
Comptes Rendus

Mathématique

Boris Kunyavskĭi
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Abstract. We show that even within a class of varieties where the Brauer–Manin obstruction is the only ob-
struction to the local-to-global principle for the existence of rational points (Hasse principle), this obstruc-
tion, even in a stronger, base change invariant form, may be insufficient for explaining counter-examples to
the local-to-global principle for rationality. We exhibit examples of toric varieties and rational surfaces over
an arbitrary global field k each of those, in the absence of the Brauer obstruction to rationality, is rational over
all completions of k but is not k-rational.

Résumé. Nous démontrons que même dans une classe des variétés où l’obstruction de Brauer–Manin est
la seule obstruction à l’existence de points rationnels (le principe de Hasse) cette obstruction, même sous
sa forme la plus forte invariante par rapport au changement de base, peut être insuffisant pour expliquer
des contre-exemples au principe local-global pour la rationalité. Nous présentons des exemples de variétés
toriques et de surfaces rationnelles sur un corps global arbitraire k dont chacune est rationnelle partout
localement mais n’est pas k-rationnelle, en absence d’obstruction de Brauer à la rationalité.
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1. Introduction

This short note is inspired by a recent result by Sarah Frei and Lena Ji [12] where the authors
have constructed a smooth, projective, Q-unirational threefold X , a smooth intersection of two
quadrics in P5, such that Xv := X ×Q Qv is Qv -rational for all places v of Q but X is not Q-
rational (the first version of [12] was conditional on the Birch and Swinnerton-Dyer conjecture
for the Jacobian of a certain genus 2 curve, in the second version the proof is unconditional).
Additional properties of X are the absence of the Brauer obstruction to rationality (i.e. one has
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Br(X ×Q K ) = Br(K ) for all field extensions K /Q), and the existence of an integral model X of X
whose special fibres Xp at all odd primes p are Fp -rational.

Colliot-Thélène asked the author whether one can find an example with similar properties
among algebraic tori. The first result of the present note consists in an (unconditional) affirmative
answer to this question.

Theorem 1. For any global field k there exists a smooth, projective toric k-variety X for which the
Brauer obstruction to rationality is absent, Xv := X ×k kv is kv -rational for all places v of k but X
is not k-rational.

Remark 2. We do not impose any conditions on the reductions because of the presence of
disconnected fibres of integral models of tori at the ramified places. The unirationality condition
is satisfied automatically since any k-torus is k-unirational [3, 8.13(2)]. One can choose X in
Theorem 1 to be of dimension 3.

The second result states that one can do better and reduce the dimension of counter-examples
to two.

Theorem 3. For any global field k of characteristic ̸= 2 there exists a smooth, projective, k-
unirational, geometrically rational k-surface X for which the Brauer obstruction to rationality is
absent, Xv := X ×k kv is kv -rational for all places v of k but X is not k-rational.

It turns out that the celebrated example of a cubic k-surface which is stably k-rational but not
k-rational [2] also works in our context.

Remark 4. A simple-minded meaning of Theorems 1 and 3 can be formulated as follows: even
within a class of varieties where the Brauer–Manin obstruction is the only obstruction to the local-
to-global principle for the existence of rational points (Hasse principle), this obstruction, even in
a stronger, base change invariant form, may be insufficient for explaining counter-examples to
the local-to-global principle for rationality.

In more technical terms, for X as in each of the above theorems we have

Br(X )/Br(k) = H 1(k, N ) = 0

where N = Pic(X ×k k) is the geometric Picard group viewed as a Galois module (for the first
equality in the above formula see, e.g., [6, Proposition 5.4.2]). Moreover, this vanishing property
holds after any extension K /k of the ground field. However, in the set-up of Theorem 1, there
are X for which there exists a subtler obstruction: N is not a stably permutation module thus
preventing X from being k-rational or even stably k-rational.

As to examples in Theorem 3, N is a stably permutation module but there is another obstruc-
tion to the k-rationality which is of geometric nature. Namely, X is birationally k-equivalent to a
conic bundle over the projective line with sufficiently many degenerate fibres, and one can use
deep results of Iskovskikh [15] which rely on the classical method of linear systems with base
points going back to Segre (see also Manin’s book [21]).

To prove the rationality over all completions, both for tori and surfaces we use a theorem of
Shafarevich from the inverse Galois theory.

Explicit examples implying the statement of Theorem 1 are contained in Section 3. Section 4
is devoted to the proof of Theorem 3. Section 2 contains some necessary preliminaries.

2. Preliminaries

The monographs [6, 25] and the survey [22] can serve as general references for algebraic tori,
Brauer group, and rational surfaces, respectively. Below we collect some basic facts on tori
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indispensable for our considerations. We also recall a not very well known fact related to
Shafarevich’s theorem on the realizability of solvable groups as Galois groups of extensions of
global fields.

We first fix some standing notation and recall some basic definitions. Unless stated otherwise,
throughout below k is an arbitrary field, k is a fixed separable closure of k, Γ = Gal(k/k) is the
absolute Galois group of k. For a k-variety X , we shorten X ×k k to X .

Remark 5. To justify the above notation, note that the main two objects of our attention in
this note, algebraic tori and geometrically rational surfaces, split over a separable closure of the
field of definition. For tori this is a well-known fact for which several different proofs have been
produced by Ono, Borel, Springer, Tate, Tits; see [26] for a nice overview. For rational surfaces this
was proved by Coombes [7].

The (cohomological) Brauer group of a k-variety X is denoted Br(X ). For a smooth non-
projective variety V we also consider the unramified Brauer group Brnr(k(V )/k), which is iso-
morphic to Br(X ) where X is a smooth projective variety containing V as an open subset; see [6]
for details.

Remark 6. For the classes of varieties considered in this paper, we have Brnr(k(V )/k) ∼=
H 1(k,Pic(X )), where Pic(X ) is the Picard group of X viewed as a Galois module, see, e.g. [6, Propo-
sitions 5.4.2 and 6.2.7].

Definition 7. We say that a k-variety V is

(i) k-rational if V is birationally k-equivalent toAn ;
(ii) stably k-rational if V ×Am is k-rational for some m ≥ 0;

(iii) Br-trivial if Brnr(K (V )/K ) is isomorphic to Br(K ) for all field extensions K /k.

We have irreversible implications (i) ⇒ (ii) ⇒ (iii). In case (iii), we sometimes say that the
Brauer obstruction is absent.

2.1. Algebraic tori

Given a k-torus T , the free abelian group M = T̂ = Hom(T,Gm) viewed as a Γ-module is called the
character module of T . The category of k-tori is dual to the category of finitely generated Z-free
Γ-modules (for the sake of brevity, we just say “modules” throughout below).

Every k-torus splits over a finite Galois field extension L of k, i.e. T ×k L is isomorphic to the
split L-torus Gd

m,L , d = dimT . The smallest such L is called the splitting field of T , we denote
Π = Gal(L/k) and call it the splitting group of T . Accordingly, we replace Γ-modules with Π-
modules.

Definition 8. We say that aΠ-module N is

(i) permutation if it has a Z-base permuted byΠ;
(ii) stably permutation if N ⊕S1

∼= S2 for some permutation modules S1, S2;
(iii) invertible if N is a direct summand of a permutation module;
(iv) H 1-trivial (aka coflasque) if H 1(Π′, N ) = 0 for all subgroupsΠ′ ≤Π;
(v) flasque if the dual module N ◦ := Hom(N ,Z) is H 1-trivial;

(vi) H-trivial if it is both flasque and coflasque.

Accordingly, we sometimes say that a torus T is flasque (coflasque) if so is its character
module T̂ .

We have irreversible implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv)∩ (v) = (vi) ⇒ (iv) (or (v)).
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Any module M can be embedded into a short exact sequence

0 −→ M −→ S −→ F −→ 0, (1)

where S is permutation and F is flasque; such a sequence is called a flasque resolution of M .
Note that if M = T̂ is the character module of a torus T , we have Brnr(k(T )/k) ∼= H 1(Π,F ).

Indeed, any torus T can be embedded into a smooth projective model X as an open subset (this
is true even in positive characteristic, see [4]), the module F := Pic(X ) is flasque [25, p. 4.6], [5,
Proposition 6], and we can argue as in Remark 6. More generally, the properties of F encode
the rationality properties of T as follows. Let us add to the list given in Definition 7 one more
property: we say that T is

(ii′) retract rational if T ×T ′ is k-rational for some torus T ′.
We then have the implications (i) ⇒ (ii) ⇒ (ii′) ⇒ (iii) for the properties listed in Definition 7, all

irreversible except possibly for the leftmost one, whose reversibility is a notoriously difficult long-
standing problem. The rightmost implication is a consequence of the following relation between
the properties in Definitions 7 and 8: T is stably rational (resp. retract rational, resp. Br-trivial) if
and only if the module F in a flasque resolution of M = T̂ is stably permutation (resp. invertible,
resp. H-trivial).

We shall use the notation RK /k for Weil’s restriction of scalars from K to k, and in particular,
the kernel of the norm map RK /kGm,K →Gm,k will be called a norm torus and denoted R1

K /kGm.

2.2. Shafarevich’s theorem

We shall systematically use the following fact contained in the proof of the celebrated Shafare-
vich’s theorem on the realizability of all solvable groups as Galois groups; see [23, Section 9.6] and
particularly [24] for details.

Theorem 9 (Shafarevich). Let k be a global field, and let G be a finite solvable group. Then there
exists a Galois field extension K /k with group G such that all decomposition groups Gv are cyclic.

3. Toric examples

First note that if one drops the requirement of the absence of the Brauer obstruction, the task
becomes very easy. Say, the norm torus R1

L/kGm corresponding to a biquadratic extension
L = k(

p
a,
p

b) all of whose decomposition groups are cyclic (which is easily achieved with the
help of the quadratic reciprocity law) fulfils the job: T is not k-rational but all the Tv := T ×k kv

are kv -rational. A well-known particular example is L = Q(
p

13,
p

17).
In this section we exhibit three different examples of tori with the trivial Brauer obstruction

which violate the local-global principle for rationality. In each example, we first provide a finite
solvable group Π and a Π-module M with the needed properties and then choose a Galois
extension L/k of a global field k with group Π which satisfies the conditions of Shafarevich’s
theorem.

Example 10. LetΠ=Z/5Z⋊Z/4Z, the nontrivial semidirect product of the cyclic group of order 5
by the cyclic group of order 4. This group is oftentimes denoted by F20 and called the Frobenius
group of degree 5. It is isomorphic to the group of affine transformations of F5 and is a part of the
family of Frobenius groups.

Choose an element σ ∈ Π of order 4 and define M = Z[Π/σ]/Z. If L/k is a Galois extension
with group Π, then M is the character module of the norm torus T = R1

K /kGm corresponding to
the extension K /k where K = Lσ.
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Let 0 → M → S → F → 0 be a flasque resolution of M . It is known (see [5, R4, (d2)], [9, 10]) that
the module F is invertible but not stably permutation, so that the torus T is retract k-rational but
not stably k-rational. The absence of the Brauer obstruction follows from the retract rationality.

Let now L/k be an F20-extension of global fields all of whose decomposition groups Πv are
cyclic (such an extension exists by Shafarevich’s theorem). Then every torus Tv = T ×k kv splits
over a cyclic extension of degree 2s 5t , and all such tori are rational [1].

Remark 11. Starting from a global field k, it is not an obvious task to exhibit an explicit F20-
extension L/k all of whose decomposition groups are cyclic. If char(k) = 0, one can try to use the
generic F20-polynomial constructed by Lecacheux [20].

Although Example 10 is sufficient for our goals, we present another two, each having certain
advantages.

Example 12. The torus in Example 10 is not so far from being rational. One can construct
an example with the same properties where T is not retract rational, at the expense of small
dimension and explicit construction.

The construction is based on the work of Endo and Miyata [11] who classified the finite groups
Π such that there exists an H-trivialΠ-module which is not invertible. It turned out that this class
consists of all groups except those whose p-Sylow subgroups are cyclic for all odd p and the 2-
Sylow subgroups are cyclic or dihedral. Thus we can consider the simplest exampleΠ= (Z/2Z)3.
By [11, Theorem 2.1], there exists an H-trivial Π-module N which is not invertible. Then any k-
torus T such that the module F in a flasque resolution (1) of M = T̂ is isomorphic to N is Br-trivial
but not retract rational.

To construct such a T , one can embed F into a short exact sequence

0 −→ M −→Z[Π]r −→ F −→ 0

with a Z-free module M and consider T with character module T̂ = M .
Choosing a Galois extension L/k of global fields with group Π which satisfies Shafarevich’s

theorem, we conclude that all tori Tv are rational. Indeed, any such torus is split by a quadratic
extension of k and is therefore a direct product of tori of dimensions 1 and 2, hence k-rational [25,
Section 4.9].

Remark 13. For k = Q, one can easily construct a required extension L/Q using quadratic
reciprocity, say, one can take L =Q(

p
13,

p
17,

p
89).

Remark 14. The construction of the module N presented above is somewhat implicit. To do this
in a more or less explicit way, one can use the construction in [11, Section 2].

Namely, let J =Z[Π]/Z, then one can write a flasque resolution of J in the form

0 −→ J −→Z[Π]7 −→ N0 −→ 0, (2)

see [11, p. 233]. Let now
0 −→ N0 −→ S0 −→ N1 −→ 0 (3)

be a flasque resolution of N0. By [11, Lemma 2.4], the module N1 is not invertible.
At this point, it is convenient to use the following general statement, which might be interest-

ing in its own right. It is implicitly contained in a different form in [11], as a parenthetical note in
the last paragraph of Section 2 (without proof).

Lemma 15. Every flasque k-torus is stably k-equivalent to some Br-trivial k-torus.

Proof. Let T be a flasque torus with character module T̂ = M . By [11, Lemma 1.1(2)], one can
embed M into an exact sequence

0 −→ M −→ M ′ −→ S −→ 0 (4)
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with M ′ coflasque and S permutation. Since M was supposed to be flasque, M ′ is also flasque,
hence H-trivial.

It remains to notice that since S is a permutation module, sequence (4) gives rise to the stable
equivalence of tori T and T ′ corresponding to M and M ′, respectively. As M ′ is H-trivial, T ′ is
Br-trivial. □

We can now finish the construction. Let us apply Lemma 15 to the flasque module N0

appearing in (2) and (3). We obtain an H-trivial module N such that the k-tori T0 and T
corresponding to the modules N0 and N , respectively, are stably k-equivalent. Hence one can
choose a flasque resolution of N of the form

0 −→ N −→ S1 −→ N1 −→ 0

with N1 the same as in (3). As the module N1 is not invertible, so is N . Thus N is an H-trivial,
non-invertibleΠ-module.

Note that in this example dim(T ) is huge (even at the starting point we have the module N0 of
rank 49), in sharp contrast with the 4-dimensional torus in Example 10.

In the next example we exhibit a 3-dimensional torus with the needed properties. One cannot
do better from the point of view of dimension because all tori of dimension 1 or 2 are rational by
a theorem of Voskresenskĭı [25, Section 4.9]. However, the construction is a bit more complicated
compared to Example 10.

Example 16. The construction is based on the author’s paper [16]. As in Example 12, let
Π= (Z/2Z)3 = 〈α,β,γ〉. Choose a subgroup ofΠof order 4, say,Π0 = 〈α,β〉. Let I := ker[Z[Π0] →Z]
denote the augmentation ideal of Z[Π0].

Given a field k and a Galois extension L/k with group Π, let L0 = k(
p

a,
p

b) = Lγ, L1 =
k(
p

c) = LΠ0 . The extensions L0 and L1 are linearly disjoint and L = L0L1 = k(
p

a,
p

b,
p

c) is their
compositum.

Further, denote by T0 the k-torus with character module I split by L0. Let N : L1 → k denote
the norm map. We denote by the same letter the norm map

N : RL1/k (T0 ×k L1) −→ T0 (5)

and define T := ker N (which is isomorhic to the quotient RL1/k (T0 ×k L1)/T0).
It is convenient to describe this construction translating it into the language of finite groups

of integral matrices. Indeed, given any n-dimensional k-torus T0 with minimal splitting field L0,
where Gal(L0/k) = Π0, one can attach to the Π0-module T̂ the finite subgroup W0 in GL(n,Z),
and to isomorphic tori there correspond conjugate subgroups. If now L1 is a quadratic extension
of k linearly disjoint from L0, as in our example, then denoting L = L0L1 and defining T as the
kernel of the map (5), denote by Π the Galois group of L/k and by W ⊂ GL(n,Z) the isomorphic
image ofΠ. Then we have W =W0 ×〈±In〉, where In stands for the identity n ×n-matrix, see [19,
Lemme 4.6].

Applying this observation to our set-up, we conclude that the subgroup W is isomorphic to W1

on the list of [16, Theorem 1]. In Section 4 of [16] (see also [13, Section 7]) it is shown that T is not
retract rational. It is also noted at the end of Section 3 of [16] (see [13] for computer verification
of this fact) that T is Br-trivial.

If now we choose an extension L/k of global fields so that all decomposition groups are cyclic,
we conclude that all kv -tori Tv are rational, as in the previous example.

To finish the proof of Theorem 1, it remains to construct a smooth projective k-variety X
containing the torus T from any of Examples 10, 12, or 16 as a dense open subset. Recall that such
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an X exists for any torus defined over any field, see [4]. Being birationally equivalent to T , the k-
variety X keeps all rationality properties of T . By the definition of the unramified Brauer group,
we have Br(X ×k K ) = Brnr(K (T )/K ) = Br(K ) for all extensions K /k. Theorem 1 is proven. □

Remark 17. The examples constructed above give more than stated in Theorem 1, namely they
provide a variety X which is not only k-irrational but is not even stably k-rational.

4. Rational surfaces

Before proving Theorem 3, recall that the story started with the affineQ-variety V ⊂A3 given by

y2 −221z2 = (x2 −13)(x2 −17). (6)

This example first appeared in Tsfasman’s PhD thesis in 1982. It was explored there and in
the subsequent papers [8, 18] (the latter was mentioned in the introduction to [12]). Among
many interesting properties, a smooth projectivization X of V satisfies the property of beingQp -
rational for all p, R-rational but not Q-rational. However, Br(X )/Br(Q) = Z/2Z, so this counter-
example is explained by the Brauer obstruction.

The surface X arising from equation (6) belongs to a family of Châtelet surfaces. It has a
structure of conic bundle over the projective line (by projecting onto the x-coordinate) with
4 degenerate fibres (pairs of transversally intersecting lines) corresponding to the zeros of the
polynomial on the right-hand side.

Proof of Theorem 3. The example we are going to use is somewhat similar. We start with the
affine cubic surface V ⊂A3 given over an arbitrary global field k with char(k) ̸= 2 by

y2 −az2 = f (x), (7)

where a is not a square in k and f ∈ k[x] is a separable irreducible polynomial of degree 3 with
discriminant a. This surface was explored in [2] where it was proved that it is stably k-rational
but not k-rational.

The smooth projectivization X of the surface V given by (7) is also a Châtelet surface and
also has 4 degenerate fibres (at the zeros of the right-hand side and at infinity). Let L denote
the splitting field of f . Then Gal(L/k), the Galois group of f , is isomorphic to the symmetric
group S3, it acts on the collection D = {ℓ1,ℓ1, . . . ,ℓ4,ℓ4} of eight components of the degenerate
fibres as G = 〈(123)c2c3, (12)c3c4〉, where (i j ) swaps the i th and j th degenerate fibres, and ci
swaps the components of the i th fibre, see [17, Theorem 4.19]. The Π-module Pic(X ) is stably
permutation [2, Theorem 2] (this is only one ingredient in the proof that these particular surfaces
X are stably k-rational). Therefore, we have H 1(Π′,Pic(X )) = 0 for allΠ′ ⊆Π, so that Br(X ×k K ) =
Br(K ) for all extensions K /k.

Suppose that all decomposition groups Gv of L/k are cyclic (as S3 is a solvable group, such an
extension L/k exists for any global field k). Then Gv acting on D is conjugate either to a cyclic
group 〈(123)c2c3〉 of order 3, or to a cyclic group 〈(12)c3c4〉 of order 2. In both cases, the resulting
conic bundle kv -surface Xv is not relatively minimal: in the first case one can blow down the 4th

degenerate fibre, and in the second case the first two ones. It remains to apply Iskovskikh’s results
on the structure and birational properties of conic bundle surfaces, Namely, we conclude that

• each surface Xv is birationally kv -equivalent to a conic bundle with 2 or 3 degenerate
fibres and is hence kv -rational [14, Theorem 4.1];

• the surface X is a relatively minimal conic bundle with 4 degenerate fibres and hence is
not k-rational [15, Theorem 2].

Theorem 3 is proven. □
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Remark 18. The surface X from Theorem 3 is birationally k-equivalent to a Del Pezzo surface S
of degree 4 with Pic(S) ∼=Z⊕Z, see [17, proof of Theorem 4.19]. In the course of this proof it is also
shown that X is essentially the only example of a Br-trivial k-irrational surface within this class
(it turned out that within this class the module Pic(S) is stably permutation if and only if it is H-
trivial). However, in Theorem 5.20 of loc. cit. it is proven that within the class of Del Pezzo surfaces
S of degree 4 with Pic(S) ∼= Z there are three more examples of Br-trivial k-irrational surfaces
(once again, Pic(S) is stably permutation if and only if it is H-trivial). All three surfaces are kv -
rational if all decomposition groups of k are cyclic, and Shafarevich’s theorem is also applicable
in each of the three cases. It is not known whether these surfaces are stably k-rational.
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