the inequality (MY) in the singular
setting) are not of the same nature. The following three facts illustrate this point:

• In case (I), the variety X is necessarily projective, but the codimension one part of
the orbifold structure cannot be easily eliminated. Therefore we have to use orbifold
techniques in the proof.

• In case (II), we also need to consider (non-algebraic) compact Kähler spaces, but we
can get rid of the codimension one part of the orbifold structure via a cyclic covering
(see Proposition 12). This enables us to assume that ∆= 0 for most of the argument.

• In case (I), the Bergman metric is invariant under the full automorphism group of Bn ,
but this is not true of the flat metric in case (II). Therefore (2) below does not have
an analog in Corollary 7, although a conjecture due to Iitaka [32] (or rather an orbifold
version thereof) predicts that this should in fact be true.

Due to this break in symmetry, we split the discussion according to the sign of the canonical
bundle.

The canonically polarized case

Let us recall the singular version of the inequality (MY) as proven by the third-named author
together with B. Taji [31]. When dealing with case (I), we work in the following setting:
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Setup 1. Let (X ,∆) be an n-dimensional klt pair, where X is a projective variety and ∆ has
standard coefficients, i.e. ∆ = ∑

i∈I
(
1− 1

mi

)
∆i with integers mi ≥ 2 and the ∆i irreducible and

pairwise distinct.

Theorem 2 (⊂ [31, Thm. B]). Let (X ,∆) be as in Setup 1, and assume that KX +∆ is big and nef.
Assume additionally that every irreducible component ∆i of ∆ is Q-Cartier. Then the following
inequality holds: (

2(n +1) c̃2(X ,∆)−n c̃2
1(X ,∆)

) · [KX +∆]n−2 ≥ 0. (2)

Here, c̃2(X ,∆) and c̃2
1(X ,∆) denote the appropriate orbifold Chern classes of the pair (X ,∆), as

defined e.g. in [31, Notation 3.7]. □

Remark. In the above theorem, the assumption that the ∆i be Q-Cartier is not necessary, and
establishing this is one of the (minor) contributions of this paper, cf. Theorem 36. While this may
seem like an innocuous technical issue at first sight, eliminating the Q-Cartier assumption will
become crucial below when deducing Corollary 4 from Theorem A, see Remark 38.

As in the smooth case, it is interesting to characterize geometrically those pairs that achieve
equality in (2). In the case where∆= 0, this has been achieved in [29, Thm. 1.2] and [30, Thm. 1.5]:
equality holds if and only if there is a finite quasi-étale Galois cover Y → X such that the universal
cover of Y is the unit ball. An expectation concerning the general case was formulated in [29,
§10.2]. Our first main result confirms this expectation.

Theorem A (Uniformization of canonical models). Let (X ,∆) be as in Setup 1. Assume that
KX +∆ is ample and that equality holds in (2). Then the orbifold universal cover π : X̃∆ → X of
(X ,∆) is the unit ball (cf. Definition 24). More precisely, (X̃∆,∆̃) ∼= (Bn ,;).

In fact, a suitable converse of the above theorem also holds, and we obtain the following
corollary.

Corollary 3 (Characterization of ball quotients). Let (X ,∆) be as in Setup 1. The following are
equivalent:

(1) KX +∆ is ample, and equality holds in (2).
(2) The orbifold universal cover of (X ,∆) is the unit ball Bn .
(3) (X ,∆) admits a finite orbi-étale Galois cover f : Y → X (cf. Definition 8), where Y is a

projective manifold whose universal cover is the unit ball.

In the spirit of [30, Thm. 1.5], we can also prove the following uniformization statement for
minimal pairs of log general type.

Corollary 4 (Uniformization of minimal models). Let (X ,∆) be as in Setup 1. Assume that KX +∆
is big and nef and that equality holds in (2). Then the canonical model (X ,∆)can =: (Xcan,∆can) of
the pair (X ,∆) is a ball quotient in the sense of Theorem A.

The flat case

As mentioned earlier, Kähler quotients of Cn by cocompact groups of isometries are in general
not projective, so we have to consider the following framework.

Setup 5. Let (X ,∆) be an n-dimensional klt pair, where X is a compact Kähler space and ∆ has
standard coefficients, i.e. ∆ = ∑

i∈I
(
1− 1

mi

)
∆i with integers mi ≥ 2 and the ∆i irreducible and

pairwise distinct.

In this more general Kähler setting, the methods of [31] cannot be used to prove a singular
analogue of the Miyaoka–Yau inequality. Instead, we rely on the Decomposition Theorem
from [5] to deduce the following singular version of the inequality (MY) in case (II).
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Theorem 6 (Singular Miyaoka–Yau inequality). Let (X ,∆) be as in Setup 5 and assume that
c1(KX +∆) = 0 ∈ H2(X ,R). Let α ∈ H2(X ,R) be any Kähler class. We then have:

c̃2(X ,∆) ·αn−2 ≥ 0. (3)

As before, we are particularly interested in what happens if equality is achieved.

Theorem B (Uniformization in the flat case). Let (X ,∆) be as in Setup 5. Assume that c1(KX +∆) =
0 ∈ H2(X ,R) and that equality holds in (3) for some Kähler class α. Then the orbifold universal
cover π : X̃∆→ X of (X ,∆) is the affine space (cf. Definition 24). More precisely, (X̃∆,∆̃) ∼= (Cn ,;).

As above, we can formulate a converse and get the following corollary.

Corollary 7 (Characterization of torus quotients). Let (X ,∆) be as in Setup 5. The following are
equivalent:

(1) c1(KX +∆) = 0 ∈ H2(X ,R), and equality holds in (3) for some Kähler class α.
(2) (X ,∆) admits a finite orbi-étale Galois cover f : T → X (cf. Definition 8), where T is a

complex torus.

The previous statements are thus generalizations of [38, Thm. 1.2] (itself elaborating on [27,
Thm. 1.17]). The generalization is threefold:

• Here X is a compact Kähler space, not necessarily projective.
• The class α is transcendental, a priori not an ample class.
• Ramification is allowed in codimension one; i.e. we work with klt pairs rather than klt

spaces.

Acknowledgements

We are honored to dedicate this paper to the memory of Jean-Pierre Demailly, who has been a
constant source of inspiration and admiration to us.

B.C. would like to thank Institut Universitaire de France for providing excellent working
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2. Generalities on orbifolds

In this section, we consider Kawamata log terminal (klt) pairs (X ,∆) consisting of a normal
algebraic variety or complex space X of dimension n and a Q-divisor ∆ = ∑

i∈I
(
1− 1

mi

)
∆i on X ,

with mi ≥ 2.

2.1. Orbi-structures and orbi-sheaves

Most of the definitions and basic properties given below can be found in e.g. [31, §2] in the slightly
more general setting of dlt pairs with standard coefficients, at least if X is algebraic. Working
exclusively with klt pairs will simplify the exposition.

Definition 8 (Adapted morphisms). Let f : Y → X be a finite surjective Galois morphism from a
normal variety or complex space Y . One says that f is:

• adapted to (X ,∆) if for all i ∈ I , there exists ai ∈ Z≥1 and a reduced divisor ∆′
i on Y such

that f ∗∆i = ai mi∆
′
i ,

• strictly adapted to (X ,∆) if it is adapted and if ai = 1 for all i ∈ I ,
• orbi-étale if it is strictly adapted and the divisorial component of the branch locus of f is

contained in supp(∆). Equivalently, if f is étale over Xreg \ supp(∆).
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Remark. If X is compact, then a map f : Y → X as above is orbi-étale if and only if KY =
f ∗(KX +∆).

Definition 9 (Orbi-structures). An orbi-structure for the pair (X ,∆) consists of a compatible
collection of triples C = {

(Uα, fα, Xα)
}
α∈J , where (Uα)α∈J is a covering of X by étale-open subsets,

and for each α ∈ J , fα : Xα →Uα is an adapted morphism from a normal complex space Xα with
respect to the pair structure on Uα induced by (X ,∆). The compatibility condition means that for
all α,β ∈ J , the projection map gαβ : Xαβ → Xα is quasi-étale, where Xαβ is the normalization of
Xα×X Xβ.

An orbi-structure C = {
(Uα, fα, Xα)

}
α∈J is called strict (resp. orbi-étale) if for each α ∈ J , the

morphism fα is strictly adapted (resp. orbi-étale). It is called smooth if for each α ∈ J , the variety
Xα is smooth. In this case, the maps gαβ are étale by purity of branch locus.

Definition 10 (Quotient singularities). A pair (X ,∆) is said to have quotient singularities if
locally analytically on X , there exists an orbi-étale morphism f : Y → X , where Y is smooth. The
maximal open subset of X where this condition is satisfied will also be referred to as the orbifold
locus of (X ,∆) and will be denoted by X ◦ ⊂ X or X orb ⊂ X .

Remark. With the above terminology, a pair (X ,∆) admits a smooth orbi-étale orbi-structure if
and only if it has quotient singularities. This is because the compatibility condition is automati-
cally satisfied.

The following technical result will be useful in the sequel: a pair with quotient singularities
whose underlying space is compact Kähler is a Kähler orbifold. The log smooth case had been
already observed in [14, Prop. 2.1]. Slightly more generally, we have the following.

Lemma 11 (Existence of orbifold Kähler metrics). Let (Z ,∆) be a pair with quotient singularities
and such that Z is a Kähler space. Then for any relatively compact open subset X ⋐ Z , there
exists an orbifold Kähler metric ω adapted to (X ,∆|X ) in the sense that ω is a Kähler metric on
Xreg \ supp∆ which pulls back to a smooth Kähler metric on the smooth local covers.

Proof. One can find an open neighborhood X ′ of X ⊂ Z admitting a finite covering X ′ =⋃
α∈I X ′

α

such that there exist smooth orbi-étale covers pα : Y ′
α → X ′

α. We set Xα := X ′
α ∩ X and Yα :=

p−1
α (Xα). We pick a Kähler metric ωZ on Z , as well as potentials φα on X ′

α such that ddc p∗
αφα

is a Kähler metric on Y ′
α; the functionsφα are solely continuous on Xα but p∗

αφα is smooth on Y ′
α.

We can assume that |φα| ≤ 1 on Xα. Finally, let (χα)α∈I be some partition of unity subordinate to
the covering (Xα)α∈I and set φ :=∑

χαφα. We set N := |I | and pick a constant C > 0 such that

∥ddcχα∥2
ωZ

+∥dχα∥2
ωZ

≤C , (4)

holds for any α ∈ I and we claim that the current

ω := MωZ +ddcφ

is an orbifold Kähler metric on X for M ≫ 1. Clearly, ω is smooth as an orbifold differential
form, as one can see directly by using the compatibility of the covers. Let x ∈ X and let J :=
{α ∈ I , x ∈ Xα} = {α1, . . . ,αs }. We set X J := ⋂

α∈J Xα and choose a connected component YJ of the
normalization of p−1

α1
(X J )×X J · · · ×X J p−1

αs
(X J ). The space YJ is a smooth manifold endowed with

an orbi-étale map p J : YJ → X J induced by the pαi , i = 1, . . . , s.
We have 1 = ∑

α∈I χα(x) = ∑
α∈J χα(x), hence there exists β ∈ J such that χβ(x) ≥ 1

N . Since
p∗

J (ddcφβ|X J ) is a Kähler metric on YJ (which extends slightly beyond), we infer that there exists
δ> 0 such that

∀α ∈ J , ddcφβ ≥ δdφα∧dcφα on X J .

Next, we have the following inequality for any ε> 0:

±(dφα∧dcχα+dχα∧dcφα) ≤ εdφα∧dcφα+ε−1dχα∧dcχα.
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Combining the above inequality with (4), we get for any ε> 0:

ω= MωZ + ∑
α∈I

χαddcφα+
∑
α∈I

φαddcχα+
∑
α∈I

(dφα∧dcχα+dχα∧dcφα)

≥ (M −NC (1+ε−1))ωZ +χβddcφβ−ε
∑
α∈I

dφα∧dcφα

which yields, at the point x:

ω≥ (M −NC (1+ε−1))ωZ +
(

1

N
− Nε

δ

)
ddcφβ.

Therefore, if we choose ε := δ
2N 2 and M = 2NC (1+ε−1), then ω is an orbifold Kähler metric near

x. Since x is arbitrary and the constants N ,C ,δ are uniform, the lemma is now proved. □

2.2. Covering constructions

In what follows, we present some variations on the well-known cyclic covering theme. The first
one, Proposition 12, is a consequence of [42, Ex. 2.4.1] when X is quasi-projective so that KX is
well-defined as a (class of) Weil divisor, but one needs to argue slightly differently in the complex
analytic case. The second one, Proposition 13, improves upon previous results such as [33,
Prop. 2.9], [31, Ex. 2.11] and [17, Prop. 2.38]. The main observation is that given a pair (X ,∆),
it is (for our purposes) unnecessary to assume that the components of ∆ are Q-Cartier as long as
KX +∆ is. As explained in Remark 38, this is crucial for proving Corollary 4.

Proposition 12 (Existence of orbi-étale covers). Let (X ,∆) be a (not necessarily klt) pair with
standard coefficients, where X is a normal complex space. Assume that there is a reflexive rank 1
sheaf L and an integer N ≥ 1 such that N∆ is a Z-divisor and

OX (N∆) ∼=L [N ].

Then there exists an orbi-étale morphism f : Y → X . In particular:
If (X ,∆) is klt and there is an integer N ≥ 1 such that N∆ is a Z-divisor and ω[N ]

X (N∆) ∼= OX ,
then we can find an orbi-étale morphism f : Y → X such that ωY

∼= OY and Y has canonical
singularities.

Proof. Let σ ∈ H0
(
X ,L [N ]

)
be such that div(σ) = N∆, and let us consider the cyclic covering

g : Z → X induced by σ, cf. e.g. [36, Def. 2.52]. In the analytic setting, we can construct f in
the following way. On Xreg \ supp(∆), L |Xreg\supp(∆) is torsion and it gives rise to an étale cover
g ◦ : Z ◦ → Xreg \ supp(∆) (the N th-root of σ|Xreg\supp(∆)) that is moreover a Galois cover with cyclic
Galois group. According to [19, Thm. 3.4], the map g ◦ can be extended to a finite cover f : Z → X
with the same Galois group.

We claim that g ramifies exactly at order mi along ∆i . It is enough to check the claim at a
general point of ∆i . Therefore, there is no loss of generality assuming that (X ,∆) = (U , (1− 1

m )D)

where U ⊂ Cn (n = dim(X )) is a ball, D = (z1 = 0)∩U , and that σ|U = z
N (1− 1

m )
1 σ⊗N

L ,U
with σL ,U a

trivializing section of L over U .
Write N = km, and let V := {(t , z) ∈ C×Cn

∣∣ t N = zk(m−1)
1 } ⊂ C×Cn and let ν : V ν → V be its

normalization. One can actually write down exactly what V ν is. Indeed, let ζ be a primitive
k-th root of unity, and set Vp := {(t , z)

∣∣ t m = ζp zm−1
1 } ⊂ C×Cn for p = 0, . . . ,k − 1. We have a

decomposition V = ⋃
p Vp into irreducible components, and the normalization νp : V ν

p → Vp is
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the affine space V ν
p
∼=C×Cn−1 with map νp (u, w) = (ξum−1,um , w) where ξ is an m-th root of ζp .

Now, set V ν :=⊔
p V ν

p and define ν : V ν→V by ν|V ν
p

:= νp . We have a diagram

V ν V Z

U X

j

ν

prCn g

where j is obtained by the universal property of normalization. In particular, j is finite and
generically 1-to-1 between normal varieties, hence it is an open embedding. Moreover, if (u, w) ∈
V ν

p , we have prCn ◦ν(u, w) = (um , w), hence the latter map ramifies at order m along D . It follows
that g ramifies at order m along D .

Finally, one picks one irreducible component Y of Z and sets f := g |Y . It yields the expected
cover, which is Galois with group G <Z/nZ∼= Gal(Z → X ) defined as the stabilizer of Y .

As for the last part of the proposition, we can apply the above construction to L = ω[−1]
X :=

ω ‹

X . This provides us with an orbi-étale morphism f : Y → X . In particular, Y is klt and the
computations made above show that f ∗(KX +∆) is trivial over Xreg \∆sg. So we get that ωY is
trivial as well and finally that Y has only canonical singularities. □

Proposition 13 (Existence of strictly adapted covers). Let (X ,∆) be a projective pair with stan-
dard coefficients such that KX +∆ is Q-Cartier (but not necessarily klt). Then there exists a very
ample divisor L on X such that for general H ∈ |L|, there exists a cyclic Galois cover f : Y → X with
the following properties:

(1) The morphism f is orbi-étale for
(
X ,∆+ (1− 1

N )H
)
, where N := deg( f ).

(2) The morphism f is strictly adapted for (X ,∆).
(3) If (X ,∆) is klt, then so are the pairs

(
X ,∆+ (1− 1

N )H
)

and (Y , ;).

Proof. Pick, once and for all, a representative K of KX , that is, an integral (but not necessarily
effective) Weil divisor K on X such that KX ∼ K . Choose a very ample divisor A on X and a
positive integer N such that

L := N · (A− (K +∆)
)

is integral and very ample, and pick a general element H ∈ |L|. Consider the principal divisor

D := H −L = H +N · (K +∆− A) ∼ 0.

Let f : Y → X be the degree N cyclic cover associated to D , as in [42, §2.3]. (To be more precise,
Y is an arbitrary irreducible component of the normalization of that cover.) We need to check
properties (1)–(3).

By construction, the branch locus of f is contained in supp(D). Recall from [42] that writ-
ing D = ∑

i di Di , the ramification order of f along each component of f −1(Di ) is given by
N /hcf(di , N ). Since K , A and H are Z-divisors, where H is even reduced, this implies (1). Prop-
erty (2) is an immediate consequence.

For (3), it is enough to show the first claim thanks to (1) and [36, Prop. 5.20]. To check the
claim, we take a log resolution π : X̃ → X of (X ,∆) and write

K X̃ +∆′ =π∗(KX +∆)+∑
ai Ei

as usual, where ∆′ is the strict transform of ∆. Since H is a general element of |L|, and π∗|L| is
basepoint-free, one can assume that π∗H = π−1∗ H is smooth and intersects each stratum of the
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exceptional divisor of π and of ∆′ smoothly. In particular, π is also a log resolution for the pair(
X ,∆+ (1− 1

N )H
)
. Now, the identity

K X̃ +∆′+
(
1− 1

N

)
π−1
∗ H =π∗

(
KX +∆+

(
1− 1

N

)
H

)
+∑

ai Ei

shows that
(
X ,∆+ (1− 1

N )H
)

is klt. □

Remark. More generally, it can be observed that a pair (X ,∆) (with X a normal analytic space)
admits strictly adapted covers if there exists a Cartier divisor D on X having no component in
common with ∆ and such that m(KX +∆) ∼ D for some (sufficiently divisibe) integer m ≥ 1. We
can indeed apply Proposition 12 to the pair (X \D,∆|X \D ) and get an orbi-étale cover Y ◦ → X \D .
Its completion over X is then adapted with respect to ∆ and the extra-ramification is supported
over the components of D .

The following result seems to have been known to experts for a long time. A proof of it was
written down in [26] in the case where ∆ = 0, and the general case follows almost immediately
from Proposition 12 as we will explain.

Lemma 14 (Klt pairs have quotient singularities in codimension two). Let (X ,∆) be a klt pair
with standard coefficients. Then there is a Zariski closed subset Z ⊂ Xsg∪supp∆with codimX (Z ) ≥
3 such that for X ◦ := X \ Z , the pair (X ◦,∆|X ◦ ) admits a smooth orbi-étale orbi-structure C ◦.

Proof. Since KX +∆ is aQ-Cartier divisor, we can cover X by (affine or Stein) open subsets Uβ ⊂ X ,
β ∈ I , such that (KX +∆)|Uβ

∼Q 0. By Proposition 12, we can find a finite cyclic cover gβ : U ′
β
→Uβ

that branches exactly over the∆i |Uβ
with multiplicity mi . Moreover, U ′

β
has klt singularities, since

KU ′
β
= g∗

β
(KUβ

+∆|Uβ
). We can now use [26, Prop. 9.3] or [24, Lem. 5.8] to find a smooth orbi-étale

orbi-structure {U ′
βγ

, fβγ, X ′
βγ

}γ∈J on U ′
β

\ Zβ, for some closed subset Zβ ⊂ U ′
β

of codimension at
least three. Set Uβγ = gβ(U ′

βγ
), so that

⋃
βUβγ ⊂ Uβ is an open subset whose complement is of

codimension at least three. In summary, we get the following diagram:

X ′
βγ

U ′
βγ

Uβγ

U ′
β

Uβ X

fβγ

hβγ

gβ

gβ

(5)

Now
{

Uβγ,hβγ, X ′
βγ

}
(β,γ)∈I×J

is the sought-after smooth orbi-étale orbi-structure on (X ◦,∆|X ◦ ),

where the open subset X ◦ :=⋃
(β,γ)∈I×J Uβγ has complement of codimension at least three. □

Remark 15. In particular, a klt surface pair with standard coefficients admits a smooth orbi-étale
orbi-structure, hence it has quotient singularities in the sense of Definition 10. This is of course
well-known and follows from the cyclic cover construction recalled above and [36, Prop. 4.18].

Definition 16 (Orbi-sheaves). An orbi-sheaf with respect to an orbi-structure C ={
(Uα, fα, Xα)

}
α∈J on (X ,∆) is the datum of a collection (Eα)α∈J of coherent sheaves on each Xα,

together with isomorphisms g∗
αβ

Eα ∼= g∗
βα

Eβ of OXαβ
-modules satisfying the natural compatibility

conditions on triple overlaps.

All the usual notions for sheaves (locally free, reflexive, subsheaves, morphisms etc.) can be
carried over to this setting in the obvious way, cf. [31, §2.7]. Ditto for Higgs fields and Higgs
sheaves, cf. [31, Def. 2.24].

Recall the following definition from [17, §3]:
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Definition 17 (Adapted differentials). Let γ : Y → X be a strictly adapted morphism for (X ,∆).
Let X ◦ ⊂ X and ι : Y ◦ ,→ Y be the maximal open subsets where γ is good in the sense of [17, Def. 3.5].
The sheaf of adapted reflexive differentials is defined as

Ω[1]
(X ,∆,γ) := ι∗

[(
im

(
γ∗Ω1

X ◦ →Ω1
Y ◦

)⊗OY ◦ (γ∗∆)
)
∩Ω1

Y ◦
]

.

Lemma 18. The following properties hold:

(1) The sheaf Ω[1]
(X ,∆,γ) is a coherent reflexive subsheaf of Ω[1]

Y .

(2) If γ is orbi-étale for (X ,∆), then Ω[1]
(X ,∆,γ) =Ω[1]

Y .
(3) Letγ2 : Z → Y be quasi-étale, where Z is normal. Thenδ := γ◦γ2 : Z → X is strictly adapted

for (X ,∆), and Ω[1]
(X ,∆,δ) = γ[∗]

2 Ω[1]
(X ,∆,γ). □

Definition 19 (Orbifold cotangent sheaf, cf. [31, Def. 2.23]). Consider on (X ,∆) any strictly
adapted orbi-structure C = {

(Uα, fα, Xα)
}
α∈J . Then the sheaves(
Ω[1]

(X ,∆, fα)

)
α∈J

induce a reflexive orbi-sheaf called the orbifold cotangent sheaf, or sheaf of reflexive differential
forms, which we denote byΩ[1]

C
. If the orbi-structure C is smooth and orbi-étale, thenΩ[1]

C
is locally

free. Changing the (strictly adapted) orbifold structure yields compatible sheaves in the sense of [31,
Def. 3.2], hence we will often denote this sheaf by Ω[1]

(X ,∆).

The same construction can be carried out for any integer p ≥ 0, yielding orbi-sheavesΩ[p]
(X ,∆). For

p = 0, we obtain the structure sheaf O(X ,∆), which is nothing but OXα in each chart fα.

Lemma 20. Let (X ,∆) be a projective klt pair with standard coefficients, and let X ◦ be endowed
with a smooth orbi-étale orbi-structure C as in Lemma 14. Let H be an ample line bundle on X
and pick a complete intersection surface

S = D1 ∩·· ·∩Dn−2

of n − 2 general hypersurfaces Di ∈ |mH | for m ≫ 1. Then S ⊂ X ◦ and the restriction of C to
(S,∆|S ) induces a smooth orbi-étale orbi-structure on (S,∆|S ). In particular, (S,∆|S ) has quotient
singularities.

Proof. We have S ⊂ X ◦ for dimensional and genericity reasons. Next, if we express the struc-
ture C as C = {

(Xα, fα,Uα)
}
, set Sα := S ∩Uα, Tα := f −1

α (Sα), gα := fα|Tα , and define C |S :={
(Tα, gα,Sα)

}
. We claim that Tα is smooth, which would prove the lemma. Indeed, since fα is

quasi-finite (as the composition of an étale map with a finite map), one can find an open immer-
sion Xα ,→ Xα and a finite extension fα : Xα→ X of fα as follows:

Tα Xα Xα

Sα Uα X

gα fα fα

Since fα
∗|mH | is basepoint-free, Bertini’s theorem guarantees that if Tα is a general intersection

of (n−2) hypersurfaces in fα
∗|mH |, then Tα∩Xα

reg
is smooth. Since Xα ⊂ Xα

reg
, this shows that

Tα is smooth, hence the lemma. □

2.3. The orbifold fundamental group

Let (X ,∆) be a klt pair with standard coefficients as before, and set X ∗ := Xreg \ supp∆.
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Definition 21 (Fundamental group). The (orbifold) fundamental group of (X ,∆) is defined as

πorb
1 (X ,∆) := π1(X ∗)

/
〈〈γmi

i , i ∈ I 〉〉.
Here, for each i ∈ I , the element γi is a “loop around ∆i ”, i.e. a loop in the normal circle bundle of
(∆i )reg ∩Xreg ⊂ Xreg, and 〈〈· · ·〉〉 denotes the normal subgroup generated by a given subset.

Note that if D =;, then πorb
1 (X ,;) =π1(Xreg) is in general different from π1(X ).

Definition 22 (Covers branched at ∆, cf. [14, Def. 1.3]). A cover of X branched at most at ∆ is a
holomorphic map π : Y → X , where:

(1) Y is a normal connected complex space (not necessarily quasi-projective),
(2) π has discrete fibres and π−1(X ∗) → X ∗ is étale,
(3) at each irreducible component ∆̃ j ,k ⊂π−1(∆ j ), the ramification index r j ,k of π divides m j ,
(4) every x ∈ X has a connected neighborhood V ⊂ X such that every connected component U

of π−1(V ) meets the fibre π−1(x) in only one point, and π|U : U →V is finite.

We say that π is branched exactly at ∆ if in (3), we have r j ,k = m j for all j ,k.

Note that if Y is quasi-projective and π is Galois, then saying that π is branched exactly at ∆ is
the same as saying that π is orbi-étale.

Theorem 23 (Covers and the fundamental group). There exists a natural one-to-one correspon-
dence between subgroups G ⊂ πorb

1 (X ,∆) and covers π : Y → X branched at most at ∆. Further-
more:

(1) G is of finite index if and only if π is finite.
(2) G is a normal subgroup if and only if π is Galois.
(3) Let Y1,2 → X be two covers branched at most at ∆, with corresponding subgroups G1,2 ⊂

πorb
1 (X ,∆). Then there is a factorization

Y2

Y1 X

∃

if and only if G1 ⊂G2.

Proof. The proof is the same as in the snc case, cf. [14, Thm. 1.1], with one important difference:
in order to extend (possibly non-finite) étale covers of X ∗ to branched covers of X , we would
like to apply [19, Thm. 3.4]. In order to do this, we must invoke the finiteness of local orbifold
fundamental groups of klt pairs, as proved in [11, Thm. 1]. (Note that [11] works in the algebraic
category, but in view of [22, Thm. 1.7] and [16, Rem. 6.10] his result extends to complex spaces as
well.) □

Definition 24 (Universal cover). The (orbifold) universal cover of (X ,∆) is the cover π : X̃∆ → X
corresponding to the trivial subgroup {1} ⊂πorb

1 (X ,∆) under the correspondence from Theorem 23.

Let ∆̃ be the divisor on X̃∆ which is supported on π−1(supp∆) and satisfies

K X̃∆
+ ∆̃=π∗(KX +∆).

It is easy to see that the pair (X̃∆,∆̃) is again klt with standard coefficients. Also, ∆̃= 0 if and only
if π is branched exactly at ∆.

Definition 25 (Developable pairs). We say that (X ,∆) is developable if in the above notation, X̃∆

is smooth and ∆̃= 0.

Intuitively, being developable means that the universal cover is a manifold.
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Example 26. Consider the klt pair (X ,∆), where X =P1 and

∆=
(
1− 1

n

)
· [0]+

(
1− 1

m

)
· [∞]

with n,m ≥ 2. Set d = gcd(n,m). Then πorb
1 (X ,∆) = Z

/
dZ, and the universal cover π : X̃∆ = P1 →

P1 is given by [z0 : z1] 7→ [zd
0 : zd

1 ]. We have

∆̃=
(
1− 1

n/d

)
· [0]+

(
1− 1

m/d

)
· [∞].

In particular, (X ,∆) is developable if and only if n = m.

Corollary 27 (Galois closure). Let Y → X be a finite cover branched at most at ∆. Then there is
a finite cover Y ′ → Y such that the composition Y ′ → X is finite, Galois, and branched at most at
∆. If additionally Y → X is branched exactly at ∆, then the same is true of Y ′ → X , and Y ′ → Y is
quasi-étale.

We call Y ′ → X the Galois closure of Y → X .

Proof. Using the correspondence from Theorem 23, the statement boils down to the following:
for a group G and a subgroup H ⊂ G of finite index, there is a normal subgroup N ⊴ G of finite
index such that N ⊂ H . But this is easy (and well-known): simply set

N :=⋂
g∈G/H

g H g−1.

The last statement is easily seen to be true by comparing the ramification indices of Y → X and
Y ′ → X over the components ∆i . □

3. Orbifold Chern classes of klt pairs

In this section, we recall the definition of the first and second orbifold Chern classes for klt
pairs, in the spirit of [24]. We then explain how to compute them concretely in two cases: in
the projective setting by a cutting-down argument (Section 3.3), and when we have an “orbi-
resolution” at our disposal (Section 3.4).

3.1. The general Kähler case

Let us begin by recalling how to define Chern numbers associated with the first and second Chern
classes. This is nothing but a slight generalization of [24, Def. 5.2] that takes into account the
presence of a boundary. The construction relies on the Chern–Weil formalism in the orbifold
setting. We will not recall the basic definitions and properties for the differential geometry of
orbifolds (e.g. Hermitian metrics on orbifold bundles, orbifold Chern classes, orbifold de Rham
cohomology, and so on). A good reference is [8, §2].

Let (X ,∆) as in Setup 5 and let X ◦ ⊂ X be the largest open subset of X such that (X ,∆)
admits a smooth orbi-étale orbi-structure C ◦, and set Z := X \ X ◦. As proved in Lemma 14,
dim Z ≤ n − 3. Next, let α ∈ H2n−4(X ,R) where that cohomology space is understood as the
cohomology of the locally constant sheaf RX . For dimensional reasons, we have an isomorphism
H2n−4

c (X ◦,R) ∼−→ H2n−4(X ,R). Next, the de Rham complex of orbifold differential forms on X ◦

yields a de Rham–Weil isomorphism H•
dR,c(X ◦,R) → H•

c(X ◦,R), so that in the end we get a natural
isomorphism

ψ : H2n−4
dR,c

(
X ◦,R

) ∼−→ H2n−4(X ,R) . (6)

Now, let E → X ◦ be an orbifold bundle for the pair (X ◦,∆◦). We can equip it with an orbifold
Hermitian metric h and form the Chern classes corb

i (E ,h) which are orbifold differential forms
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of bidegree (i , i ). We can use the isomorphism (6) to define real numbers when i = 2. If
α ∈ H2n−4(X ,R), the class ψ−1(α) can be represented by a compactly supported orbifold (2n−4)-
form Ω on X ◦, so that corb

2 (E ,h)∧Ω is a compactly supported orbifold (n,n)-form on X ◦.

Definition 28. The orbifold second Chern class c̃2(E) is the unique element in the dual space
H2n−4(X ,R) ‹ which under ψ ‹ corresponds to the Poincaré dual of the class corb

2 (E) ∈ H4
dR(X ◦,R),

where the latter is taken with respect to (but independent of) the orbi-structure C ◦. The quantity

c̃2(E) ·α :=
∫

X ◦
corb

2 (E ,h)∧Ω

is thus a well defined real number for any class α ∈ H2n−4(X ,R).

Let us apply the above construction to Ω1
(X ◦,∆◦) the orbifold bundle of differential forms.

For the first Chern class, one can avoid the use of orbistructures and define it directly as a
cohomology class as follows.

Definition 29. For a klt pair (X ,∆), we set

c̃1(X ,∆) := 1

m
c1(

(
ωX

[m] ⊗OX (m∆)
) ‹ ‹

) ∈ H2(X ,R)

where m ≥ 1 is an integer such that the reflexive rank 1 sheaf
(
ωX

[m] ⊗OX (m∆)
) ‹ ‹

is a line bundle.

Now let us consider the case of the second Chern class.

Definition 30. The orbifold second Chern class c̃2(X ,∆) ∈ H2n−4(X ,R) ‹ of the pair (X ,∆) is the
second Chern class of the orbi-bundle Ω1

(X ◦,∆◦) on X ◦ defined in Definition 19.

Remark 31. As already observed in [24, p. 893], the object constructed in Definition 30 is
naturally a homology class:

c̃2(X ,∆) ∈ H2n−4(X ,R) .

3.2. The projective case — Mumford’s construction

Let (X ,∆) be a projective dlt pair with standard coefficients such that each component ∆i of ∆
is Q-Cartier. In [31, §3.1, p. 1458], the orbifold Chern classes c̃2(X ,∆) and c̃2

1(X ,∆) were defined
as multilinear forms on N1(X )Q. Here we would like to observe that this procedure can also be
carried out without the assumption that the ∆i be Q-Cartier. Our argument follows the proof
of [29, Thm. 3.13] closely. We will restrict attention to the case of klt pairs, as we are only
concerned with those in this paper.

So let (X ,∆) be an n-dimensional projective klt pair with standard coefficients. Applying
Lemma 14, we obtain an open subset X ◦ ⊂ X whose complement has codimension ≥ 3 and
such that (X ◦,∆|X ◦ ) admits a smooth orbi-étale orbi-structure C . Consider the “big global cover”
γ : X̂ ◦ → X ◦ associated to C , cf. [41, §§2–3], which up to shrinking X ◦ may be assumed to be
Cohen–Macaulay. The locally free orbi-sheaf Ω[1]

C
from Definition 19 induces a genuine locally

free sheaf F on X̂ ◦. The Chern classes of F induce classes ci
(
Ω[1]

C

) ∈ An−i (X ◦). Since A∗(X ◦)

is equipped with a ring structure, we also have c2
1

(
Ω[1]

C

) ∈ An−2(X ◦). For dimensional reasons,

An−i (X ) ∼−→ An−i (X ◦) is an isomorphism for i ≤ 2. We obtain classes c2
(
Ω[1]

C

)
and c2

1

(
Ω[1]

C

) ∈
An−2(X ), which are independent of the choice of C by [31, Prop. 3.5]. The orbifold Chern classes
c̃2(X ,∆) and c̃2

1(X ,∆) are then given by cap product with Chern classes of line bundles on X :

c̃2(X ,∆) ·L1 · · ·Ln−2 := deg
(
c2

(
Ω[1]

C

)∩c1
(
L1

)∩·· ·∩c1
(
Ln−2

))
,

c̃2
1(X ,∆) ·L1 · · ·Ln−2 := deg

(
c2

1

(
Ω[1]

C

)∩c1
(
L1

)∩·· ·∩c1
(
Ln−2

))
,

and these maps factors via N1(X )Q.
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3.3. The projective case — cutting down

If (X ,∆) is a projective klt pair with standard coefficients, then Lemma 14 allows one to generalize
Mumford’s construction of Q-Chern classes [41] to this setting as explained above. The fact that
the Chern–Weil construction from Definition 30 and Mumford’s definition ofQ-Chern classes are
equivalent is given in [24, Claim 6.5] in the case where∆= 0. It extends readily to the more general
setting of klt pairs with standard coefficients.

Since ψ is an abstract isomorphism, it is in practice difficult to actually compute these
numbers. There is, however, an important situation where things get much more explicit and that
is when α = c1(L)n−2 where L is an ample line bundle on X (we could also have (n −2) different
ample line bundles, but let us stick to the former case for simplicity). By homogeneity of the
intersection product, we can assume that L is very ample and induces an embedding i : X ,→PN

such that L ∼= i∗OPN (1). We pick (n−2) hyperplanes H1, . . . , Hn−2 in general position. In particular,
one has that

∑
Hi has simple normal crossings and S := H1 ∩·· ·∩Hn−2 ∩X ⊂ X ◦.

Lemma 32. With the notation as above, the Chern number from Definition 28 can be computed
with the following formula:

c̃2(E) ·c1(L)n−2 =
∫

S
corb

2 (E ,h)
∣∣
S . (7)

Proof. To begin with, let us choose sections si ∈ H0
(
PN ,OPN (1)

)
such that Hi = {si = 0}, and we

equip OPN (1) with the Fubini–Study metric. Next, we choose cut-off functions χi : PN → [0,1]
such that

χi =
{

0 on {|si | ≤ δ}

1 on {|si | ≥ 2δ}

for some δ> 0 small enough so that

n−2⋂
i=1

{|si | ≤ 2δ}∩X ⊂ X ◦.

For any ε ∈ (0,1], one definesϕi ,ε :=χi log |si |2+(1−χi ) log(|si |2+ε2) and setωi ,ε :=ωFS+ddcϕi ,ε.
Clearly, ωi ,ε is supported on {|si | ≤ 2δ} and ωi ,ε → [Hi ] as ε→ 0, both weakly as currents on PN

and locally smoothly away from Hi . We setΩε :=∧n−2
i=1 ωi ,ε, which is supported on

⋂n−2
i=1 {|si | ≤ 2δ}.

The immersion i : X ◦ ,→PN induces a commutative diagram

H2n−4
dR

(
PN ,R

)
H2n−4

(
PN ,R

)
H2n−4

dR (X ◦,R) H2n−4(X ◦,R) .

∼

i∗ i∗

∼

and by our choices the image i∗[Ωε] lands in the image of the natural map

H2n−4
dR,c

(
X ◦,R

)→ H2n−4
dR

(
X ◦,R

)
and satisfiesψ(i∗[Ωε]) = c1(OPN (1))n−2|X = c1(L)n−2. Therefore, we have for any ε> 0 the identity

c̃2(E) ·c1(L)n−2 =
∫

X ◦
corb

2 (E ,h)∧Ωε. (8)

Now, since
∑

Hi has simple normal crossings, an easy local computation shows thatΩε converges
to the current of integration along the submanifold W :=⋂n−2

i=1 Hi , both weakly on PN and locally
smoothly away from W . Since the support of Ωε|X is contained in a fixed compact subset of X ◦,
ones sees that Ωε|X ◦ converges weakly to [S] = [W ∩ X ◦] in the sense of currents on the orbifold
X ◦. Letting ε tend to 0 in (8), we finally get the formula (7). □
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3.4. Orbi-resolutions and Chern numbers

When X is smooth in codimension two, one can compute Chern numbers on a resolution of
singularities, cf. e.g. [15]. In the presence of singularities in codimension two, it is explained in
loc. cit. that a resolution does not compute Chern numbers anymore in general. The substitute
of a resolution in that setting is an orbi-resolution as defined below.

Definition 33 (Orbi-resolutions). Let (X ,∆) be a pair, where X is a normal complex space, ∆ has
standard coefficients and let X ◦ ⊂ X be the orbifold locus of (X ,∆). An orbi-resolution of (X ,∆) is a
surjective, proper bimeromorphic map π : X̂ → X from a normal complex space X̂ such that:

(1)
(
X̂ ,∆̂ :=π−1∗ (∆)

)
has only quotient singularities, and

(2) π is isomorphic over X ◦.

The existence of orbi-resolutions can be established1 for quasi-projective varieties (with ∆ =
0), using deep results about stacks as Chenyang Xu has showed in [37, §3]. However, the con-
struction proposed there is highly non-canonical (or non-functorial) and this makes it difficult to
generalize it to the complex analytic setting, even assuming algebraic singularities.

One important application of the existence of orbi-resolutions is highlighted by the following
lemma, which shows that we can use such partial resolutions to compute the orbifold second
Chern class of (X ,∆) against a class in H2n−4(X ,R).

Lemma 34. Let (X ,∆) be a pair as in Setup 5. Assume that (X ,∆) admits an orbi-resolution
π : (X̂ ,∆̂) → (X ,∆) as in Definition 33. Given any a ∈ H2n−4(X ,R), one has the formula

c̃2(X ,∆) ·a = corb
2

(
X̂ ,∆̂

) ·ψ(π∗a),

where on the right-hand side, corb
2

(
X̂ ,∆̂

) ∈ H4
dR

(
X̂ ,R

)
is the usual orbifold second Chern class of

(X̂ ,∆̂) and ψ : H•(X̂ ,R
)→ H•

dR

(
X̂ ,R

)
is the orbifold de Rham–Weil isomorphism.

Proof. With the notation from Definition 33, let us denote X̂ \ E :=π−1(X ◦) and j : X̂ \ E → X̂ the
natural inclusion; for simplicity we set k := 2n −4 and skip the reference to R in the cohomology
spaces below. Finally, we set π0 :=π|X̂ \E : X̂ \ E → X ◦.

We then have the following diagram

Hk
dR

(
X̂

)
Hk

dR,c

(
X̂ \ E

)
Hk

c

(
X̂ \ E

)
Hk

(
X̂

)

Hk
dR,c(X ◦) Hk

c (X ◦) Hk (X )

φ

j dR∗

j∗

ψ

φ

(πdR
0 )∗

i∗

π∗0 π∗

where all arrows except for j∗, j dR∗ and π∗ are isomorphisms. Now, one can pick an orbifold
Hermitian metric ĥ on TX̂ ,∆̂ and descend it to an orbifold Hermitian metric h on TX ◦ since π

1The proof of [37, Thm. 3] applies verbatim when ∆ ̸= 0, but we will only use the existence of orbi-resolutions when
∆= 0.
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is an isomorphism X̂ \ E → X ◦. Then, if as before α is an orbifold representative of φ−1(i−1∗ (a))
with compact support in X ◦, we have

c̃2(X ,∆) ·a =
∫

X ◦
corb

2

(
X ◦,h

)∧α
=

∫
X̂ \E

corb
2

(
X̂ , ĥ

)∧π∗α

= corb
2

(
X̂ ,∆̂

) · [π∗α]dR

= corb
2

(
X̂ ,∆̂

) ·ψ(π∗a)

since we have ψ(π∗a) = ( j∗)dR([π∗α]dR) from the commutativity of the diagram above. □

We conclude this paragraph with a remark on the non-orbifold locus. For the sake of clarity
(and also since we will use only this case), we stick to the case ∆= 0.

If X is a normal complex space that admits an orbi-resolution π : X̂ → X in the sense of Defini-
tion 33, it is immediate that its non-orbifold locus X \X orb coincides withπ(E), where E ⊂ X̂ is the
exceptional locus of π. In particular, the non-orbifold locus is an analytic subset of X . This latter
statement is very natural and should be true regardless of the existence of orbi-resolutions. Un-
fortunately, we are neither able to prove it in the general analytic setting nor able to locate a suit-
able reference. We can, however, prove it under the additional assumption that the singularities
of X are algebraic. This is sufficient for the application in Section 7.

Lemma 35 (Analyticity of the non-orbifold locus). Let X be a normal complex space having only
algebraic singularities (in the sense of [16, Def. 2.4]). Then its non-orbifold locus Z := X \ X orb is a
closed analytic subset.

In particular, this applies if X is a compact klt Kähler space with c1(X ) = 0.

Proof. When X is algebraic, this is a straightforward consequence of [3, Cor. 2.6]. If U ⊂ X is a
euclidean open subset of X being isomorphic through a mapϕ : U ∼−→V to an open subset V ⊂ Y
of an algebraic variety, then we have ϕ(Z ∩U ) = V \ V orb, and this is an analytic subset of V by
the algebraic case. The subset Z ∩U is then given by the vanishing of a family of holomorphic
functions, i.e. it is analytic in U .

The last statement is a consequence of [5, Thm. B]: X can be realized as a member of a locally
trivial family which also has projective fibers. The family being locally trivial (over a smooth
connected base), all the fibers are locally isomorphic and such an X then has locally algebraic
singularities (cf. [16, Ex. 2.5]). □

4. Uniformization of canonical models

In this section, we prove Theorem A. Let us first introduce notation. We set A := KX +∆ and pick a
complete intersection surface S = D1∩·· ·∩Dn−2 of n−2 general hypersurfaces Di ∈ |m A|, where
m is sufficiently large and divisible. The proof is divided into four steps.

Step 1: The orbi Higgs-sheaf (EX ,ϑX )

Using the notation introduced in the proof of Lemma 14, we can find a (a priori non-smooth)
orbi-étale structure C = {Uα, gα,U ′

α} with respect to (X ,∆) on the whole X . Then, one can define
the reflexive orbi-Higgs sheaf (EX ,ϑX ) with respect to C as follows:

ϑX : EX :=Ω[1]
(X ,∆) ⊕O(X ,∆) −→ EX ⊗Ω[1]

(X ,∆), (9)

where on each chart U ′
α, we define ϑU ′

α
(a, f ) := (0, a) where (a, f ) is a section of EU ′

α
:=Ω[1]

U ′
α
⊕OU ′

α
.

Cf. also Definition 19 and [31, §5.1, Step 2].
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In order to compute Chern numbers involving EX , one needs to introduce a global cover
f : Y → X and an actual reflexive sheaf EY on Y as we now explain. Thanks to Proposition 13,
there exists a finite morphism f : Y → X that is strictly adapted for (X ,∆) and whose extra
ramification in codimension one (i.e. away from supp(∆)) is supported over a general element
H of a very ample linear system on X . Let N be the ramification order along H ; we have

KY = f ∗
(
KX +∆+

(
1− 1

N

)
H

)
. (10)

We set D :=∆+(
1− 1

N

)
H and define (X ,D)orb to be the largest open subset of X where the pair

(X ,D) admits a smooth orbi-étale orbi-structure C ◦; we know that codimX (X \ (X ,D)orb) ≥ 3 by
Lemma 14. One can be a bit more precise about the shape of C ◦, which will be useful later. Recall
from the proof of Lemma 14 that if we set K := I × J and α := (β,γ) ∈ K , then we have a diagram

X ′
α U ′

α Uα X

U ′
β

Uβ X

fα

hα

gα

id
gβ

where X ′
α is smooth and fα is quasi-étale. Note that one can “restrict” EX to the orbifold locus⋃

αUα ⊂ X of (X ,∆) to get a locally free orbi-Higgs sheaf with respect to the smooth orbi-étale
structure {Uα,hα, X ′

α}α∈K for the pair (X ,∆) in codimension two, given by EX ′
α

:= f [∗]
α (EU ′

β
|U ′

α
) ≃

Ω1
X ′
α
⊕ OX ′

α
. In particular, one can define the Chern number c̃2(EX ) · An−2 as explained in

Section 3.1.
By choosing H general, one can arrange that h∗

αH is smooth for all indices α ∈ K thanks
to Bertini’s theorem, so that a further Kawamata cover κα : Xα → X ′

α orbi-étale with respect
to (X ′

a ,h∗
α(1− 1

N )H) yields the expected smooth orbi-étale orbi-structure C ◦ := {Uα, pα, Xα}α∈K

for the pair (X ,D) in codimension two where pα = ha ◦ κα. We end up with the following
factorization:

Xα Uα X

X ′
α

κα

pα étale

hα

Next, set

Y ◦ := f −1((X ,D)orb
)∩ (Y ,;)orb ⊂ Y .

Since f is finite, and by Lemma 14 applied to (Y ,;), we have codimY (Y \ Y ◦) ≥ 3. The map f
restricts to f ◦ : Y ◦ → X ◦ := (X ,D)orb.

Finally, we set T := f −1(S). Since the linear system |m A| (resp. f ∗|m A|) is basepoint-free and
S is general, we have S ⊂ X ◦ (resp. T ⊂ Y ◦). Also, recall from Lemma 20 that (S,D|S ) has quotient
singularities. The following diagram summarizes the situation:

T Y ◦ Y

S X ◦ X

f |T f ◦ f

Moreover, the ramification formula KT = f ∗(KS +D|S ) shows that T is klt as well, i.e. it is a surface
with quotient singularities.
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Step 2: Computing Chern numbers for EX .

Set ∆◦ := ∆|X ◦ and D◦ := D|X ◦ . Consider the locally free orbi-sheaf for the pair (X ◦,D◦) with
respect to the orbi-structure C ◦ constructed in Step 1 above, defined by

EXα =Ω[1]
(X ◦,∆◦,pα) ⊕OXα . (11)

Since
(
Xα, p−1

α (H)
)

is log smooth, the subsheaf Ω[1]
(X ◦,∆◦,pα) ⊂Ω1

Xα
has a very explicit expression in

terms of local coordinates. More precisely, if (z1, . . . , zn) is a local chart such that p−1
α (H) = {z1 = 0}

on that chart, then the bundle at play is the subbundle ofΩ1
Xα

generated by zN−1
1 dz1, dz2, . . . ,dzn .

In particular, it agrees with Ω1
Xα

outside of p−1
α (H).

Now set EY :=Ω[1]
(X ,∆, f ) ⊕OY ⊂Ω[1]

Y ⊕OY , which we should think of as the reflexive pull back of
EX by f . We equip this sheaf with the usual Higgs field ϑY , and denote by EY ◦ its restriction to Y ◦.
Note that by (2), EY =Ω[1]

Y ⊕OY holds on Y \ f −1(H). Let
{
(Vβ, qβ,Yβ)

}
β∈K be a smooth orbi-étale

(i.e. quasi-étale, in this case) orbi-structure for (Y ◦,;), which exists by (3) and Lemma 14 again,
at least after shrinking Y ◦. Set EYβ := q [∗]

β
EY and consider the diagram

Wαβ Yβ

Y ◦

Xα X ◦

rαβ

gαβ

qβ

f

pα

(12)

where Wαβ is the normalization of Xα×X ◦ Yβ. Since pα is orbi-étale with respect to D◦, the map
rαβ is étale over X ◦

reg \ supp(D◦). Moreover, since qβ is quasi-étale, it follows that f ◦ qβ and pα
ramify to the same order along each component of D . In other words, the smooth orbi-étale orbi-
structures C ◦ and

{(
f (Vβ), f ◦qβ,Yβ

)}
are compatible. In particular, gαβ and rαβ are étale so that

Wαβ is smooth, and we have additionally g∗
αβ

EXα
∼= r∗

αβ
EYβ by (3). Since EXα is locally free, so is

EYβ , so that the reflexive sheaf EY ◦ is a genuine orbifold bundle on the orbifold Y ◦.
Let ω be an orbifold Kähler metric adapted to (X ◦,∆◦), as given by Lemma 11. It is defined

on an arbitrarily large relatively compact open subset of X ◦. In particular, it is defined in a
neighborhood of S and this will be enough for our purposes. Set S∗ := Sreg \suppD . By definition,
one has

c̃2

(
Ω[1]

(X ,∆)

∣∣
S

)
=

∫
Sreg\supp(∆)

c2(Ω1
Xreg

,ω) =
∫

S∗
c2(Ω1

Xreg
,ω)

and the last two integrals on the right are well-defined since ω pulls back to a smooth Kähler
metric across points in Ssing ∪ supp(∆) via the finite maps hα. The smooth form p∗

αω = f ∗
α h∗

αω

is semipositive, degenerate along p−1
α (H). More precisely, if p−1

α (H) ∩U = {z1 = 0} for some
coordinate chart U ⊂ Xα, then

p∗
αω|U = a11|z1|2(N−1)i dz1 ∧dz1 +

n∑
k=2

a1k zN−1
1 dz1 ∧ i dzk

+
n∑

k=2
ak1zN−1

1 dzk ∧ i dz1 +
n∑

j ,k=2
a j k dz j ∧dzk

where (a j k ) is smooth and definite positive. In particular, p∗
αω defines a smooth Hermit-

ian metric on Ω[1]
(X ◦,∆◦,pα). Said otherwise, g∗

αβ
p∗
αω induces a smooth Hermitian metric on

g∗
αβ
Ω[1]

(X ◦,∆◦,pα)
∼= r∗

αβ
Ω[1]

(X ◦,∆◦, f ◦qβ). Hence, q∗
β

f ∗ω is a smooth Hermitian metric on the vector
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bundle Ω[1]
(X ◦,∆◦, f ◦qβ) = q [∗]

β
Ω[1]

(X ◦,∆◦, f ), so that f ∗ω induces an orbifold metric on the orbi-bundle

Ω[1]
(X ◦,∆◦, f ). By the definition of the Chern classes of orbifold vector bundles, we have

c̃2

(
Ω[1]

(X ◦,∆◦, f )

∣∣
T

)
=

∫
f −1(S∗)

c2(Ω1
Yreg

, f ∗ω)

= deg( f |T ) ·
∫

S∗
c2(Ω1

Xreg
,ω)

= deg( f ) · c̃2

(
Ω[1]

(X ,∆)

∣∣
S

)
where the last identity follows from deg( f |T ) = deg( f ) since S is general. All in all, we find
by Lemma 32

c̃2(EY ) · ( f ∗A)n−2 = deg( f ) c̃2(EX ) · An−2. (13)

The same arguments show the similar identity

c̃2
1(EY ) · ( f ∗A)n−2 = deg( f ) c̃2

1(EX ) · An−2. (14)

Step 3: (X ,∆) has quotient singularities

Consider on X the orbi-Higgs sheaf (FX ,ΘX ) := End(EX ,ϑX ). It satisfies:

c̃2
1(FX ) · An−2 = c̃2(FX ) · An−2 = 0,

as follows from the assumption on the Chern classes of (X ,∆), i.e. the assumption that equality
holds in (2). Combined with (13)–(14), the latter identity implies that the (genuine) Higgs sheaf
(FY ,ΘY ) := End(EY ,ϑY ) on Y satisfies

c̃2
1(FY ) · ( f ∗A)n−2 = c̃2(FY ) · ( f ∗A)n−2 = 0.

Moreover, by [31, §4.4, proof of Thm. C], the sheaf Ω[1]
(X ,∆, f ) is ( f ∗A)-semistable. Recall that

c1(Ω[1]
(X ,∆, f )) = f ∗A by [17, (3.11.5)]. It follows that (EY ,ϑY ) is ( f ∗A)-Higgs-stable, cf. the calcu-

lations in [29, proof of Cor. 7.2]. This in turn implies that the endomorphism sheaf (FY ,ΘY ) is
( f ∗A)-Higgs-polystable. Indeed, the last assertion can be deduced from the usual smooth case by
restricting to a general complete intersection curve and using the Mehta–Ramanathan theorem
for Higgs sheaves [29, Thm. 5.22]. Cf. also [30, Lem. 4.7].

By the Simpson correspondence for klt spaces [30, Thm. 5.1], the Higgs sheaf (FY ,ΘY )
∣∣
Yreg

is
locally free and is induced by a tame, purely imaginary harmonic bundle. By [30, Prop. 3.17], the
reflexive pull-back g [∗]FY of FY to a maximally quasi-étale cover g : Z → Y (whose existence is
guaranteed by [27, Thm. 1.5]) is locally free.

Now, set W := X \ H ⊂ X and h := f ◦ g : Z → X . On h−1(W ), we have that

g [∗]EY
∼= g [∗](Ω[1]

Y ⊕OY
)∼=Ω[1]

Z ⊕OZ .

It follows that g [∗]FY
∼= End

(
Ω[1]

Z ⊕OZ
)
, which contains the tangent sheaf TZ as a direct sum-

mand (again, only on h−1(W )). Since direct summands of locally free sheaves are locally free by
Nakayama’s lemma, the resolution of the Lipman–Zariski Conjecture for klt spaces [20, 25, 26]
implies that h−1(W ) is smooth.

By construction, the map h−1(W ) → W is branched exactly at ∆|W . By Corollary 27, its Galois
closure W̃ → W also has this property, and W̃ is smooth, being a quasi-étale (hence étale) cover
of the smooth space h−1(W ). This shows that (W,∆|W ) has quotient singularities. So far, we have
only imposed that H is general in its (basepoint-free) linear system. We can therefore repeat the
argument by choosing general elements H1, . . . , Hn+1 ∈ |H | and conclude that (X ,∆) has quotient
singularities. This means that (X ,∆) is a “complex orbifold” in the sense of [10, p. 109].
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Step 4: (X ,∆) is a ball quotient

Since (X ,∆) is a complex orbifold with KX +∆ ample, there is an orbifold Kähler–Einstein metric
ω such that Ricω=−ω, cf. [10, Thm. 5.2.2]. Set X ∗ := Xreg \ supp(∆), so that ω is a genuine Kähler
metric on X ∗. One can compute the orbifold Chern classes using ω, and, in particular, one has
from the usual Chern form computations

0 = (
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2

=
∫

X ∗

(
2(n +1)c2(X ,ω)−nc2

1(X ,ω)
)∧ωn−2

=Cn

∫
X ∗

|Θ◦(TX ,ω)|2ωωn ,

where Cn > 0 is a dimensional constant, while

Θ◦(TX ,ω) :=Θ(TX ,ω)− 1

n
trEnd(Θ(TX ,ω)) · idTX

is the trace-free Chern curvature tensor of (TX ,ω).
As a result, ω has constant negative bisectional curvature. This implies that ω has negative

Riemannian sectional curvature on X ∗ by e.g. [23, §2.4.2]. (Note that one could also have said
that (X ∗,ω) is locally isometric to the complex hyperbolic space (Bn ,ωhyp) by [9, Thm. 6] and
conclude by the usual curvature properties of the complex hyperbolic metric.)

Let π : X̃∆ → X be the orbifold universal cover of (X ,∆), cf. Definition 24. By the previous
paragraph, (X ,∆,ω) is an orbifold of nonpositive Riemannian sectional curvature. It then follows
from [12, Cor. 2.16 on p. 603] that (X ,∆) is developable. Now, (X̃∆,π∗ω) is a simply connected
Kähler manifold with constant negative bisectional curvature, so it is holomorphically isometric
to (Bn ,ωhyp) by [34, Thm. 7.9]. In particular, X̃∆

∼=Bn , proving Theorem A. □

5. Characterization of ball quotients

In this section, we prove Corollary 3. We prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1) separately.

(1)⇒(2). This is Theorem A.

(2)⇒(3). Let π : Bn → X be the orbifold universal cover of (X ,∆). (In particular, (X ,∆) is
developable.) By (2), the map π is Galois, with Galois group Γ ∼= πorb

1 (X ,∆). Note that Γ ⊂
Aut(Bn) = PU(1,n) is a finitely generated linear group. Furthermore, the stabilizers of the action
Γ

⟲

Bn are finite by (4). By Selberg’s lemma [2], there is a finite index normal subgroup Γ′ ⊂ Γ

which is torsion-free. This implies that Γ′ acts freely on Bn . We obtain the following factorization
of π:

Bn −−−−→ Bn/
Γ′

f−−−−→ Bn/
Γ= X ,

where f is the quotient by the action of the finite group G := Γ
/
Γ′ on the projective manifold

Y := Bn/
Γ′. Since the first map is étale, it exhibits Bn as the universal cover of Y . Combining this

with the fact that π is branched exactly at ∆, we infer that f is orbi-étale.

(3)⇒(1). Recall that KY is ample and that Y satisfies equality in the Miyaoka–Yau inequality,
cf. e.g. [35, (8.8.3)]. As f : Y → X is orbi-étale, it follows that also KX +∆ is ample and equality
likewise holds in the Miyaoka–Yau inequality for (X ,∆). □

6. Uniformization of minimal models

This section has two (related) purposes: first, to remove the assumption about the irreducible
components of ∆ beingQ-Cartier from Theorem 2. And second, to prove Corollary 4.
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6.1. Orbifold Miyaoka–Yau inequality

In Theorem 2, or more generally in [31, Thm. B], the assumption that the ∆i be Q-Cartier can be
dropped without replacement. We give two proofs of this result, the first one relying on [7] and
the second one on Proposition 13.

Theorem 36 (Miyaoka–Yau inequality). Let (X ,∆) be an n-dimensional projective klt pair with
standard coefficients, and assume that KX +∆ is big and nef. Then the following inequality holds:(

2(n +1) c̃2(X ,∆)−n c̃2
1(X ,∆)

) · [KX +∆]n−2 ≥ 0. (15)

First proof. Consider a Q-factorialization f : X ′ → X , cf. [7, Cor. 1.4.3] applied with E = ;. Set
∆′ := f −1∗ ∆. The map f is small, meaning that Exc( f ) ⊂ X ′ has codimension at least two. Therefore
(X ′,∆′) reproduces all the assumptions made on (X ,∆), and in addition X ′ is Q-factorial. In
particular, KX ′+∆′ = f ∗(KX +∆) is big and nef. Furthermore, f (Exc( f )) ⊂ X has codimension ≥ 3,
therefore f∗

(
c̃2

(
X ′,∆′))= c̃2(X ,∆) as homology classes, and likewise for c̃2

1

(
X ′,∆′) (cf. Remark 31).

By the projection formula, we obtain(
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2 = (

2(n +1) c̃2
(
X ′,∆′)−n c̃2

1

(
X ′,∆′)) · [KX ′ +∆′]n−2.

The right-hand side is non-negative by [31, Thm. B]. □

Second proof. Observe that in [31], the assumption that the∆i beQ-Cartier is only used in order
to construct a strictly adapted morphism whose extra ramification is supported on a general very
ample divisor (cf. Ex. 2.11 of that paper). However, using Proposition 13 we can construct such a
cover even without that assumption. After that, the proof of [31, Thm. B] applies verbatim. □

6.2. Uniformization of minimal models

In order to prove Corollary 4, we use the strategy explained in [30, Step 1, p. 1086]. This means we
first have to prove the following lemma.

Lemma 37. In the setting of Corollary 4, the canonical model (Xcan,∆can) also satisfies equality
in (2).

Assuming Lemma 37 for the moment, we then apply Theorem A on (Xcan,∆can) to conclude.
This finishes the proof of Corollary 4.

Remark 38. If we had proved Theorem A only in the setting of [31] (that is, assuming that the
∆i are Q-Cartier), then the above argument would break down. This is because the irreducible
components of ∆can may not beQ-Cartier (even if the same is true of ∆).

Proof of Lemma 37. As in the statement of Corollary 4, let (Xcan,∆can) denote the canonical
model of the pair (X ,∆) and π : (X ,∆) → (Xcan,∆can) the canonical morphism (KX +∆ being big
and nef, some multiple is basepoint-free and so π is a morphism). By construction, KXcan +∆can

is ample and π is crepant:
KX +∆=π∗(

KXcan +∆can
)
. (16)

The pair (Xcan,∆can) still has klt singularities. From Theorem 2, we know that the inequality (2)
holds for (Xcan,∆can) and we are led to checking that:(

2(n +1) c̃2(X ,∆)−n c̃2
1(X ,∆)

) · [KX +∆]n−2

≥ (
2(n +1) c̃2(Xcan,∆can)−n c̃2

1(Xcan,∆can)
) · [KXcan +∆can]n−2. (17)

In view of (16), this amounts to showing

c̃2(X ,∆) · [KX +∆]n−2 ≥ c̃2(Xcan,∆can) · [KXcan +∆can]n−2. (18)



Benoît Claudon, Patrick Graf and Henri Guenancia 75

At this point, let us consider a general surface Σ ⊂ Xcan cut out by the linear system |m(KXcan +
∆can)| (for m ≫ 1 sufficiently divisible) and let us look at its preimage S := π−1(Σ) ⊂ X in X .
The pairs2 (S,∆) and (Σ,∆can) are orbifold surfaces and contained in the orbifold loci of (X ,∆)
and (Xcan,∆can) respectively. Obviously, (Σ,∆can) is nothing but (S,∆)can and we can apply [40,
Thm. 4.2]. This yields

4c̃2(Σ,∆can)− c̃2
1(Σ,∆can) ≤ 4c̃2(S,∆)− c̃2

1(S,∆) .

The morphism π|S : (S,∆) → (Σ,∆can) being crepant, the above inequality reads as

c̃2(Σ,∆can) ≤ c̃2(S,∆) . (19)

With the notation introduced, the inequality (18) boils down to the following:

c̃2
(
T(X ,∆)

∣∣
S

)≥ c̃2
(
T(Xcan,∆can)

∣∣
Σ

)
.

This last inequality can be checked as in [30, pp. 1086–1087] by considering the (orbifold) normal
sequences

0 −→T(S,∆) −→T(X ,∆)
∣∣
S −→N(S,∆)|(X ,∆) −→ 0, (20)

0 −→T(Σ,∆can) −→T(Xcan,∆can)
∣∣
Σ −→N(Σ,∆can)|(Xcan,∆can) −→ 0. (21)

It is worth noting that both sequences (20) and (21) are exact sequences of orbifold vector
bundles, since the surface S (resp.Σ) is contained in the orbifold locus of (X ,∆) (resp. (Xcan,∆can))
and the terms in the middle are thus genuine orbifold bundles. Now it is enough to remark that
the normal bundles N(S,∆)|(X ,∆) and N(Σ,∆can)|(Xcan,∆can) satisfy

N(S,∆)|(X ,∆)
∼=π∗(

N(Σ,∆can)|(Xcan,∆can)
)

. (22)

Together with (16) and (19), this finally proves that the inequality (18) holds true. This concludes
the proof of Lemma 37. □

Remark. In general, the canonical morphismπ|S : (S,∆) → (Σ,∆can) is not an orbifold morphism,
but the normal bundles are actual locally free sheaves defined on S (resp. on Σ) and not only on
the orbifold (S,∆) (resp. (Σ,∆can)). The Chern classes of N(Σ,∆can)|(Xcan,∆can) thus come from Σ and
can be pulled back to S in the usual way.

7. Characterization of torus quotients

In this final section, we first establish the positivity of the orbifold second Chern class for Calabi–
Yau and for irreducible holomorphic symplectic varieties. Using the Decomposition Theorem [5],
we can then easily deduce Theorem 6 and Theorem B. Finally, we prove Corollary 7.

7.1. Positivity of the second Chern class — the projective case

If X is projective, then we know that it has an orbi-resolution in the sense of Definition 33, and
we can use this to understand the orbifold second Chern class of X .

Proposition 39. Let X be a projective irreducible Calabi–Yau (resp. irreducible holomorphic
symplectic) variety of dimension n with klt singularities and let β ∈ H2(X ,R) be a Kähler class.
Then we have

c̃2(X ) ·βn−2 > 0.

2To avoid cumbersome notation, the restriction of the divisors ∆ and ∆can to S and Σ is not written out.
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Proof. Let π : X̂ → X be an orbi-resolution, whose existence is garanteed by [37] since X is
projective. Let β̂ be a Kähler class on X̂ and let ω ∈ β (resp. ω̂ ∈ β̂) be a Kähler form. Recall
that it follows easily from the Bochner principle [16, Thm. A] that TX is stable with respect to β.
This implies that TX̂ is stable with respect to π∗β, hence TX̂ is stable with respect to π∗β+εβ̂ for
ε> 0 small enough, cf e.g. [15, Prop. 3.4]. In particular, as explained in [21, Thm. 4.2], there exists
an orbifold Hermite–Einstein metrics hε on TX̂ with respect to ωε := π∗ω+εω̂. From Lemma 34,
we have

c̃2(X ) ·βn−2 = lim
ε→0

∫
X̂

corb
2 (TX̂ ,hε)∧ωn−2

ε .

The exact same arguments as in [15, Prop. 3.11] using orbifold forms instead of usual forms shows
that the latter quantity is non-negative, and if it is zero, then we have c̃2(X ) ·γn−2 = 0 for any
Kähler class γ on X . We claim that this cannot happen. Indeed, since X is projective, this applies
to classes of the form c1(H) for an ample divisor H on X . Then [38] would imply that X is the
quotient of an Abelian variety, clearly a contradiction. □

7.2. Positivity of the second Chern class — the IHS case

We will derive the general Kähler case from the projective one using a deformation argument, as
in [15, Prop. 4.4].

Proposition 40. Let X be an irreducible holomorphic symplectic variety of dimension n with klt
singularities and let β ∈ H2(X ,R) be a Kähler class. Then we have

c̃2(X ) ·βn−2 > 0.

Proof. We will first prove that there exists a constant CX ∈R such that

c̃2(X ) ·a =CX qX (a)
n
2 −1 (23)

for any a ∈ H2(X ,R), where qX : H2(X ,R) →C is the Beauville–Bogomolov–Fujiki quadratic form.
Moreover, we will see that CX is constant when X moves in a locally trivial family.

The result follows from standard arguments (see e.g. [15, Prop. 4.4] and references therein)
once one has proved that the formation of c̃2(X ) · a is invariant under parallel transport along a
locally trivial deformation, which we now prove.

Let π : X→ D be a proper surjective map which is a locally trivial deformation of X = π−1(0).
We denote by Xorb (resp. X orb

t ) the orbifold locus of X (resp. X t ), which is a Zariski open subset of
X (resp. X t ) according to Lemma 35. Next, we set Z :=X\Xorb and Zt = Z ∩X t . The family being
locally trivial, we infer that Xorb ∩X t = X orb

t and thus that Zt = X t \ X orb
t .

Claim 41. Up to shrinking D, there exists a C ∞ diffeomorphism F : X→ X0 ×D commuting with
the projection to D such that

(i) F preserves the orbifold locus, i.e. F (X orb
t ) = X orb

0 × {t }.
(ii) F |X orb

t
: X orb

t → X orb
0 is smooth in the orbifold sense.

In this singular context, we mean that F is the restriction of a smooth map under local
embeddings in CN which induces an homeomorphism between X and X0 ×D.

Proof of Claim 41. Let us start with the existence of the diffeomorphism F . To do so, one can
find a proper C ∞ embedding ι : X ,→CN thanks to [1]. Next, extend π smoothly to a smooth map
f with support in a neighborhood of ι(X ). Since π :X→D is locally trivial, one can stratify X such
that the restriction of π to each stratum is proper and smooth (in the analytic sense, i.e. it is a
submersion). The existence of F then follows from Thom’s first isotopy lemma, cf [39, Prop. 11.1].

In order to prove the two items in the claim, let us briefly recall the construction of F in loc. cit.
while emphasizing on the important points for our purposes. Start with local holomorphic
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trivializations gα : Uα → (Uα∩ X0)×D for a covering of analytic open sets (Uα)α∈A of X, and let
Z = ⊔

Z (k) be the standard stratification of the analytic set Z ⊂ X. The maps gα induces a local
biholomorphism between Z (k) and Z (k)

0 ×D for all k; in particular the holomorphic vector fields
vα := g∗

α
∂
∂t satisfy

vα
∣∣

Z (k) ∈ H0
(

Z (k),TZ (k)

)
Next, let (χα) be a partition of unity subordinate to the open cover (Uα)α∈A . The C ∞ vector

field v :=∑
χαvα still satisfies

v |Z (k) ∈C ∞(Z (k),TZ (k) ).

As showed in [39], its flow (Ft ) is well-defined over π−1(D1/2) for |t | < 1/2, and it preserves Z (k) for
all k, hence it preserves Z as well. Equivalently, the flow of v preserves Xorb, which proves (i).

Moreover, v |Xorb is smooth in the orbifold sense (i.e. when pulled back to the local smooth
covers), a property which need not be true for arbitrary vector fields. This is straightforward
since the vα satisfy this property (they lift to holomorphic vector fields on the quasi-étale local
covers), and multiplying by smooth functions is harmless. In order to prove (ii), let x0 ∈ X orb

0 be
an arbitrary point and let U ⊂ Xorb be a small connected open neighborhood of x0 admitting a
smooth quasi-étale cover p : Û → U . We can find U ′ ⋐ U such that for |t | ≤ s (with s > 0 small
enough) the flow Ft is defined on U and satisfies Ft (U ′) ⊂U . Remember that v̂ := p∗v |Ureg extends
to a smooth vector field on Û which we still denote by v̂ , and whose flow we denote by F̂t . Since
p is étale over Ureg, uniqueness of flow ensures that we have a commutative diagram

p−1(U ′) p−1(Ft (U ′))

U ′ Ft (U ′).

p

F̂t

p

Ft

Indeed, since p is a local diffeomorphism over Ureg, we get

Ft ◦p = p ◦ F̂t on p−1(Ureg),

hence everywhere by continuity of the above maps. In summary, Ft : U ′ → Ft (U ′) is an home-
omorphism which therefore lifts to the diffeomorphism F̂t between the manifolds p−1(U ′) and
its image p−1(Ft (U ′)). That is, Ft induces an orbifold diffeomorphism between U ′ and Ft (U ′).
Item (ii) is now proved. □

Let us now consider the orbifold diffeomorphisms F orb
t : X orb

t → X orb
0 , and let h0 be an orbifold

Hermitian metric on TX orb
0

. Finally, letα0 be a closed orbifold form with compact support on X orb
0

representing a class a0 ∈ H2n−4(X0,R). We have

c̃2(X0) ·a0 =
∫

X orb
0

corb
2 (X orb

0 ,h0)∧α0

=
∫

X orb
t

(F orb
t )∗

(
corb

2 (X orb
0 ,h0)∧α0

)
=

∫
X orb

t

corb
2 (X orb

t , (F orb
t )∗ht )∧ (F orb

t )∗α0

= c̃2(X t ) ·F∗
t a0

where the last line comes from the fact that we have a commutative diagram

H2n−4
dR,c

(
X orb

t ,C
)

H2n−4(X t ,C)

H2n−4
dR,c

(
X orb

0 ,C
)

H2n−4(X0,C)

∼

(F orb
t )∗

∼
F∗

t
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so that (23) is proved.
Finally, we must show that CX > 0. Since CX is invariant under locally trivial deformation, one

can use [6, Cor. 1.3] and [5, Cor. 3.10] to deform X locally trivially to a projective IHS variety Y .
Proposition 39 shows that CY > 0, which concludes the proof of the proposition. □

7.3. Simultaneous proof of Theorem 6 and Theorem B

Here we closely follow the arguments from [15, proof of Thm. 5.2].
Let (X ,∆) be as in Setup 5 and such that c̃1(X ,∆) = 0. We denote by X ◦ := (X ,∆)orb the open

locus where the pair has quotient singularities, and set ∆◦ := ∆|X ◦ . It has been proved in [13,
Cor. 1.18] that abundance holds for such a pair and in particular KX +∆ is torsion. We can then
apply Proposition 12 and infer the existence of an orbi-étale map f : Y → X such that

OY
∼= KY

∼= f ∗(KX +∆).

Arguing as in the proof of formula (13), one has:

Lemma 42. We have the identity

c̃2(Y ) · f ∗(α)n−2 = deg( f ) c̃2(X ,∆) ·αn−2. (24)

Proof. Let a be an orbifold differential form of degree 2n − 4 with compact support in X ◦

representing αn−2 and let h be an orbifold Hermitian metric on Ω1
(X ◦,∆◦). Consider the space

Y ◦ = f −1(X ◦); by taking a fiber product with local smooth charts of X ◦, it follows easily from
purity of branch locus that Y ◦ admits a smooth orbistructure and that f ∗h induces an smooth
Hermitian metric on ΩY ◦ . In particular, we have

c̃2(Y ) · f ∗(α)n−2 =
∫

Y ◦
c2(ΩY ◦ , f ∗h)∧ f ∗a

=
∫

Y ◦\ f −1(supp∆)
c2(ΩY ◦ , f ∗h)∧ f ∗a

= deg( f )
∫

X ◦\supp∆
c2(Ω(X ◦,∆◦),h)∧a

= deg( f )
∫

X ◦
c2(Ω(X ◦,∆◦),h)∧a

= deg( f ) c̃2(X ,∆) ·αn−2,

which proves the lemma. □

Both members of the equation (24) being simultaneously non-negative or zero (and f ∗(α) still
being a Kähler class on Y ), we shall replace X with Y and assume from now on that there is no
orbifold structure in codimension one, i.e. that ∆= 0.

By [5, Thm. A], there exists a finite, Galois quasi-étale cover f : X ′ → X such that X ′ ∼=
T ×∏

i∈I Yi ×∏
j∈J Z j where T is a torus, Yi are CY varieties and Z j are IHS varieties. By [24,

Prop. 5.6], we have

c̃2
(
X ′) · f ∗βn−2 = deg( f ) c̃2(X ) ·βn−2,

while f ∗β is still a Kähler class by [24, Prop. 3.5]. All in all, there is no loss in generality assuming
that X = X ′ is split, which we do from now on.

Since H1(Yi ,R) = H1
(
Z j ,R

)= 0, the Künneth decomposition on the space H2(X ,R) enables us
to write

β= p∗
TβT +∑

i∈I
p∗

Yi
βYi +

∑
j∈J

p∗
Z j
βZ j
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where βT , βYi and βZ j are Kähler classes on T, Yi and Z j respectively. In particular, we get

c̃2(X ) ·βn−2 = ∑
i∈I
λi c̃2(Yi ) ·βdim(Yi )−2

Yi
+ ∑

j∈J
µ j c̃2

(
Z j

) ·βdim(Z j )−2
Z j

,

where λi , µ j > 0 are positive combinatorial coefficients. Proposition 39 and Proposition 40 imply
that the above quantity is non-negative, and strictly positive unless I = J =;; i.e. unless X = T is
a torus. Theorem 6 and Theorem B are now proved. □

7.4. Proof of Corollary 7

To finish, we prove Corollary 7 by proving both implications separately, similar to Corollary 3.

(1)⇒(2). This is what we have just proved in the above lines.

(2)⇒(1). If f : T → X is a Galois orbi-étale map (for the pair (X ,∆)) from a complex torus, the
section (dz1 ∧ ·· · ∧ dzn)⊗m is G-invariant, where G := Gal( f ) and m := |G|. This proves that
m(KX +∆) ∼ 0 and thus that c1(KX +∆) = 0. LetωT be any Kähler metric on T and let us consider

ω f := ∑
g∈G

g∗ωT .

It descends to an orbifold Kähler metric ωX on (X ,∆) and, the map f being orbi-étale, we have:

c̃2(X ,∆) · [ωX ]n−2 = 1

deg( f )
c̃2(T ) · [ω f ]n−2 = 0.

Since [ωX ] is a Kähler class, this ends the proof. □
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