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Abstract. This paper deals with the reconstruction of a discrete measure γZ on Rd from the knowledge of its
pushforward measures Pi #γZ by linear applications Pi :Rd →Rdi (for instance projections onto subspaces).
The measure γZ being fixed, assuming that the rows of the matrices Pi are independent realizations of laws
which do not give mass to hyperplanes, we show that if

∑
i di > d , this reconstruction problem has almost

certainly a unique solution. This holds for any number of points in γZ . A direct consequence of this result is
an almost-sure separability property on the empirical Sliced Wasserstein distance.

Résumé. On s’intéresse dans cet article au problème de reconstruction d’une mesure discrète γZ sur Rd

connaissant ses images par des applications linéaires Pi : Rd → Rdi (par exemple des projections sur des
sous-espaces). La mesure γZ étant fixée, en supposant que les lignes des matrices Pi sont des réalisations
indépendantes de lois ne donnant pas de masse aux hyperplans, on montre que si

∑
i di > d , ce problème

de reconstruction a presque sûrement une unique solution, et ceci quelque soit le nombre de points dans
γZ . Ce résultat permet de démontrer une propriété de séparabilité presque sûre pour la distance de Sliced–
Wasserstein empirique.
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1. Introduction

In this note, we are interested in the following question: for a given discrete probability measure
γZ on Rd , and r linear transformations Pi : Rd → Rdi , can we characterize the set of probability
measures on Rd with exactly the same images as γZ through all of the maps Pi ? Formally, this set
writes

S =
{
γ ∈P (Rd )

∣∣∣∀i ∈ �1,r �, Pi #γ= Pi #γZ

}
, (RP)

where Pi #γ denotes the push-forward of γ by Pi , i.e. the measure on Rdi such that for any
Borelian A ⊂Rdi , (Pi #γ)(A) = γ(P−1

i (A)), and P (Rd ) denotes the space of probability measures on
Rd . The set S is nonempty since it contains at least γZ . A natural underlying question is to know
when we get uniqueness, i.e. when S = {γZ }. Indeed, in this case γZ can be exactly reconstructed
from the knowledge of all the Pi #γZ , which is why we refer to this problem as a reconstruction
problem.

This reconstruction problem appears in many applied fields where a multidimensional mea-
sure is known only through a finite set of images or projections. This is the case for instance in
medical or geophysical imaging problems such as tomography [8]. It is also strongly related to the
separability properties of the empirical version of the Sliced Wasserstein distance [1, 17], which
is frequently used in machine learning applications [6, 12, 22].

In our reconstruction problem, it is clear that if one of the Pi is injective (which implies d ≤ di ),
then S = {γZ }, which is why we focus here on the cases where none of the Pi is injective. We
will also assume in this note that the Pi are surjective and that all the di are strictly smaller
than d , since we can always replace Rdi by the smaller subspace Im(Pi ). To the best of our
knowledge, this problem has not been widely discussed in the literature, perhaps because of
its apparent simplicity. A close and more discussed question is the one of the existence of
probability measures γ with marginal constraints [5, 13, 14]. Existence results for such couplings
are known for some families of measures [11], or measures exhibiting some specific correlation
structures [4]. However, in the general case, even if marginal constraints are compatible with
each other, the existence of solutions is not always ensured [9].

Our study case is different, since the constraints are all obtained as push-forwards of an
unknown γZ , and the central question is not existence but uniqueness of solutions. It is well
known that a measure is uniquely determined by its projections on all lines of Rd (Cramer–
Wold theorem [3]), and more generally by its projections on a set of subspaces as soon as they
cover the whole space together [18]. The problem for a non-discrete target measure has been
studied by Chafai [2] which considers a similar reconstruction problem from the viewpoint of
characteristic functions, using the equivalence ∀i ∈ �1,r �, Pi #µ = Pi #ν = 0 ⇔ ∀i ∈ �1,r �, ∀x ∈
Rd , φµ(Pi x) = φν(Pi x), where φµ and φν denote the respective characteristic functions of µ and
ν. In general, the knowledge of the characteristic function on a finite union of strict subspaces
is insufficient to determine a measure [2]. For a finite number of directions and in the case of
a discrete measure γZ , simple linear algebra shows that if the number r of projections is large
enough, we get S = {γZ }. When the Pi are projections on different hyperplanes for instance,
Heppes showed in 1956 [10] that a discrete distribution of at most n points γZ = 1

n

∑n
ℓ=1δzℓ is

uniquely characterized by its projections Pi #γZ if the number r of these projections is larger
than n + 1, and that simple counter-examples could be exhibited with only r = n hyperplanes.
More recent works [7] show that uniqueness can be ensured with less projections as soon as the
set of points is known to belong to a specific quadratic manifold. These results are deterministic,
they hold for every set of points and hyperplanes with the appropriate cardinality. In this paper,
we add some stochasticity to the problem, and assume that the lines of the matrices Pi

1 are i.i.d.

1With a slight abuse of notation, we use the same notation here for the linear maps and their associated matrices.
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following a law Pwhich does not give mass to hyperplanes. Under this assumption, we show that
if

∑r
i=1 di > d , then P-almost surely S = {γZ }. This result is very different from the ones already

present in the literature: it holds only a.s., but this permits a considerably weaker condition on
the Pi , and the condition for the reconstruction surprisingly does not depend on the number of
points.

2. Solutions of the Reconstruction Problem

In this section, we characterize the set S of solutions defined in (RP) depending on the set of
linear maps Pi . We write γZ =∑n

ℓ=1 bℓδzℓ with Z = (z1, . . . , zn) ∈ (Rd )n , and assume that all points
are distinct (k ̸= j ⇒ zk ̸= z j ). We also always assume that n > 1. The weights (bℓ) ∈ (R∗+)n sum to
one and are each nonzero.

As we shall see, given a discrete measure γZ with n points in dimension d , the Reconstruction
Problem (RP) has a unique solution S = {γZ } almost-surely when drawing the linear maps Pi

randomly, and when the dimensions strictly exceed d , i.e. when D := d1 +·· ·+dr > d .

2.1. Computing Linear Push–Forwards of Discrete Measures

Characterizing S requires the following technical Lemma, which provides a geometrical view-
point of the push-forward operation.

Lemma 1 (Linear push-forward formula). Let P ∈Mh,d (R) of rank h ≤ d and B ⊂Rh .
Then P−1(B) = P T (PP T )−1B +KerP.

Figure 1 shows a visualization of the set P T (PP T )−1B +KerP , first where B is comprised of two
points of R2 and KerP is a horizontal plane in 3D, and second with B a measurable set of R2. This
illustrates the ill-posedness of the problem when the dimension of the projections and number
of projections is too small. In this case with r = 1, d = 3 and d1 = 2, the condition P−1(A) = P−1(B)
leaves a degree of freedom, which we can visualize as the vertical axis here.

PT(PPT) 1B+KerP

ImPT

B

Figure 1. Illustrations of the linear push-forward formula P−1(B) for a 3D to 2D projection
P , (left) when B is a set of two points and (right) for a more general set B .

Proof. If a ∈ P T (PP T )−1B +KerP , then by writing a = P T (PP T )−1b + x with b ∈ B and x ∈ KerP ,
we have Pa = b ∈ B , thus a ∈ P−1(B).

For the opposite inclusion, consider a ∈ P−1(B). Since P is of full rank h, we have the
decomposition Rd = ImP T ⊕⊥ KerP , with Q := P T (PP T )−1P the orthogonal projection on ImP T .

Thus we can write a = Qa + (I −Q)a = P T (PP T )−1Pa + (I −Q)a. Since Pa ∈ B , we conclude
that a ∈ P T (PP T )−1B +KerP . □
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2.2. Restraining the support of solutions of RP

The following theorem states that the support of any solution of (RP) is constrained to a set S
obtained as the intersection of all sets Z +KerPi . Without loss of generality, we will assume that
each Pi is of full rank di .

Theorem 2 (Support of solutions of (RP)).
If γ is a solution of (RP), then γ (S) = 1 with

S :=
r⋂

i=1
(Z +KerPi ) = ⋃

(ℓ1,...,ℓr )∈�1,n�r

r⋂
i=1

(
zℓi +KerPi

)
. (1)

Proof. Using the same notations as in the proof of Lemma 1, we write Qi := P T
i (Pi P T

i )−1Pi the
orthogonal projection on ImP T

i and we recall the decomposition Rd = ImP T
i

⊕⊥ KerPi . Thus, for
any borelian A of Rd , A ⊂ Qi A +KerPi . Then γ(A) ≤ γ(Qi A +KerPi ) = Pi #γ(Pi A), where the last
equality is a direct consequence of Lemma 1.

Now, assume that γ ∈S and define S :=⋂r
i=1 Ki with Ki = Z +KerPi . For each i , applying the

previous inequality to K c
i yields γ(K c

i ) ≤ Pi #γ(Pi K c
i ). Since γ is a solution, we have Pi #γ= Pi #γZ .

By construction, Ki = {x, Pi x ∈ Pi Z } thus K c
i = {x, Pi x ∉ Pi Z }. Since Pi #γ is supported by Pi Z , it

follows that Pi #γ(Pi K c
i ) = 0. Finally, γ(Sc ) = γ(

⋃r
i=1 K c

i ) ≤∑r
i=1γ(K c

i ) = 0 and thus γ(S) = 1. □

Figure 2 illustrates the previous result, with r = 2 projections onto lines inR2, with n = 3 points
Z = (z1, z2, z3). The support of any solution is confined to the intersections between any two lines
of the form zℓ+KerPi . Here this corresponds to the intersecting points between an orange and a
red line, allowing for 9 possible points, including the original 3. In this case any weighting of the
9 Dirac masses that respect the marginal constraints will give a solution: there exists an infinity
of possible solutions.

Z

ImPT1
ImPT2

ImPT1
ImPT2
S

Figure 2. Illustration of the possible points for the support of a solution. On the left, Z is
the original measure points, and on the right, S is the set of possible points for the support
of a solution.

2.3. Conditions for unicity of solutions of RP

Leveraging the previous support restriction and elementary random affine geometry, we can
further restrict the condition on the set of solutions S . Theorem 4 below shows that if the random
linear maps Pi cover the original space Rd with redundancy (i.e. the sum of their target space
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dimensions strictly exceeds d), then almost surely, the reconstruction problem has a unique
solution γZ . We formalize this random setting by the following assumption.

Assumption 3 (AP).

∀i ∈ �1,r �, Pi =


—

(
u(1)

i

)T
—

—
... —

—
(
u(di )

i

)T
—

 where u( j )
i ∼P i.i.d,

where P is a probability distribution over Rd s.t. for any hyperplane H ⊂Rd , P(H) = 0.

The condition on the probabilities is verified in particular if P is absolutely continuous w.r.t.
the Lebesgue measure of Rd , or w.r.t. σ, the uniform measure over Sd (the unit sphere of Rd ).
These two examples are the most common for practical reconstruction problems, which is why
we formulate AP in this manner.

The next theorems use assumption AP but still hold true under milder hypotheses, where the
lines

(
u( j )

i

)T of the matrices Pi are assumed independent with (possibly different) probability
laws giving no mass to hyperplanes.

Theorem 4 (Almost-sure unicity in (RP)). Let γZ be a fixed discrete probability measure. Assume
that the matrices Pi follow assumption AP, and that D :=∑r

i=1 di > d. ThenP-almost surely, S = Z
and S = {γZ }.

The idea behind the proof of Theorem 4 is that S is the union of sets of the form⋂r
i=1

(
zℓi +KerPi

)
, which can be rewritten as intersections of more than d affine subspaces in

dimension d , thus are P-almost surely either singletons or empty.

Proof.

Step 1: S = Z . Let ℓ := (ℓ1, . . . ,ℓr ) ∈ �1,n�r and Sℓ :=⋂r
i=1

(
zℓi +KerPi

)
. We want to show Sℓ ⊂ Z .

First, observe that x ∈ Sℓ⇔∀i ∈ �1,r �, ∀ j ∈ �1,di �, (u( j )
i )T x = (u( j )

i )T zℓi .

We write D =∑r
i=1 di . For the sake of simplicity, we rewrite the k th vector u( j )

i as vk , where k ∈
�1,D�, and in the same way we write (wk )k=1···D the vectors (zℓ1 , . . . , zℓ1 , zℓ2 , . . . , zℓ2 , . . . , zℓr , . . . , zℓr )
with each zℓi repeated di times. With these notations, we get

x ∈ Sℓ⇐⇒ vT
k x = vT

k wk , ∀k ∈ �1,D�. (2)

Let us call (LS) the linear system on the right of (2). (LS) has D equations and d unknowns, with
D > d , it is therefore overdetermined. When all wk are equal, i.e. when ℓ := (ℓ, . . . ,ℓ), clearly
x = zℓ is a solution, which shows that zℓ ∈ S and thus Z ⊂ S.

If AP is satisfied, the matrix U (d) = (v1, . . . , vd )T is almost surely of full rank and the linear
system vT

k x = vT
k wk for k ∈ �1,d� almost surely has a unique solution x∗. The (d +1)th equality of

(LS) is vT
d+1(x∗−wd+1) = 0, which happens iif x∗ = wd+1, or x∗ ̸= wd+1 and vd+1 ∈ (x∗−wd+1)⊥. In

the first case, the solution x∗ belongs to Z since wd+1 is one of the zℓi . If x∗ ̸= wd+1, since all the
{vk } are i.i.d. of law P, conditionally to U (d) the probability that vd+1 is orthogonal to (x∗−wd+1)
is null and (LS) has almost surely no solution. We conclude that S = Z almost surely.

Step 2. The set of solutions of (RP) is {γZ } a.s.
We have proven that S = Z a.s., and thus that any solution γ ∈S is supported by Z a.s.. Let us

write γ=∑n
ℓ=1 aℓδzℓ and γZ =∑n

ℓ=1 bℓδzℓ . It follows in particular that
∑n
ℓ=1(aℓ−bℓ)δP1zℓ = 0, and

since for k ̸= ℓ, zk ̸= zℓ, hence P(P1zℓ = P1zk ) ≤P(u(1)
1 ∈ (zℓ− zk )⊥) = 0, thus ∀ℓ, aℓ = bℓ a.s. □
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The previous Theorem 4 only holds almost-surely, however "improbable" counter examples
do exist with excessive symmetry. Below we present a counter-example adapted from [7]. Let
d := 2, r := n > d and ∀i ∈ �1,r �, di := 1.

Consider zℓ :=
(
cos

(
(2ℓ+1)π

n

)
, sin

(
(2ℓ+1)π

n

))T
, Pℓ :=

(
cos

(
(2ℓ+1)π

2n

)
, sin

(
(2ℓ+1)π

2n

))
.

As can be seen below (Figure 3), for n = 3, this corresponds to placing the (zℓ) on every other
vertex of a regular 2n-gon, and defining the Pℓ such that ImP T

ℓ
is the ℓ-th bisector of the 2n-gon.

Z

Y

ImPT1
ImPT2
ImPT3

Figure 3. Illustration of a pathological super-critical case without unicity for specific pro-
jections Pi . In this case, Y and Z are distinct solutions with the same projections.

The points of S are the points of the form
⋂3

i=1

(
zℓi +KerPi

)
, or visually the intersection points

of a yellow line, a red line and a purple line. We can see that the remaining vertices of the polygon
constitute another valid measure γY whose push-forwards Pi #γY are all the same as those of the
original measure.

As mentioned in [7], for a fixed list of hyperplanes, there always exists two sets of points with
the same projections on all of these hyperplanes. Theorem I.2 from [7] indicates that a necessary
condition to ensure uniqueness in this case is r > n. In our Theorem 4, the points are fixed and
uniqueness of the reconstruction holds almost surely when the Pi follow assumption AP and as
soon as D > d , whatever the number n of points in the discrete measure.

2.4. Details on the critical case
∑

i di = d

In the theorem below, we show that the example in Figure 2 is representative of the critical case.

Theorem 5 (Number of admissible points in the critical case). Let γZ be a fixed discrete
probability measure. Assume that the matrices Pi follow assumption AP, and that D :=∑r

i=1 di =
d. Then the cardinality of S is exactly nr , P-a.s..

Proof. Using the notation ℓ := (ℓ1, . . . ,ℓr ) ∈ �1,n�r , we know that S = ⋃
ℓ∈�1,n�r Sℓ where Sℓ =⋂r

i=1

(
zℓi +KerPi

)
. Following the proof of Theorem 4, in the case D = d , we see that assumption

AP implies that Sℓ is almost surely a singleton {xℓ}. It follows that S is almost surely the union
of at most nr singletons. Let us show that if ℓ ̸= ℓ′ then Sℓ∩Sℓ′ =∅ a.s.. Indeed, if x belongs to
Sℓ∩Sℓ′ then x is solution of a linear system of 2d equations:

∀i ∈ �1,r �, ∀ j ∈ �1,di �,

{
(u( j )

i )T x = (u( j )
i )T zℓi

(u( j )
i )T x = (u( j )

i )T zℓ′i ,

which implies ∀i ∈ �1,r �, ∀ j ∈ �1,di �, ℓi = ℓ′i , or ℓi ̸= ℓ′i and u( j )
ℓi

∈ (zℓi − zℓ′i )⊥.

Now, under AP, if ℓi ̸= ℓ′i , then P(u( j )
ℓi

∈ (zℓi − zℓ′i )⊥) = 0, and thus ℓ=ℓ′ a.s.. □
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Let us clarify what the set of solutions S looks like in this critical case D = d . Letγbe a solution
of (RP) and denote S = (xℓ)ℓ∈�1,n�r . By Theorem 5, γ is of the form γ=∑

ℓ∈�1,n�r aℓδxℓ . Now, since
γ is a solution, we have for i ∈ �1,r �, Pi #γ = Pi #γZ , thus

∑
ℓ∈�1,n�r aℓδPi zℓi

= ∑n
k=1 bkδPi zk . Since

the (Pi zℓ)ℓ are all distinct a.s., this entails for all k ∈ �1,n�:
∑
ℓ−i∈�1,n�r−1 aℓ1,...,ℓi−1,k,ℓi+1,...,ℓr = bk ,

where ℓ−i indicates that we index this (r −1)-tuple on �1,n� \ {i }. We can re-write this condition
as a ∈ Πr

n(b), the set of n-dimensional r -tensors on R+ (Rnr

+ ) with all r marginals equal to b.
Conversely, if γ is of the form γ = ∑

ℓ∈�1,n�r aℓδxℓ with a ∈ Πr
n(b), then we have by construction

∀i ∈ �1,r �, Pi #γ= Pi #γZ and thus γ is a solution.
In the particular case where γZ is uniform, if we restrain γ to be also a uniform measure, the

problem in this critical case has a combinatorial amount of solutions. Without this restriction,
the problem has an infinite amount of solutions, as is discussed in the particular case of Figure 2.

3. Consequence for the empirical Sliced Wasserstein Distance

The Sliced Wasserstein (SW) distance between probability measures is frequently used in applied
fields such as image processing or machine learning, as an efficient alternative to the Wasserstein
distance. It was introduced in [17] to generate barycenters between images of textures, and it is
commonly used nowadays as a loss [6, 12, 22] to train generative networks. This distance writes:

∀α,β ∈P2(Rd ), SW2(α,β) =
∫
θ∈Sd

W2
2(Pθ#α,Pθ#β)dσ(θ),

where σ is the uniform distribution over the unit sphere Sd of Rd , and Pθ denotes the linear
projection on the line of direction θ. In its empirical (Monte-Carlo) approximation, used for
numerical applications, it becomes:

∀α,β ∈P2(Rd ), ŜW2
r (α,β) := 1

r

r∑
i=1

W2
2(Pθi #α,Pθi #β). (3)

The main advantage of SW over the usual Wasserstein distance is computational: for two
d-dimensional uniform discrete measures with n samples, the empirical estimation with r
projections (3) can be computed in O (r dn + r n log(n)) ([15, Section 2.6]), leveraging the fact
that the 1D projected Wasserstein distances can be computed by a sorting algorithm. In the
same setting, the Wasserstein distance can only be computed in super-quadratic complexity with
respect to n [16].

Since W2 is a distance on P2(Rd ) (the space of probability measures over Rd admitting
a finite second-order moment), ŜWr is non-negative, homogeneous and satisfies the triangle
inequality. However, ŜWr is only a pseudo-distance since it does not satisfy the separation
property: whatever the r directions chosen, it is always possible to find two different distributions
α and β such that ŜWr (α,β) = 0. Now, our previous reconstruction results show that when the r
directions are drawn from σ and β is a fixed discrete measure, then ∀α ∈ P2(Rd ), ŜW2

p (α,β) = 0
⇒α=β almost surely provided that r > d . Indeed, ŜWr (α,β) = 0 if and only ifα belongs to the set
S (for γZ = β). On the contrary, when the number of projections is too small, the set of discrete
measures at distance 0 from a given one is infinite, as stated in the theorem below.

Theorem 6. Let γZ :=∑n
ℓ=1 bℓδzℓ , where the (zℓ) are fixed and distinct. Assume θ1, . . . ,θr ∼ σ⊗r .

• if r ≤ d, there exists σ-a.s. an infinity of measures γ ̸= γZ ∈P2(Rd ) s.t. ŜWr (γ,γZ ) = 0.
• if r > d, we have σ-almost surely {γZ } = argmin

γ∈P2(Rd )

ŜWr (γ,γZ ).

In the limit case r = d , the distance can be grown by scaling the points of γZ further away
from the origin. In the case r < d , the supports of solution measures can be infinitely far from
the support of γZ , as illustrated in Figure 1. To conclude, if r ≤ d , the information ŜWr (γ,γZ ) ≈ 0
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yields no valuable information regarding the closeness of γ and γZ . If r > d , the information
ŜWr (γ,γZ ) = 0 yields γ= γZ almost-surely with random projections. Due to possible local optima
of Y 7→ ŜWr (γY ,γZ ), knowing only ŜWr (γ,γZ ) ≈ 0 may be too weak to conclude that the measures
are close even in the favorable case r > d , although these considerations are beyond the scope of
this work.

4. Conclusion: Discussion on SW as a Loss in Machine Learning

In Sliced–Wasserstein-based Machine Learning, the question of global optima is paramount
since in practice, one must default to a surrogate of SW: be it through stochastic gradient descent
(drawing a batch of θi at each iteration), or directly through the estimation ŜWr . To be precise,
generative models such as [6] minimize θ 7→ SW(Tθ#µ0,µ) - or a surrogate thereof - where µ0 is a
low-dimensional input distribution (often chosen as realizations of Gaussian noise), where µ is
the target distribution (the discrete dataset), and where Tθ is the model of parameters θ. In this
case, the dimension d of the data, which for images can easily exceed one million, can be very
large. Our results suggest that performing optimisation with less than d projections is unsound in
this case, since it leads to solutions that can be arbitrarily far away from the true data distribution.
However, these results do not take into account the intrinsic dimension of the target measure γZ ,
which in the case of images is probably supported on a d ′-dimensional manifold with d ′ ≪ d .
This question has been addressed very recently in [19], which was unknown to us at the time of
working on this paper, and provides insightful reconstruction results when γZ is known to belong
to a d ′-dimensional manifold.

Furthermore, it is important to underline that having the guarantee that the global optima are
the desired original measure is insufficient in practice. Indeed, the landscape Y 7→ ŜWr (µY ,µZ )
can present numerous local optima, which can limit the usefulness of SW as a loss function. For
practical considerations, this study on global optima could be complemented by an analysis of
the aforementioned landscape, which we leave for future work. Namely, one may find a study
of the optimization properties of Y 7→ ŜWr (µY ,µZ ) and Y 7→ SW(µY ,µZ ) in [21], and a related
extension to the study of Stochastic Gradient Descent for SW generative networks in [20].
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