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Abstract. We study homogeneous metric spaces, by which we mean connected, locally compact metric
spaces whose isometry group acts transitively.

After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin
structure theory to show that for all positive ε, each such space is (1,ε)-quasi-isometric to a connected metric
Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).

Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is
homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly
isometric to a simply connected solvable metric Lie group.

Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of
Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie
groups may be made isometric if and only if they have the same real-shadow.

Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups
with an automorphic dilation.

Résumé. Nous étudions les espaces métriques homogènes, c’est-à-dire, les espaces métriques connexes et
localement compacts dont le groupe d’isométries agit transitivement.

Après avoir passé en revue un certain nombre de résultats classiques, nous utilisons la théorie de
la structure de Gleason–Iwasawa–Montgomery–Yamabe–Zippin dans le but de montrer que pour tout ε
positif, chacun des espaces susmentionnés est (1,ε)-quasi-isométrique à un groupe de Lie métrique connexe
(métrizé par une distance invariante à gauche non nécessairement riemannienne).

Ensuite, nous développons la théorie de la structure des groupes de Lie pour montrer que toute variété
métrique homogène est grossièrement isométrique par homéomorphisme au quotient d’un groupe de Lie
moyennable, connexe, et grossièrement isométrique à un groupe de Lie métrique résoluble simplement
connexe.

Troisièmement, nous étudions plus en détail les groupes de Lie métriques résolubles, et nous dévelop-
pons et étendons les travaux de Gordon et Wilson [31, 32] et de Jablonski [44] sur ceux-ci, en montrant, par
exemple, que les groupes de Lie résolubles connexes peuvent être rendus isométriques si et seulement s’ils
ont la même ombre réelle.

Enfin, nous montrons que les espaces métriques homogènes qui admettent une homothétie métrique
sont tous des groupes de Lie métriques possédant une homothétie automorphe.

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.608
mailto:m.cowling@unsw.edu.au
mailto:ville.k.kivioja@jyu.fi
mailto:enrico.ledonne@unifr.ch
mailto:sebastiano.s.nicolussi-golo@jyu.fi
mailto:a.ottazzi@unsw.edu.au
https://comptes-rendus.academie-sciences.fr/mathematique/


944 Michael G. Cowling, Ville Kivioja, Enrico Le Donne, Sebastiano Nicolussi Golo and Alessandro Ottazzi

Keywords. Homogeneous spaces, Structure, Lie groups.

Mots-clés. Espaces homogènes, structure, groupes de Lie.

2020 Mathematics Subject Classification. 53C30, 22F30, 20F69, 22E25.

Funding. MGC acknowledges support received from the Australia Research Council (DP140100531 and
DP170103025). VK was partly supported by the Emil Aaltonen Foundation. ELD was partially supported by
the Academy of Finland (grants 288501 “Geometry of subRiemannian groups” and 322898 “Sub-Riemannian
Geometry via Metric-geometry and Lie-group Theory”), and by the European Research Council (ERC Starting
Grant 713998 GeoMeG “Geometry of Metric Groups”). SNG was supported by the Academy of Finland
(grant 322898 “Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory”); the University
of Padova STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and
New”; the INdAM–GNAMPA Project 2019 “Rectifiability in Carnot groups”; the EPSRC Grant “Sub-Elliptic
Harmonic Analysis” (EP/P002447/1); and the Marie Curie Actions-Initial Training Network “Metric Analysis
For Emergent Technologies (MAnET)” (n. 607643).

Manuscript received 30 August 2021, revised 2 March 2023, accepted 7 January 2024.

1. Introduction

In this paper we present some links between Lie theory and metric geometry. We consider
homogeneous metric spaces, that is, metric spaces whose isometry groups act transitively, subject
to a number of standing assumptions:

(a) homogeneous metric spaces are connected and locally compact, unless explicitly stated
otherwise;

(b) a metric means a distance function unless it is preceded by infinitesimal; and
(c) metrics are admissible, that is, compatible with the topology of the underlying space.

However, we do not assume that they are riemannian, or geodesic, or quasigeodesic, or even
proper. If the metric space is also a topological manifold, and the metric topology and manifold
topology coincide, then we write metric manifold. We consider locally compact groups and Lie
groups equipped with admissible left-invariant metrics, which we call metric groups and metric
Lie groups.

1.1. Background

Geometry and topology on Lie groups and their quotients have a very long history, which we
cannot even begin to survey here; rather, we refer the reader to Helgason [38], Kobayashi and
Nomizu [51, 52] and Samelson [68]. Nevertheless, there are a few milestones that are specially
relevant for this paper, namely Milnor [57], Wolf [77], Alekseevskĭı [2], Wilson [76] and Gordon
and Wilson [31, 32]; in these papers and the texts cited previously, Lie groups and their quotients
are considered as models for riemannian manifolds.

There are very good reasons to consider Lie groups and their quotients with more general
metrics. These appear naturally in studying rigidity of symmetric spaces (see Mostow [62] and
Pansu [66]), regularity of subelliptic operators (see Folland and Stein [28] and Rothschild and
Stein [67]), and asymptotic properties of nilpotent groups (see Gromov [33, 34] and Pansu [65]).
Negatively curved homogeneous riemannian manifolds, classified by Heintze [37], have para-
bolic visual boundaries that are self-similar Lie groups with metrics that are not always riemann-
ian. The restriction to a connected closed subgroup of a riemannian metric need not be rie-
mannian, or even geodesic. For more information on these developments, see Montgomery [59],
Cornulier and de la Harpe [21], and Dungey, ter Elst and Robinson [24].
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The prototypical examples of homogeneous metric spaces are connected locally compact
groups with left-invariant metrics. Solvable and nilpotent Lie groups, including the stratified
groups of Folland [27] or Carnot groups of Pansu [64], are particularly nice examples. Starting
with these, one may obtain new examples by considering ℓp products, passing to subgroups and
quotients, and composing the metric with concave functions, as in the “snowflake” construction.

1.2. Main results and contents

Section 2 reviews the basic facts about homogeneous metric spaces and their isometry groups. In
more detail, we consider the realisation of homogeneous metric spaces as coset spaces of almost
connected locally compact isometry groups, we describe various constructions to produce new
metric spaces from old, and we discuss polynomial growth and doubling properties. Because we
allow metrics that are not proper or quasigeodesic, we observe some paradoxical phenomena,
such as metric groups that are of polynomial growth as groups but not as metric spaces. The
introduction to Section 2 provides more information.

Section 3 focusses on the use of Lie theory. In dealing with general rather than riemannian
metrics on Lie groups, what happens at the Lie algebra level may not determine what happens
at the group level, and so the global approach is to be preferred. That being said, however, the
theory is similar in the riemannian and in the general cases.

Our first theorem follows from the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure
theory of almost connected locally compact groups.

Theorem A. Let M be a homogeneous metric space. Then M is

(i) (1,ε)-quasi-isometric to a connected metric Lie group Gε, for all positive ε, and
(ii) roughly isometric to a contractible metric manifold.

We prove an extended version of Theorem A as Theorem 41.
Our contributions here are the observations that quasi-isometry may be sharpened to rough

isometry and the additive constant in (i) may be made arbitrarily small. For fundamental
groups of compact riemannian manifolds, part (ii) was shown by Švarc [71] and rediscovered by
Milnor [57]. More recently it has been extended, with quasi-isometry rather than rough isometry,
to the case of quasigeodesic metrics and to spaces of polynomial growth: see [21, Theorem 4.C.5.]
and [16, Proposition 1.3].

One of our aims is to study the following relation between topological groups. Given two
topological groups G and H , we say that G may be made isometric to H if there exist admissible
left-invariant metrics dG and dH such that the metric spaces (G ,dG ) and (H ,dH ) are isometric.
Moreover, if G is already a metric group, then we may impose the extra condition that the new
metric is roughly isometric to the initial one; in this case, the Gromov–Hausdorff distance of the
new metric space from the original one is finite.

Our next theorem, which relies heavily on the Levi and Iwasawa decompositions, shows that
every homogeneous metric manifold may be made isometric to a compact quotient of a direct
product of a solvable and a compact Lie group.

Theorem B. Let (M ,d) be a homogeneous metric manifold. Then there is a metric d ′ on M such
that the identity mapping from (M ,d) to (M ,d ′) is a homeomorphic rough isometry, and there is a
transitive closed connected amenable subgroup A of Iso(M ,d ′); hence M is homeomorphic to A/K ,
where K is a compact subgroup of A.

We prove an extended version of Theorem B as Theorem 60.
We believe that Theorem B is new, though it may have been known but not published. Much

is known about the isometry of riemannian symmetric spaces and riemannian solvmanifolds;
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but we are not aware of a complete treatment of the general case. Gordon and Wilson [31, 32]
certainly came close to this, and promised a solution to the general case at the end of [32], but
this proposed paper seems not to have eventuated.

In various special cases, we obtain simpler and more explicit results; see Corollaries 62, 64,
and 65. Corollary 62 is of particular interest: there we consider riemannian homogeneous
spaces and riemannian metrics. In this case, the result of Theorem B holds with rough isometry
replaced by bi-Lipschitz equivalence. Bi-Lipschitz equivalence is stronger locally, but weaker
globally, than rough isometry, and our Theorem B provides more information about the large
scale behaviour of homogeneous spaces than the strictly riemannian version. This is further
evidence that consideration of more general metrics can unlock information that is not accessible
in the riemannian framework.

In Section 4, we examine solvable metric Lie groups. We need more background, which
we discuss in more detail later. Auslander and Green [5] discovered that a connected simply
connected solvable Lie group G of polynomial growth could be embedded in a connected
solvable Lie group H (the hull of G), in such a way that

H =G ⋊T and H = N ⋊T,

where T is a torus (a compact connected abelian Lie group) in H , and N is the nilradical (the
largest connected normal nilpotent subgroup) of H . Then G is homeomorphic to N , since both
may be identified with H/T , and G and N enjoy various similarities (see [3, 5]); N is known as
the nilshadow of G . Gordon and Wilson [31, 32] considered this from a Lie algebraic point of
view, and described G and N as modifications of each other; they considered general solvable Lie
groups. Recently, Cornulier [19], and very recently, Jablonski [44] showed that every connected,
simply connected solvable Lie group is homeomorphic to a split-solvable Lie group, which we call
its real-shadow, in the same way as a connected, simply connected solvable group of polynomial
growth is homeomorphic to its nilshadow.

We give a complete and coherent treatment of this recent development. We then proceed to
describe when solvable Lie groups may be made isometric. Here is our third main theorem.

Theorem C. Let G0 be a connected split-solvable Lie group, T be a maximal torus in Aut(G0), and
d0 be a T -invariant metric on G0. Let G1 be a connected solvable Lie group. Then the following are
equivalent:

(i) G1 may be made isometric to G0;
(ii) G1 may be made isometric to (G0,d0);

(iii) G0 is the real-shadow of G1; and
(iv) G1 may be embedded in H := G0 ⋊T in such a way that every element of h has a unique

factorisation g t , where g ∈G1 and t ∈ T .

We prove an extended version of Theorem C as Theorem 95.
While the results here are mostly known, our proofs are often different to and sometimes

simpler than previous versions, and we believe that the reader will find it useful to have a clear
account of this development.

Theorem C has various corollaries and extensions, some of which are due to Gordon and
Wilson [32] (for riemannian metrics) and Breuillard [16] (for the polynomial growth case). First,
the metric d0 on a connected split-solvable Lie group considered in Theorem C may be taken to
be riemannian. Next, if G1 and G2 are connected solvable Lie groups, then they may be made
isometric if and only if they have the same real-shadow G0, and in this case they may both
be made isometric to (G0,d0). In the special case in which G0 is of polynomial growth, then
G0 is necessarily nilpotent, and so we obtain a characterisation of groups which may be made
isometric to nilpotent Lie groups.
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The classification of nilpotent groups up to quasi-isometry is an important unsolved problem.
Our result shows that if a connected Lie group admits one metric for which it is isometric to
a nilpotent metric Lie group (N1,d1) and another for which it is isometric to another nilpotent
metric Lie group (N2,d2), then necessarily N1 and N2 are isomorphic.

For more details and other results, see the discussion following the proof of Theorem C in
Section 4.

Finally, in Section 5, we discuss homogeneous metric spaces that admit metric dilations.
A map δ : X → Y between metric spaces is called a metric dilation if δ is bijective and
d(δ(x),δ(x ′)) = λd(x, x ′) for all x, x ′ ∈ X , for some λ ∈ (1,+∞), and a metrically self-similar group
is a metric group (G ,d) that admits a map δ : G →G that is both a metric dilation and an automor-
phism. The stratified groups of Folland and Stein [29] with the Hebisch–Sikora metric [36], the
Carnot groups of Pansu [66] and finite dimensional normed vector spaces are examples of met-
rically self-similar groups; so are the parabolic visual boundaries of the negatively curved con-
nected homogeneous riemannian spaces described by Heintze [37]. Our fourth main theorem
described homogeneous metric spaces with dilations.

Theorem D. If a homogeneous metric space admits a metric dilation, then it is isometric to a
metrically self-similar Lie group. Moreover, all metric dilations of a metrically self-similar Lie
group are affine, that is, compositions of left translations and group automorphisms.

Theorem D appears later as Theorem 109. It generalises a result of [53], where it is shown that
a space is a sub-Finsler Carnot group if and only if the conditions in Theorem D hold and the
metric is geodesic.

As a consequence of [69, Proposition 2.2] and [48], if a metric space M is isometric to
a metrically self-similar Lie group (G ,d ′), then G is a gradable, connected simply connected
nilpotent Lie group isomorphic to the nilradical of Iso(M). However, M may also be isometric to
a Lie group that is not nilpotent. As discussed after Theorem C, there are metric groups that are
not nilpotent but which are isometric to metrically self-similar metric Lie groups; it follows from
Theorem D that if M is a metric Lie group and δ is a metric dilation, then δ is an automorphism
if and only if M is nilpotent.

While many of the results will be familiar to the experts, we included proofs if we could not
find an explicit proof in the literature or if we could give an easier one. We have not attempted
to provide a full bibliography of all the areas that we touch on, but rather refer mainly to those
papers that we use. At the end of Sections 2 to 5, the reader will find some discussion of who
did what and when, and of related results. The reader may wish to consult some other works in
this area, in particular, the books of Cornulier and de la Harpe [21] for more information. Recent
papers, such as [26], refer to other relevant recent works.

1.3. Notation and conventions

We remind the reader of our convention that homogeneous metric spaces are connected and
locally compact, unless explicitly stated otherwise. Metric manifolds, metric groups and metric
Lie groups are examples of these. Some of our results may be proved in greater generality, but
this assumption will save space.

A set that is a neighbourhood need not be open. Locally compact groups are always locally
compact Hausdorff topological groups.

The expression the isometry group means the full isometry group, while an isometry group
means a closed subgroup of the full isometry group.

Constants are always nonnegative real numbers that may vary from one occurrence to the
next. These are often denoted by C or ε, and we do not specify that these letters denote constants
when they occur.
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We denote by eG , or more simply e, the identity element of a group G ; the identity of G1 may
be denoted by e1.

2. Preliminaries

In this section, we recall some more or less familiar facts. After introducing some notation
in Section 2.1, we discuss isometry groups of metric spaces, and in particular homogeneous
metric spaces in Section 2.2, and examine the relations with coset spaces in Section 2.3. Next
we consider changes of metrics in Section 2.4. In Section 2.5, we consider when there are simply
transitive isometry groups, and finally, we discuss invariant measures, polynomial growth, and
the doubling property in Section 2.6. While these are very closely related in the case of proper
quasigeodesic metrics (see [20]), this is not the case for more general metrics, as we shall see.

2.1. Notation

When (M ,d) is a metric space, we sometimes write just M , leaving the metric d implicit. We
denote by B(x,r ) or Bd (x,r ) the open ball {y ∈ M : d(x, y) < r }, and by B̆(x,r ) or B̆d (x,r ) the
closed ball {y ∈ M : d(x, y) ≤ r }, which need not be the closure of the open ball B(x,r ); set
closure is denoted with a bar. The metric space is said to be proper if closed bounded sets are
compact, or equivalently, if all balls B̆d (x,r ) are compact, and is said to be geodesic if every pair
of points may be joined by a curve whose (rectifiable) length is equal to the distance between the
points. Berestovskĭı [9] showed that a homogeneous metric manifold is geodesic if and only if it
is equipped with an invariant infinitesimal sub-Finsler metric.

A function f : (M1,d1) → (M2,d2) is an (L,C )-quasi-isometry if

L−1d1(x, y)−C ≤ d2( f (x), f (y)) ≤ Ld1(x, y)+C

for all x, y ∈ M1, and for every z ∈ M2 there is x ∈ M1 such that d2( f (x), z) ≤C . If such a function
exists between two metric spaces, then we say that they are (L,C )-quasi-isometric, or more simply
quasi-isometric.

There is a zoo of equivalences of metric spaces that we might consider. Quasi-isometry (for
some choice of the constants L and C , possibly depending on the function) is an equivalence
relation. If C = 0, then f is called bi-Lipschitz; bi-Lipschitz gives us another equivalence relation,
which, in contrast to quasi-isometry, implies homeomorphism. A third equivalence relation is
rough isometry, which is defined to be (1,C )-quasi-isometry for a suitable choice of C , which
may depend on f ; we sometimes call C the implicit constant of a rough isometry. This is finer
than general quasi-isometry and more restrictive at large scales than bi-Lipschitz. Yet another
equivalence relation that we consider is homeomorphic rough isometry. A fifth relation that we
consider applies to topological rather than metric groups: we say that G1 and G2 may be made
isometric provided that there exist admissible left-invariant metrics d1 and d2 such that (G1,d1)
and (G2,d2) are isometric.

2.2. Homogeneous metric spaces

We define an isometry of a metric space (M ,d) to be a surjective map f on M such that

d( f (x), f (y)) = d(x, y) ∀x, y ∈ M . (1)

We denote by Iso(M ,d) the set of all isometries of (M ,d); given the surjectivity, it is evident that
Iso(M ,d) is a group under composition. We recall that a metric space (M ,d) is said to be ho-
mogeneous if its isometry group acts transitively, and our convention that a homogeneous met-
ric space (M ,d) is connected and locally compact, but not necessarily proper, unless explicitly
stated otherwise.
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Changing the metric on a space (without changing its topology) may change its isometry
group. For instance, we may equip R2 with any one of the bi-Lipschitz equivalent translation-
invariant metrics

d((x1, y1), (x2, y2)) = (|x1 −x2|p +a|y1 − y2|p
)1/p ,

where 1 ≤ p < +∞ and 0 < a < +∞. When p = 2, the isometry group includes rotations, but
otherwise it does not. And when p = 2, the rotation group depends on the parameter a. However,
in this example, each of the isometry groups act by bi-Lipschitz transformations with respect to
all the other metrics.

We prove that Iso(M ,d) is a metrisable, locally compact and σ-compact topological group
that acts with compact stabilisers (Theorem 6), and whose identity component acts transitively
(Corollary 8). In Theorem 7, we also prove a more quantitative and precise statement about the
metrisability, namely that for every ε ∈ R+, the group Iso(M ,d) may be metrised such that it is
(1,ε)-quasi-isometric to (M ,d).

Proposition 1. Let (M ,d) be a metric space, not necessarily connected or locally compact. Then the
compact-open topology and the topologies of uniform convergence on compacta and of pointwise
convergence agree on Iso(M ,d), and the group Iso(M ,d), endowed with any of these topologies, is
a topological group.

Proof. For the fact that these topologies agree on Iso(M ,d), see [21, Lemmas 5.B.1 and 5.B.2].
That this structure makes the isometry group a topological group is well known; van Dantzig and
van der Waerden [22] show this in the case where M is connected, locally compact and separable,
and a proof of the general case may be found in [21, Lemma 5.B.3]. □

We now equip Iso(M ,d) with any of the topologies above.
We are not assuming that our metric spaces are proper, but we still need some substitute for a

proper metric, and this construction (and some other useful facts) will be the subject of the next
two lemmas. Much of this is “folklore”, but we do not know a reference and so we include proofs.
We first choose ℓ ∈ R+ small enough that B̆(p,2ℓ) is compact for one and hence every p in M by
homogeneity. Then there exists a positive integer L for which the compact set B̆(p,2ℓ) may be
covered by L open balls of radius ℓ, for one and hence all p in M by homogeneity.

Given a point o ∈ M , we define sets Vn(o,ℓ) inductively: first, V0(o,ℓ) := {o}, then

Vn(o,ℓ) := ⋃
p∈Vn−1(o,ℓ)

B̆(p,ℓ) (2)

when n ∈Z+. Further, we define Uo := {g ∈ Iso(M ,d) : g (o) ∈ B̆(o,ℓ)}.

Lemma 2. Let G be the isometry group of a homogeneous metric space (M ,d), and o be any point
of M. Then

(i) Vn(o,ℓ) may be covered by at most Ln open balls B(p,ℓ) for all n ∈Z+;
(ii) M =⋃

n∈NVn(o,ℓ), whence (M ,d) is σ-compact and second countable;
(iii) a subset A of M is precompact if and only if A ⊆Vn(o,ℓ) for some n ∈N;
(iv) the n-fold product U n

o is equal to {g ∈G : g (o) ∈Vn(o,ℓ)} for all n ∈N;
(v) Uo is compact in G, whence U n

o is compact in G and so Vn(o,ℓ) is compact in M for all
n ∈N

Proof. First, if x ∈⋃
q∈B̆(p,ℓ) B̆(q,ℓ), then

d(x, p) ≤ d(x, q)+d(q, p) ≤ 2ℓ.

Hence
⋃

q∈B̆(p,ℓ) B̆(q,ℓ) may be covered by L balls of radius ℓ, by our choice of L. Now (i) may be
proved by induction.
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From (i), we see that Vn(o,ℓ) is precompact. Now
⋃

n∈NVn(o,ℓ) is both open and closed in M
and hence coincides with M . It follows that M is σ-compact and hence second countable, which
completes the proof of (ii).

To prove (iii), note that {
⋃

p∈Vn (o,ℓ) B(p,ℓ) : n ∈N} is an increasing open cover of M , and hence
if A is a precompact subset of M , then for some n,

A ⊆ A ⊆ ⋃
p∈Vn (o,ℓ)

B(p,ℓ) ⊆Vn+1(o,ℓ).

Conversely, if A ⊆Vn+1(o,ℓ) then A is precompact.
For (iv), we must show that

U n
o = {g ∈G : g (o) ∈Vn(o,ℓ)}. (3)

If n = 1, then (3) holds by definition. Assume that (3) holds when n = k. On the one hand, if
f ∈U k+1

o , then f = g h where g ∈U k
o and h ∈Uo , so

f (o) ∈ g (B̆(o,ℓ)) = B̆(g (o),ℓ) ⊆Vk+1(o,ℓ).

On the other hand, suppose that f (o) ∈Vk+1(o,ℓ). There exists q ∈Vk (o,ℓ) such that f (o) ∈ B̆(q,ℓ)
by definition, and by transitivity and the inductive hypothesis, there exists g ∈ U k

o such that
q = g (o). Now g−1 f (o) ∈ B̆(o,ℓ), that is, g−1 f ∈ Uo , since g−1(B̆(g (o),ℓ)) = B̆(o,ℓ), and we may
conclude that f ∈U k+1

o . By induction, (3) holds for all n.
For (v), the Arzelà–Ascoli theorem shows that Uo is precompact in the compact-open topology.

Moreover, if ( fn)n∈N is a sequence of elements of Uo that converges to f ∈G , then fn(o) converges
to f (o) ∈ M and d( fn(o),o) ≤ ℓ for all n, whence d( f (o),0) ≤ ℓ and f ∈Uo . Thus Uo is compact.

Since G is a topological group, U n
o is compact for each n ∈ N, and so Vn(o,ℓ) is compact

from (iv) and the continuity of the map g 7→ g (o) from G to M . □

We now construct two proper metrics on M ; the first has the advantage that it is closely related
to the sets Vn(o,ℓ) and the second that it is admissible. We define the Busemann gauge ρ[ℓ] on
M by

ρ[ℓ](o, p) := ℓmin{n ∈N : p ∈Vn(o,ℓ)} (4)

and the derived semi-intrinsic metric d[ℓ] by

d[ℓ](p, q) := inf

{
k∑

j=1
d(x j , x j−1) : x0, . . . , xk ∈ M , x0 = p, xk = q,d(x j , x j−1) ≤ ℓ

}
. (5)

We note that ρ[ℓ] takes discrete values. Observe that, in the case where the metric space is R and
the metric is given by d(x, y) = |x−y |θ, where θ ∈ (0,1) and ℓ= 1, the derived semi-intrinsic metric
is given by d[ℓ](x, y) = ⌊|x − y |⌋+ (|x − y | − ⌊|x − y |⌋)θ, and is somewhat bizarre; here ⌊x⌋ denotes
the integer part of x.

Lemma 3. The Busemann gauge ρ[ℓ] and the derived semi-intrinsic metric d[ℓ] are both metrics
on the set M. In addition,

d(p, q) ≤ d[ℓ](p, q) ≤ ρ[ℓ](p, q) ≤ 2d[ℓ](p, q)+ℓ ∀p, q ∈ M .

Hence d[ℓ] is proper as ρ[ℓ] is proper. Further, if d(x, y) ≤ ℓ, then d[ℓ](x, y) = d(x, y) for all x, y ∈ M,
whence d[ℓ] is admissible.

Proof. It is easy to see that both ρ[ℓ] and d[ℓ] are metrics.
Take p, q ∈ M . On the one hand, if q ∈ Vn(p,ℓ), then by definition there are points x j ∈ M ,

where 0 ≤ j ≤ n, such that x0 = p, xn = x and x j ∈ B̆(x j−1,ℓ). It follows immediately that
d[ℓ](p, q) ≤ nℓ.
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Moreover, for any positive ε, there are points x0, . . . , xk such that x0 = p, xk = q and∑k
j=1 d(x j , x j−1) ≤ d[ℓ](p, q)+ε. Observe that we may omit points x j if d(x j+1, x j )+d(x j , x j−1) ≤ ℓ,

for in this case

d(x j+1, x j−1) ≤ d(x j+1, x j )+d(x j , x j−1) ≤ ℓ.

We omit such points recursively until this is no longer possible.
At this point, we may not only assume that

∑k
j=1 d(x j , x j−1) ≤ d[ℓ](p, q) + ε, but also that

d(x j+1, x j )+d(x j , x j−1) > ℓ. It follows that

d[ℓ](p, q)+ε≥
k∑

j=1
d(x j , x j−1) > ⌊k/2⌋ℓ,

and this implies that

ρ[ℓ](p, q) ≤ kℓ≤ ℓ+2d[ℓ](p, q).

The rest of the proof is evident. □

It is easy to see that, if d is a geodesic metric, then d[ℓ] coincides with d . Moreover, if we
start with arbitrary admissible metrics d1 and d2 with a common transitive isometry group, and
construct the Busemann gauges ρ1,[ℓ] and ρ2,[ℓ] or the derived semi-intrinsic metrics d1,[ℓ] and
d2,[ℓ] (still with the assumption that the balls Bd1 (p,2ℓ1) and Bd2 (p,2ℓ2) are relatively compact)
then ρ1,[ℓ] and ρ2,[ℓ] are quasi-isometric. Hence by Lemma 3 all the metrics ρ1,[ℓ], ρ2,[ℓ], d1,[ℓ] and
d2,[ℓ] are quasi-isometric. It is also straightforward to see that the derived semi-intrinsic metrics
d[ℓ1] and d[ℓ2] are quasi-isometric (again, provided that the balls Bd1 (p,2ℓ1) and Bd2 (p,2ℓ2) are
relatively compact).

We now introduce an important class of metrics.

Definition 4. A metric on a homogeneous metric space (M ,d) is called proper quasigeodesic if
the identity map is a quasi-isometry from (M ,d) to (M ,ρ[ℓ]), where ρ[ℓ] is the Busemann gauge
defined in (4).

This definition is not standard, but coincides with the usual versions. Two distinct proper
quasigeodesic metrics on M are quasi-isometric.

2.3. Metric spaces and coset spaces

We begin by clarifying notation. A group H acts on a set M if there is a homomorphism α from
H to Trans(M), the group of all invertible transformations of M . If the action is effective, that is, if
α(h)p = p for all p ∈ M only if h = e, then H may be identified with a subgroup of Trans(M).

Remark 5. If a group H acts transitively on a set M , then all the stabilisers of points in M are
conjugate. Hence a normal subgroup of H that is contained in one stabiliser is contained in
all stabilisers, that is, it fixes all points. Thus if H acts effectively and transitively on a set, then
no nontrivial compact normal subgroups of H are contained in a stabiliser. In general, if H acts
transitively but not effectively, and K is the stabiliser of a point, then N :=⋂

h∈H hK h−1 is a normal
subgroup of H that may be factored out to obtain a effective action of H/N , since H/K may be
identified with (H/N )/(K /N ).

We write Z (H) for the centre of a group H ; then what we have just shown implies in particular
that if H acts effectively on a set, and K is the stabiliser of a point, then K ∩Z (H) = {e}.

An action α of a group H on a metric space (M ,d) is isometric or by isometries if α(H) ⊆
Iso(M ,d).
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Theorem 6. Let (M ,d) be a homogeneous metric space, o be a point of M, ρ[ℓ] be the Busemann
gauge of (4), and H be the isometry group of (M ,d). Then

(i) H is locally compact, σ-compact and second countable;
(ii) the stabiliser K of o is compact;

(iii) H is metrisable, and for each ε ∈R+, the Busemann metric dH on H, given by

dH (g ,h) := sup{d(g (q),h(q))e−ρ[ℓ](o,q)/ε : q ∈ M },

is an admissible left-invariant metric on H;
(iv) the map π : g 7→ g (o) from (H ,dH ) to (M ,d) is 1-Lipschitz and (1,2ε/e)-quasi-isometric;

more precisely,

dH (g ,h)−2ε/e ≤ d(g (o),h(o)) ≤ dH (g ,h) ∀g ,h ∈ H .

(v) dH is right-K -invariant, that is, dH (g k,hk) = dH (g ,h) for all g ,h ∈ H and all k ∈ K , and
diamH (K ) ≤ 2ε/e.

Proof. The local compactness of H was shown by van Dantzig and van der Waerden [22].
By Lemma 2(v), (ii) and (iv) and Proposition 1, the set Uo and hence the sets U n

o are compact
in H when n ∈ N, and H = ⋃

n∈NU n
o , so H is σ-compact. The second countability of H follows

from that of M .
Next, van Dantzig and van der Waerden proved (ii), which also follows from the fact that the

stabiliser of o is a closed subset of the compact set Uo of Lemma 2.
Clearly dH is left-invariant; we need to show that it is admissible. Let (gn)n∈N be a sequence in

H . On the one hand, if gn → g in (H ,dH ), then

d(gn(p), g (p)) ≤ eρ[ℓ](o,p)/εdH (gn , g ),

for all p ∈ M , and hence gn converges to g pointwise, and so in H .
On the other hand, if gn → g in H , then the convergence is uniform on compacta, by

Proposition 1. Fix η ∈ (0,1), and take R ∈ R+ such that te−t/ε < η whenever t > R. Define A to
be the closure of {p ∈ M : ρ[ℓ](o, p) ≤ R}. Then A contains o and is compact in M by definition
and part (v) of Lemma 2. Hence there is n0 ∈ N such that d(gn(p), g (p)) ≤ η for all p ∈ A and all
n ≥ n0. Therefore

d(gn(p), g (p))e−ρ[ℓ](o,p)/ε ≤ η,

if n ≥ n0 and p ∈ A, while if n ≥ n0 and p ∉ A, then

d(gn(p), g (p))e−ρ[ℓ](o,p)/ε ≤ (
d(gn(p), gn(o))+d(gn(o), g (o))+d(g (o), g (p))

)
e−ρ[ℓ](o,p)/ε

≤ (2d(o, p)+η)e−ρ[ℓ](o,p)/ε

≤ 3η.

We conclude that dH (gn , g ) ≤ 3η for all n ≥ n0. As η may be chosen to be arbitrarily small, gn → g
in (H ,dH ).

By definition, d(π(g ),π(h)) = d(g (o),h(o)) ≤ dH (g ,h) for all g ,h ∈ H , so π is 1-Lipschitz.
Moreover, π is surjective by the homogeneity assumption, and

dH (g ,h) ≤ sup{(d(g (p), g (o))+d(g (o),h(o))+d(h(o),h(p)))e−ρ[ℓ](o,p)/ε : p ∈ M }

≤ d(g (o),h(o))sup{e−ρ[ℓ](o,p)/ε : p ∈ M }+2sup{d(o, p)e−ρ[ℓ](o,p)/ε : p ∈ M }

≤ d(π(g ),π(h))+2ε/e

(6)

for all g ,h ∈ H , whence π is a (1,2ε/e)-quasi-isometry.
Finally, for g ,h ∈ H and k ∈ K ,

dH (g k,hk) = sup{d(g k(q),hk(q))e−ρ[ℓ](o,q)/ε : q ∈ M }

= sup{d(g (k(q)),h(k(q)))e−ρ[ℓ](o,k(q))/ε : q ∈ M } = dH (g ,h),
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as required. Further, from (6),

diam(K ) = sup{dH (k,e) : k ∈ K } ≤ 2ε/e+ sup{d(k(o),e(o)) : k ∈ K } = 2ε/e,

and the proof is complete. □

Observe that we could define the Busemann metric in the statement of the theorem using
d[ℓ] rather than ρ[ℓ], and the proof above would work with minor modifications. Observe also
that Iso(M ,d) ⊆ Iso(M ,d[ℓ]), where d is a derived semi-intrinsic metric as defined just before
Lemma 3.

We now consider closed subgroups of the isometry group in more detail.

Theorem 7. Let (M ,d) be a homogeneous metric space, G be a closed subgroup of Iso(M ,d), and
S be the stabiliser in G of a point o in M. Then

(i) G is locally compact and S is compact;
(ii) if G acts transitively on M, then the map g S 7→ g (o) is a homeomorphism from G/S to M;

(iii) if B̆(o,ℓ) ⊆G(o) for some choice of ℓ ∈R+ and o ∈ M, then G acts transitively on M;
(iv) if G is open in Iso(M ,d), then it acts transitively on M;
(v) if G acts transitively on M, then for each ε ∈ R+ and o ∈ M, we may equip G with an

admissible left-invariant metric in such a way that the map g 7→ g (o) is 1-Lipschitz and a
(1,ε)-quasi-isometry;

(vi) if G acts transitively on M, then for each n ∈N and o ∈ M,

{g ∈G : g (o) ∈ B̆(o,ℓ)}n = {g ∈G : g (o) ∈Vn(o,ℓ)}.

Proof. Part (i) is standard: closed subspaces of locally compact or compact spaces are locally
compact or compact.

Part (ii) follows from [38, Theorem 3.2, p. 121].
For part (iii), the orbit G(o) is nonempty, open and closed. As M is connected, by our standing

assumption, M =G(o).
For part (iv), it follows from part (ii) that the map g 7→ g (o) from G to M is open. Consequently

G(o) is open and G acts transitively by part (iii).
The proof of part (v) is similar to the proof of part (iii) in Theorem 6, and the proof of part (vi)

is similar to the proof of part (iv) in Lemma 2. □

Corollary 8. Let (M ,d) be a homogeneous metric space. The connected component H of the
identity in Iso(M ,d) is locally compact and acts transitively on M, and the quotient Iso(M ,d)/H is
compact.

Proof. The subgroup H is closed in Iso(M ,d), and hence is locally compact. It is also normal,
and the totally disconnected locally compact group Iso(M ,d)/H has a neighbourhood base N
of the identity consisting of open and closed subgroups, ordered by reverse inclusion; see [70,
Proposition 4.13]. For each ν ∈ N, let Hν be the preimage of ν in Iso(M ,d). Then (Hν)ν∈N is a net
of open and closed subgroups of Iso(M ,d) such that H =⋂

ν∈N Hν, and Hν acts transitively on M
for every ν ∈ N by Theorem 7.

Take o, p ∈ M . For each ν ∈ N, there is gν ∈ Hν such that gν(o) = p. By the Arzelà–Ascoli
theorem, {g ∈ Iso(M ,d) : g (o) = p} is compact; since each gν lies in this set, we may assume that
gν converges to g ∈ Iso(M ,d) by passing to a subnet if necessary. For each ν ∈ N, gν′ ∈ Hν when
ν′ ≥ ν, and hence g ∈ Hν. In conclusion, g ∈⋂

ν∈N Hν = H and g (o) = p.
Let K be the stabiliser in Iso(M ,d) of the point o in M ; then K is compact. Since H acts

transitively, for every g ∈ Iso(M ,d), there exists h ∈ H such that h−1g (o) = o, that is, h−1g ∈ K .
It follows that Iso(M ,d) ⊆ HK . □
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The next definition summarises and extends the structure that we have seen in the last
theorems.

Definition 9. A homogeneous metric projection is a pair of homogeneous metric spaces (M1,d1)
and (M2,d2), with a group H acting isometrically, continuously and transitively on both M1 and
M2, and an H-equivariant projection π : M1 → M2 such that

d2(x2, y2) = inf{d1(x1, y1) :πx1 = x2,πy1 = y2} ∀x2, y2 ∈ M2.

The set {x1 ∈ M1 :πx1 = x2} is called the fibre above x2 in M2.

Because H acts continuously on both M1 and M2, the stabilisers K1 of a point x in M1 and K2

of πx in M2 are closed, and it is clear that K1 ⊆ K2. There is then a natural identification of the
fibre above x with the quotient space K2/K1, and all the fibres are isometric to each other because
H acts transitively. As noted in the remark above, the subgroup of H of elements that act trivially
on M1 (and a fortiori on M2) is a closed normal subgroup that may be factored out.

With K1 and K2 as above, if the set K2/K1 is compact, then the diameter of each fibre is
bounded; hence there exists a constant C such that

d1(x, y)−C ≤ d2(πx,πy) ≤ d1(x, y) ∀x, y ∈ M1,

that is, π is 1-Lipschitz and a rough isometry. The constant C is called the implicit constant of the
projection π and may be identified with the diameter of K2/K1.

Let π be the projection from a locally compact group H onto a quotient space H/K . We recall
that a section σ for H/K in H is a mapping such that π◦σ is the identity map on H/K . It is well-
known that sections exist: they may be taken to be Borel or even Baire (see, for instance, [47]).
It is evident that if π is a homogeneous metric projection from (M1,d1) onto (M2,d2) and H is a
common transitive isometry group, then M2 may be identified with H/K2, where K2 is a compact
subgroup of H , and a section from M2 to H composed with the projection from H to M1 is a
section from M2 to M1. If

d1(x, y)−C ≤ d2(πx,πy) ≤ d1(x, y) ∀x, y ∈ M1,

and if σ is a section for M2 in M1, then

d2(p, q) ≤ d1(σ(p),σ(q)) ≤ d2(p, q)+C ∀p, q ∈ M2.

We conclude this section with two remarks.

Remark 10. Let (M ,d) be a homogeneous metric space, and let H be a subgroup of Iso(M ,d)
that acts transitively on M . Equip Iso(M ,d) with the topology of Proposition 1, H with the relative
topology, and M with the topology induced by d . Take an arbitrary point o of M .

Then the relative topology on H is also the only topology on H such that the mapping
π : h 7→ ho is continuous and open. Indeed, the sets {g ∈ H : d(hx, x) < ε}, where x ∈ M and
ε ∈R+ form a subbase for any topology on H such that π is continuous and open, and also for the
topology of pointwise convergence.

This implies that if U ⊂ H and U =U K , then U is open in H if and only if U o is open in M . It
follows that if we change the metric on M to a new metric that induces a different topology and is
such that H is still an isometry group, then the topology of H as an isometry group with the new
metric must also change.

Remark 11. Let (G ,d) be a metric group, that is, G is a connected locally compact group, with
an admissible metric d . The group G , acting on itself by left translations, may be viewed as a
subgroup of Iso(G ,d); this subgroup is closed. Indeed, take gn ∈G such that gn → h in Iso(G ,d);
we need to show that h ∈ G . Let g = he in G . Now gn = gne → he = g in G . Consequently,
gn g ′ → g g ′ for all g ′ ∈G ; since the topology of Iso(G ,d) is that of pointwise convergence, gn → g
in Iso(G ,d).
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2.4. Modifying metrics

In dealing with homogeneous metric spaces, a useful technique is the use of pseudometrics on
groups; we show how to use these to modify metrics.

A pseudometric is a function that satisfies all the conditions required of a metric, except
perhaps the condition that d(x, y) = 0 implies that x = y . Let ḋ be a left-invariant pseudometric
on a topological group G . We define the kernel of ḋ to be the set {x ∈ G : d(x,e) = 0}, and say
that ḋ on G is continuous if ḋ(xn , y) → ḋ(x, y) for all y ∈ G whenever xn → x in G , semiproper
if {x ∈ G : ḋ(x,e) = 0} is compact, and proper if {x ∈ G : ḋ(x,e) < C } is relatively compact for all
C ∈R+.

Given a pseudometric space (M , ḋ), we define the ball Bḋ (x,r ) to be the set {y ∈ M : ḋ(x, y) < r };
then Bḋ (x,r ) is open if ḋ is continuous. Further, given pseudometric spaces (M1, ḋ1) and (M2, ḋ2),
we say that a bijection f : M1 → M2 is an isometry if ḋ2( f x1, f y1) = ḋ1(x1, y1) for all x1, y1 ∈ M1.

Lemma 12. Suppose that (M ,d) is a homogeneous metric space, that G is a transitive closed
subgroup of Iso(M ,d), and that K is the stabiliser in G of a point o in M. Then ḋ : G ×G → [0,+∞),
defined by

ḋ(x, y) := d(xo, yo) ∀x, y ∈G ,

is a continuous left-invariant pseudometric on G, and

(i)
⋂

x∈G xK x−1 = {e};
(ii) ḋ(x,e) = 0 if and only if x ∈ K ;

(iii) ḋ(x, y) = ḋ(xk, yk ′) for all x, y ∈G and k,k ′ ∈ K ;
(iv) the topology induced by d on G/K coincides with the quotient topology on G/K .

Conversely, if ḋ is a continuous left-invariant pseudometric on a connected metrisable topolog-
ical group G, then K := {x ∈G : ḋ(x,e) = 0} is a closed subgroup of G, and {x ∈G : ḋ(x, y) = 0} = yK ;
further, (iii) holds. Define the function d : G/K ×G/K → [0,+∞) by

d(xK , yK ) := ḋ(x, y) ∀x, y ∈G ; (7)

then d is a metric on the set G/K , and G acts continuously and transitively by isometries on
(G/K ,d). Further, the subgroup N := ⋂

x∈G xK x−1 is closed and normal in G, and acts trivially
on G/K , so that G/N may be identified with a transitive subgroup of Iso(G/K ,d). Finally, suppose
that the topology induced by d on G/K coincides with the quotient topology on G/K . Then

(v) the Busemann metric dε on G/N , given by

dε(g ,h) := sup{d(g (q),h(q))e−ρ[ℓ](o,q)/ε : q ∈G/N },

is admissible on G/N ; and
(vi) the subgroup K /N of G/N is compact.

Proof. Take x, y, z ∈G . Then ḋ(x, y) ≥ 0 and ḋ(x, y) = ḋ(y, x) by definition; further,

ḋ(x, z) = d(xo, zo) ≤ d(xo, yo)+d(yo, zo) = ḋ(x, y)+ ḋ(y, z),

and

ḋ(x, y) = d(xo, yo) = d(zxo, z yo) = ḋ(zx, z y).

Hence ḋ is a left-invariant pseudometric on G .
The compactness of K and items (i) and (iv) are proved in Section 2.3; items (ii) and (ii) follow

immediately from the definitions.
Conversely, if ḋ is a continuous left-invariant pseudometric on a topological group G , and

K = {x ∈G : ḋ(x,e) = 0}, then

ḋ(x−1 y,e) = ḋ(y, x) ≤ ḋ(y,e)+ ḋ(e, x) = 0,
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for all x, y ∈ K whence K is a subgroup of G , which is closed since ḋ is continuous. Observe that

ḋ(x, y) = 0 ⇐⇒ ḋ(y−1x,e) = 0 ⇐⇒ y−1x ∈ K ⇐⇒ x ∈ yK .

Moreover,

ḋ(xk, yk ′) ≤ ḋ(xk, x)+ ḋ(x, y)+ ḋ(y, yk ′) = ḋ(x, y)

and

ḋ(x, y) ≤ ḋ(x, xk)+ ḋ(xk, yk ′)+ ḋ(yk ′, y) = ḋ(xk, yk ′),

so (iii) holds. It follows immediately that ḋ induces a metric d on G/K , by the formula

d(xK , yK ) = ḋ(x, y) ∀x, y ∈G ,

and G acts transitively and continuously by isometries on (G/K ,d). It is evident that N is closed
and normal, and is precisely the subgroup of G that stabilises every point of G/K , hence G/N acts
effectively, transitively and isometrically on G/K , which we may identify with (G/N )/(K /N ) by a
standard isomorphism theorem.

Now we suppose that the topology induced by d on G/K coincides with the quotient topology
on G/K , that is, that d is admissible, and prove (v) and (vi). We may and shall suppose that N is
trivial, otherwise we just divide it out. By Remark 10, the topology on G coincides with the relative
topology as a subgroup of Iso(G/K ,d), and Theorem 7 implies (v) and (vi). □

The reader may wish to check that, in the first part of the preceding lemma, if d is proper on
G/K , then ḋ is proper on G , while in the second part, ḋ is semiproper if and only if d is proper.

Definition 13. A left-invariant continuous pseudometric ḋ on a topological group G with kernel
K is said to be admissible if the topology of the induced metric on G/K coincides with the quotient
topology on G/K . Equivalently, the sets Bḋ (x,r )K , where x ∈ G and r ∈ R+ form a base for the
topology of G/K , or the sets Bḋ (x,r ), where x ∈ G and r ∈ R+ form a base for the subtopology of G
of all right-K -invariant sets of the topology.

By the proof of the previous lemma and the continuity of ḋ , the sets Bḋ (x,r ) satisfy Bḋ (x,r ) =
Bḋ (x,r )K and are open in G . Hence the key to showing admissibility is to show that if U is an
open neighbourhood of x in G and U =U K , then Bḋ (x,r ) ⊆U when r is small enough.

Corollary 14. If ḋ is a left-invariant continuous admissible pseudometric on G, and xn → x in G
as n →+∞, then supy∈Kc

ḋ(xn y, x y) → 0 for all compact subsets Kc of G.

Proof. Let K be the kernel of ḋ , and d be the corresponding metric on G/K . Convergence of
a sequence in G implies pointwise convergence and hence locally uniform convergence of the
corresponding sequence of elements of Iso(G/K ,d), by Proposition 1. □

We show now that if G is a locally compact group and dG is an admissible left-invariant metric
on G that is also right-K -invariant, where K is a closed bounded subgroup of G , then the quotient
space G/K may be equipped with a metric in a natural way.

Lemma 15. Let K0 and K be compact subgroups of a locally compact group G such that K0 ⊆ K .
Suppose that ḋ is a left-invariant right-K -invariant continuous admissible pseudometric on G
with kernel K0, and take C := sup{ḋ(x, y) : x, y ∈ K } (which is finite). Then

d̈(x, y) := min{ḋ(xk, yk ′) : k,k ′ ∈ K } ∀x, y ∈G

defines a left-invariant continuous admissible pseudometric on G with kernel K , and

ḋ(x, y)−C ≤ d̈(x, y) ≤ ḋ(x, y) ∀x, y ∈G .
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Proof. Since ḋ is continuous and right-K -invariant and K is compact, we may write

d̈(x, y) = min{ḋ(xk, y) : k ∈ K } = min{ḋ(x, yk ′) : k ′ ∈ K }. (8)

Clearly d̈ is left-invariant and d̈(x, y) ≥ 0 and d̈(x, y) = d̈(y, x) for all x, y ∈G . Further,

ḋ(xk, zk ′) ≤ ḋ(xk, y)+ ḋ(y, zk ′),

and taking minima shows that d̈(x, z) ≤ d̈(x, y)+ d̈(y, z) for all x, y, z ∈G . Suppose that d̈(x, y) = 0;
then there exists k ∈ K such that ḋ(x, yk) = 0. Hence x ∈ yK0 and xK = yK .

We now show that the pseudometric d̈ is admissible. By the remark following Definition 13, it
suffices to consider x ∈ G and an open neighbourhood U of x in G such that U =U K , and show
that some Bd̈ (x,r ) ⊆U . Clearly U =U K0, and since ḋ is admissible, there exists r ∈ R+ such that
x ∈ Bḋ (x,r ) ⊆U . From (8),

Bd̈ (x,r ) = ⋃
k∈K

Bḋ (xk,r ) = Bḋ (xk,r )K ⊆U K =U ,

so d̈ is admissible. □

Corollary 16. Let K0 and K be compact subgroups of a locally compact group G such that K0 ⊆ K .
If d0 is a G-invariant admissible metric on G/K0 such that

d0(xkK0, ykK0) = d0(xK0, yK0) ∀x, y ∈G ∀k ∈ K ,

then d, defined by

d(xK , yK ) = min{d0(xkK0, yk ′K0) : k,k ′ ∈ K } ∀x, y ∈G ,

is a G-invariant admissible metric on G/K , and the projection π : G/K0 →G/K is a G-equivariant
rough isometry; more precisely,

d0(xK0, yK0)−C ≤ d(xK , yK ) ≤ d0(xK0, yK0)

for all x, y ∈G.

Proof. This follows from the preceding lemma, translated into the language of metrics using
Lemma 12. Indeed, the metric d0 induces a pseudometric ḋ on G which satisfies the conditions
required in the previous lemma; the previous lemma constructs another pseudometric d̈ on G ;
finally d is the metric on G/K induced by d̈ . □

A locally compact topological group G is said to be metrisable if there is a metric dG on G
that induces the topology of G ; it is known that dG may be taken to be left-invariant (see [40,
Theorem 8.3]), and we shall always do so. Conversely, it is easy to check that if dG is a left-
invariant metric on G , then G with the topology induced by dG is a topological group (that is,
multiplication and inversion are continuous) if and only if dG satisfies the condition dG (xn , x) → 0
as n →+∞ implies that dG (xn z, xz) → 0 as n →+∞ for all z ∈G .

Lemma 15 suggests the question whether, given a pseudometric group (G ,d) and a closed d-
bounded subgroup K of G , it is possible to adjust d on G to obtain a pseudometric that is both
left-invariant and right-K -invariant. This is the point of the next lemma. We say that a closed
subgroup K of G is compact modulo a closed central subgroup Z of G provided that K /(K ∩Z ) is
compact.

Lemma 17. Let Z be a closed central subgroup of a locally compact group G, and let ḋ be a left-
invariant continuous admissible pseudometric on G. Suppose that K is a subgroup of G that is
compact modulo Z , and set

C := sup
k∈K

inf
z∈Z

ḋ(kz,e). (9)
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Then C is finite. Further, ḋK , defined by

ḋK (g ,h) := sup
k∈K

ḋ(g k,hk) ∀g ,h ∈G ,

is a left-invariant, right-K -invariant, continuous, admissible pseudometric on G, and

ḋ(g ,h) ≤ ḋK (g ,h) ≤ ḋ(g ,h)+2C ∀g ,h ∈G . (10)

Proof. In light of the existence of suitable sections for quotients of locally compact groups (see,
for instance, [47]), there is a compact subset Kc of K such that K ⊆ Kc Z . Then

sup
k∈K

ḋ(g k,hk) ≤ sup
k∈Kc

sup
z∈Z

ḋ(g kz,hkz) = sup
k∈Kc

ḋ(g k,hk) ≤ sup
k∈K

ḋ(g k,hk),

and so
ḋK (g ,h) = sup

k∈Kc

ḋ(g k,hk) ∀g ,h ∈G . (11)

Similarly,
C = sup

k∈K
inf
z∈Z

ḋ(kz,e) = sup
k∈Kc

inf
z∈Z

ḋ(kz,e) ≤ sup
k∈Kc

ḋ(k,e) <+∞.

By definition, given k ∈ K and z ∈ Z ,

ḋ(g k,hk) = ḋ(g kz,hkz) ≤ ḋ(g kz, g )+ ḋ(g ,h)+ ḋ(h,hkz) ≤ ḋ(g ,h)+2ḋ(kz,e)

for all g ,h ∈G ; we obtain (10) for ḋK by optimising in z. In particular, we see that ḋK is finite. We
may easily check that ḋK is a pseudometric on G . It remains to show that ḋK is admissible and
continuous.

The continuity of ḋK follows immediately from (11) and Corollary 14.
To check admissibility, we suppose that x ∈G and V is an open neighbourhood of x in G , and

take U =V K . We need to show that BḋK
(x,r ) ⊆U when r is small enough. But BḋK

(x,r ) ⊆ Bḋ (x,r )
and the admissibility of ḋ implies that Bḋ (x,r ) ⊆U when r is small enough. □

The next result follows immediately from Lemmas 12 and 17.

Corollary 18. Suppose that Ko is a compact subgroup of a locally compact group G, and K is a
subgroup of G that contains Ko and is compact modulo the centre of G. If d is a G-invariant metric
on G/Ko , then there is a metric d ′ on G/Ko such that the identity mapping on G/Ko is a rough
isometry from (G/Ko ,d) to (G/Ko ,d ′) and d ′ is left-invariant and right-K -invariant, in the sense
that

d ′(g g ′kKo , g g ′′kKo) = d ′(g ′Ko , g ′′Ko) ∀g , g ′, g ′′ ∈G ∀k ∈ K .

We have seen that, starting from a homogeneous metric space (M ,d), we may construct
various transitive isometry groups H , which are metrisable locally compact groups, and realise
M as H/K , where K is the stabiliser of a point o in M . Conversely, given a quotient space H/K of
a metrisable locally compact group, it is natural to ask whether H/K may be given the structure
of a metric space on which H acts isometrically. The following corollary answers this question.

Corollary 19. Given a compact subgroup K of a connected metrisable locally compact group H
such that

⋂
h∈H hK h−1 = {e}, there exists an admissible metric d on H/K such that H may be

identified with a closed subgroup of Iso(H/K ,d).

Proof. First, if H is metrisable, then, as noted above, there is a left-invariant admissible metric
d1 on H . We modify d1 if necessary so that it is right-K -invariant, by defining d2 by

d2(x, y) := max{d1(xk, yk) : k ∈ K } ∀x, y ∈ H .

Lemma 17 shows that d2 is a metric. By Lemma 15, d , defined by

d(xK , yK ) := inf{d2(xk, yk ′) : k,k ′ ∈ K } ∀xK , yK ∈ H/K , (12)
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is an admissible metric on H/K , and H acts isometrically on (H/K ,d). The condition on the
conjugates of K ensures that the action is effective.

Take a sequence (hn)n∈N in H and j ∈ Iso(H/K ,d) such that hnhK → j hK for all h ∈ H ; to see
that H is closed in Iso(H/K ,d), we must show that j ∈ H .

First, take g ∈ H such that j eK = g K ; then g−1hnhK → g−1 j hK for all h ∈ H , and g−1 j eK =
eK . Next, since g−1hneK → eK , (12) implies that we may choose gn ∈ H such that g−1hneK =
gneK and gn → e in H . Write h′

n for g−1
n g−1hn and j ′ for g−1 j . Thus, h′

nhK → j ′hK for all
h ∈ H and h′

neK = eK for all n ∈N, that is, h′
n ∈ K . Since K is compact, we may, after passing to a

subsequence if necessary, suppose that h′
n → k in K . It then follows that khK = limn h′

nhK = j ′hK
for all h ∈ H , and since Iso(H/K ,d) acts effectively, j ′ = k. Thus j ∈ H , and H is closed in
Iso(H/K ,d). □

Now we discuss covering maps of homogeneous metric spaces. If M ♯ and M are connected
topological spaces, then a continuous surjectionπ : M ♯→ M is said to be a covering map provided
that, for all sufficiently small neighbourhoods U in M , there are disjoint neighbourhoods Vz in
M ♯, where z ∈ Z , such that π−1(U ) =⊔

z∈Z Vz and the restriction of π to Vz is a homeomorphism
onto U .

In the case of connected topological groups, which we write H ♯ and H , we take π to be a
homomorphism, with kernel Z . In this case, Z is discrete and normal in H ♯, which implies that
Z is central, since {x ∈G : xzx−1 = z} is both open and closed in G for each z ∈ Kerπ. For such π,
for all sufficiently small neighbourhoods U in H , there is a neighbourhood V in H ♯ such that the
restriction of π to V is a homeomorphism onto U and π−1(U ) =⊔

z∈Kerπ zV .
When we deal with homogeneous metric spaces, universal covering spaces need not exist;

consider, for example, an infinite product of circles.

Lemma 20. Suppose that π : G♯ → G is a covering map of connected locally compact topological
groups, K ♯ and K are closed subgroups of G♯ and G, and K ♯ is an open subgroup of π−1K . Then the
canonical projection π♯ : G♯/K ♯ → G/K is a covering map. Suppose that d is a G-invariant metric
on G/K . Then for all ε ∈R+, there exists a G♯-invariant metric d ♯ on G♯/K ♯ such that

d ♯(x, y)−ε≤ d(πx,πy) ≤ d ♯(x, y) ∀x, y ∈G♯/K ♯.

If K1 is a connected subgroup of G that contains K and d is right-K1-invariant, then d ♯ may be
taken to be right-π−1K1-invariant.

Proof. The mapping π♯ is the composition of two mappings: the canonical projection from
G♯/K ♯ to G♯/π−1K and the canonical isomorphism of G♯/π−1K with G/K , which is a homeomor-
phism. It is obvious that we can use the latter map to transfer the metric from G/K to G♯/π−1K so
that the homeomorphic isomorphism is also an isometry, so it suffices to deal with the canonical
projection. To simplify the notation, we replace G♯, K ♯, π♯ and π−1K by G , K , π and K ♭. Thus
K is an open subgroup of K ♭, which is a closed subgroup of G , and we consider the projection
π : G/K →G/K ♭; we need to prove that π is a covering map and show how to lift a metric on G/K ♭

to G/K .
From the hypotheses, we may find points z j ∈ K ♭ such that K ♭ = ⊔

j z j K . Moreover, there is
an open set U in G such that U =U−1 and U 2 ∩K ♭ = K . Then the sets Uz j K are open in G and
disjoint, and the mapping uz j K 7→ uK ♭ is a homeomorphism from Uz j K to U K ♭, and then by
the G-equivariance of π, the restriction of π to a set gUz j K , where g ∈ G , is a homeomorphism
to gU K ♭. It follows that π is a covering map.
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Next, a metric d on G/K ♭ gives rise to a pseudometric ḋ on G with kernel K ♭. We may define a
(not necessarily proper) metric d1 on G/K by choosing ε small enough that B(eK ♭,ε) ⊆U K ♭, and
then setting

d1(xK , yK ) :=
{

min{d(πx,πy),ε) if x, y ∈ gU K for some g ∈G

ε otherwise.

We leave to the reader the task of checking that a suitable linear combination dG/K of ḋ and d1

has the required properties. □

Lemma 21. Let H be a locally compact group with closed subgroups S1 and S2 such that the map
(s1, s2) 7→ s1s2 is a homeomorphism from H× = S1 × S2 onto H. Let ω : H× → H be the mapping
(s1, t ) 7→ s1t−1. Thenω is a homeomorphism. Further, if ḋ is a left-invariant and right-S2-invariant
continuous admissible pseudometric on H, then ḋ×, given by

ḋ×((s1, s2), (s′1, s′2)) = ḋ(s1s−1
2 , s′1s′−1

2 ) ∀s1, s′1 ∈ S1 ∀s2, s′2 ∈ S2,

is a left-invariant continuous admissible pseudometric on S1 ×S2.

Proof. Since s2 7→ s−1
2 is a homeomorphism of S2 and ψ : (s1, s2) → s1s2 is a homeomorphism,

ω is a homeomorphism from H× to H . Since ḋ is a left-S1-invariant and right-S2-invariant
pseudometric, ḋ× is a left-(S1 ×S2)-invariant pseudometric. Since ḋ is continuous, so is ḋ×.

Let K be the kernel of ḋ and K× be the kernel of ḋ×. From Lemma 12,

p×K× = {q× ∈ H× : ḋ×(p×, q×) = 0}

and

pK = {q ∈ H : ḋ(p, q) = 0}.

for all p× ∈ H× and all p ∈ H . The definition of ḋ× then implies that

q ∈ pK× ⇐⇒ ḋ×(p, q) = 0 ⇐⇒ ḋ(ω(p),ω(q)) = 0 ⇐⇒ ω(q) ∈ω(p)K .

It follows that ω induces a homeomorphism from H×/K× to H/K , which is an isometry by
construction. The admissibility of ḋ and that of ḋ× are therefore equivalent. □

We note conversely that if the map ω : S1 × S2 → H , given by ω(s1, s2) = s1s−1
2 is an isometry

from the pseudometric group S1 ×S2 to the pseudometric group H , then the pseudometric on H
must be right-S2-invariant.

2.5. Simply transitive isometry groups

Here we are interested in the question whether a homogeneous metric space admits a simply
transitive isometry group.

Theorem 22. Let (M ,d) be a homogeneous metric space, H denote Iso(M ,d) and K denote the
stabiliser of a base point o in M; let G be a group. Then the following are equivalent:

(i) there is a simply transitive action of G on M by isometries;
(ii) there is a left-invariant metric dG on G such that (G ,dG ) is isometric to (M ,d);

(iii) there is a monomorphism α : G → H such that α(G)∩K = {eH } and H =α(G)K .

In addition, if (i), (ii)) and (iii) hold, and G is a topological group, then the following are equivalent:

(iv) the metric dG of (ii) is admissible;
(v) α is a homeomorphism from G to α(G), equipped with the relative topology as a subset

of H.

Finally if (i) to (v) all hold, then α(G) is closed in H.
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Proof. Suppose that (i) holds, and denote the action by α. We define the left-invariant pull-back
metric dG on G by

dG (g , g ′) := d(α(g )o,α(g ′)o) ∀g , g ′ ∈G ;

then the map g 7→α(g )o is an isometry from (G ,dG ) to (M ,d), so (ii) holds.
Assume that (ii) holds, and that F : (G ,dG ) → (M ,d) is an isometry. By composing with a

translation of G if necessary, we may suppose that F (e) = o. For g ∈ G , define the mapping
α(g ) : M → M by the formula

α(g )(p) := F (g F−1(p)) ∀p ∈ M .

It is straightforward to check that (iii) holds.
Now assume that (iii) holds. Then α(G) is transitive since every element of H may be written

as α(g )k where g ∈ G and k ∈ K , and α(G) is simply transitive since α(G)∩K = {eH }. So G acts
simply transitively by isometries on (M ,d), and (i) is proved.

Now assume that (i), (ii) and (iii) hold, and that G is a topological group. Consider, for g and a
net of elements gν in G , the following statements:

(a) gν→ g in G as ν→∞;
(b) gνg ′ → g g ′ in G as ν→∞ for all g ′ ∈G ;
(c) dG (gνg ′, g g ′) → 0 as ν→∞ for all g ′ ∈G ;
(d) d(α(gνg ′)(o),α(g g ′)(o)) → 0 as ν→∞ for all g ′ ∈G ;
(e) α(gν)(p) →α(g )(p) in M as ν→∞ for all p ∈ M ;
(f) α(gν) →α(g ) in H .

Since G is a topological group, (a) and (b) are equivalent, while (c) and(d) are equivalent by
definition, (d) and (e) are equivalent by writing p = g ′(o), and (e) and (f) are equivalent by
definition of the topology on H . Further, (b) and (c) are equivalent if and only if dG is admissible.

If dG is admissible, then (a) and (f) are equivalent, so α is a homeomorphism of G onto its
image in H . Conversely, if the topology of α(G) induced by that of G coincides with that induced
by H , then (a) and (f) are equivalent, and so dG is admissible.

We now suppose that if (i) to (v) all hold, and show that α(G) is closed in H . We take a net (gν)
in G such that α(gν) → h in H , and need to prove that h ∈α(G). Now h =α(g )k, where g ∈G and
k ∈ K ; by replacing gν by g−1gν if necessary, we may assume thatα(gν) → k in H , and must prove
that k = e. Now

dG (gν,eG ) = d(α(gν)o,o) −→ d(ko,o) = 0,

so gν→ eG , as required. □

The theorem above shows that, if we are looking for metric groups that are isometric to a given
homogeneous space, and whose topology is related to that of the homogeneous space, it will
suffice to look for closed subgroups of the isometry group. Actually, since our homogeneous
spaces are assumed to be connected, it will suffice to look for closed subgroups of the connected
component of the identity in the isometry group. The conditions in the theorem will appear quite
often, and so it is useful to have some additional notation.

Definition 23. If G and K are subgroups of a group H, then GK denotes the subset {g k : g ∈G ,k ∈
K } of H.

We write H = G ·K to indicate that G and K are closed subgroups of a locally compact group
H, such that the mapping (g ,k) 7→ g k from the set G × K with the product topology to H is a
homeomorphism.

If H =G ·K and moreover G is normal in H, then we write H =G ⋊K and call H the semidirect
product of G and K .
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Remark 24. First, if H = G ·K , then G is homeomorphic to H/K . Further, if H is connected, so
are G and K .

Next, the subgroup K is not required to be compact in Definition 23. However, if K is compact,
then the condition that the mapping is a homeomorphism in the definition of the expression
H = G · K is satisfied provided only that the mapping is a bijection. Indeed, if (gν) and (kν′ )
are nets such that gν → g in G and kν′ → k in K , then gνkν′ → g k in H since multiplication is
continuous. Conversely if G is closed and K is compact, and gνkν→ h in H , then, by passing to a
subnet, we may assume that kν→ k in K , and then gν→ hk−1 in H and so in G since G is closed;
if the net kν had two limits, then we could factorise h as a product g k in two distinct ways, which
contradicts bijectivity.

Remark 25. If (G ,d) is a metric group, and K is the stabiliser in Iso(G ,d) of e in G , then G and
K are both closed in Iso(G ,d), by Remark 11 and Theorem 6, and have trivial intersection, so we
may write Iso(G ,d) = G ·K . Hence if H is a subgroup of Iso(G ,d) that contains G , then we may
write H =G ·K0, where K0 is the stabiliser in H of e in G .

The next lemma is about groups that nearly act simply transitively.

Lemma 26. Suppose thatα is a continuous monomorphism of a connected locally compact group
G into a connected metrisable locally compact group H, and that K is a compact subgroup of
H. Let ω : G ×K → H be the continuous mapping (g ,k) 7→ α(g )k−1. Suppose also that there are
neighbourhoods U0 of eG in G and V0 of eK in K such that, if eG ∈U ⊆U0 and eK ∈ V ⊆ V0, then
the restricted mapping ω|U×V is a bijection onto a neighbourhood of eH in H. Then

(i) H =α(G)K ,
(ii) there is an open set U1 in G containing eG such that the restriction ω|U1×K is a homeomor-

phism onto its image, with the relative topology;
(iii) α−1(K ) is discrete in G and G/α−1(K ) is homeomorphic to H/K ;
(iv) α(G)∩K is finite if and only if α(G) is closed in H; and
(v) if α(G)∩K = {eH }, then H =α(G) ·K .

Proof. To prove (i), we equip the connected space H/K with an H-invariant metric, by using
Corollary 19, so that G acts isometrically on H/K . By assumption, ω(G ×K ) contains a neigh-
bourhood of eH , so the image of the base point K in H/K under α(G) contains a neighbourhood
of the base point, whence G acts transitively on H/K by part (ii) of Theorem 7, and H = α(G)K .
Hence (i) holds.

Now we prove (ii). By compactness, there exist finitely many points k1, . . . , kI in K such that
K = ⋃

i ki V0. Suppose that i in {1, . . . , I }. If α(U0)∩ki V0 ̸= ;, then there exist ui ∈U0 and vi ∈ V0

such that α(ui ) = ki vi . Now if u ∈U0 ∩α−1(K ), then there exist j in {1, . . . , I } and v ∈V0 such that
α(u) = k j v . We deduce that

α(u)v−1 = k j =α(u j )v−1
j ,

whence u = u j . Thus

U0 ∩α−1(K ) = {u j :α(U0)∩k j V0 ̸= ;, k j =α(u j )v−1
j },

which is a finite set. It follows that there exists a neighbourhood U ′
0 of eG in G such that

α(U ′
0)∩K = {eH }. We take a neighbourhood U1 of eG in G such that U−1

1 U1 ⊆U ′
0. Now if g1, g2 ∈U1

and k1,k2 ∈ K are such that α(g1)k−1
1 = α(g2)k−1

2 , then α(g−1
2 g1) = k−1

2 k1 and g−1
2 g1 ∈ U ′

0 and
k−1

2 k1 ∈ K . It follows that g1 = g2 and k1 = k2, and ω|U1×K is a bijection. The hypothesis on ω

implies that ω|U1×K is open, and it is continuous by definition.
Part (iii) follows immediately from (ii). Indeed, α−1(K )∩U1 = {eG }, so the point eG is isolated

in α−1(K ). By a translation argument, every point of α−1(K ) is isolated, and α−1(K ) is discrete.
Further, standard isomorphism theorems show that α induces a continuous bijection, α̇ say, of
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G/α−1(K ) onto H/K . The hypothesis on ω implies that α̇ is open, so α̇ is indeed a homeomor-
phism.

We now prove one implication of (iv). Ifα(G) is closed in H , thenα(G)∩K is a closed subgroup
of K , so is compact. Now G is connected and locally compact by hypothesis, and so isσ-compact;
further,α−1(K ) is a discrete subgroup of G , and hence there is a neighbourhood W of eG such that
the sets xW , as x ranges over α−1(K ), are disjoint. It follows that α−1(K ) is countable, whence
α(G)∩K is a countable compact group, hence finite (see the notes and remarks at the end of this
section).

Conversely, to complete the proof of (iv), we assume that α(G)∩K is finite, and take a net (gν)
in G such that α(gν) → h in H ; we must show that h =α(g∗) for some g∗ in G , and gν → g∗ in G .
By the transitivity of the G action on H/K , proved in (i), there exists g in G such that h ∈ α(g )K ;
thenα(g−1gν) →α(g−1)h in H , and, by replacing gν and h by g−1gν andα(g−1)h, we may assume
that h ∈ K . Next, from (ii), if ν is large enough, there exists g̃ν in U1 such that α(g̃ν)K = α(gν)K ,
and g̃ν→ e in G ; by replacing gν by g̃−1

ν gν, we may assume thatα(gν) ∈ K . Sinceα(G)∩K is finite,
the convergent net gν is eventually constant, so the limit is in G .

Finally, if α(G) ∩ K = {eH }, then α(G) is closed in H from part (iv). By Remark 24, H =
α(G) ·K . □

We now clarify when two connected locally compact groups may be made isometric.

Corollary 27. Let G1 and G2 be connected locally compact groups. Then G1 and G2 may be made
isometric if and only if there exists a metrisable locally compact group H with a compact subgroup
K such that H =G1 ·K =G2 ·K .

Proof. If G1 and G2 may be made isometric, then we may assume that the isometry sends e1 to
e2, and that they have a common isometry group, H say. Then we may take K to be the stabiliser
of e1 in G1 or e2 in G2.

Conversely, given H and K , Corollary 19 constructs a metric d on H/K so that H acts
isometrically on (H/K ,d). Since G j acts simply transitively on H/K , we may transport the metric
d on H/K to G j by the formula

d j (x, y) = d(xK , yK ) ∀x, y ∈G j ,

and obtain left-invariant metrics on G j , when j is 1 or 2. Now (G1,d1) and (G2,d2) are both
isometric to (H/K ,d), and so are isometric to each other. □

2.6. Invariant measure and growth

Every locally compact group G admits a Haar measure µ, that is, a left-invariant Radon measure
that gives positive mass to all nonempty open sets; the Haar measure is unique up to a multi-
plicative constant.

If K is a compact subgroup of a locally compact group G , with a left-invariant Haar measure
µ, and π : G →G/K is the quotient map, then there is a unique G-invariant Radon measure m on
G/K such that

m(U ) =µ(π−1(U )) (13)

for all Borel subsets U of G/K ; see [40, Section 15]. From Theorem 7 and Corollary 8, if (M ,d) is
a homogeneous metric space and G is Iso(M ,d), then M may be identified with G/K for some
compact subgroup K of G . Thus every homogeneous metric space (M ,d) admits a unique (up to
scalar multiplication) Radon measure that is invariant under Iso(M ,d).

A compactly generated locally compact group G with Haar measure µ is said to be of polyno-
mial growth if there is a compact generating neighbourhood U of the identity in G such that

µ(U n) ≤C nQ ∀n ∈Z+. (14)
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If G is of polynomial growth and V is another compact generating neighbourhood of the identity
in G , then the same equation holds but with a possibly different constant C . From part (i)
of Lemma 2, m(Vn(o,ℓ)) grows no faster than exponentially in n; however, it may grow only
polynomially, or even be bounded.

The following definition is standard, at least for quasigeodesic metrics.

Definition 28. Let (M ,d) be a homogeneous metric space. We say that (M ,d) is of polynomial
growth if for a given point and hence for an arbitrary point o in M,

m(B(o,r )) ≤Cr Q (15)

for all sufficiently large r .

At this point, for a metric Lie group we have two notions of polynomial growth, which in
general are not equivalent. For instance, R is a group of polynomial growth, but if we define
the metric d on R by

d(x, y) := log(|x − y |+1) ∀x, y ∈R,

then (R,d) is not of polynomial growth. More generally, m(B(o,r )) may grow much faster in r
than m(Vn(o,ℓ)) grows in n.

A proper quasigeodesic homogeneous metric space is of polynomial growth if and only if its
isometry group is of polynomial growth. For general metric spaces, only one implication may be
proved, as follows.

Lemma 29. If M is a homogeneous metric space of polynomial growth, and G is a subgroup of
Iso(M ,d) that acts transitively on M, then G is of polynomial growth.

Proof. By part (v) of Theorem 7, we may fix o ∈ M and ℓ ∈R+ such that the set U := { f ∈G : f (o) ∈
B̆(o,ℓ)} is a compact neighbourhood of the identity element in G and

U n = { f ∈G : f (o) ∈Vn(o,ℓ)}.

Let µ be a Haar measure on G and m be a G-invariant measure on M such that (13) holds, as
discussed at the beginning of this section, and suppose that m(B(o,r )) ≤ Cr Q for all sufficiently
large r . Then

µ(U n) = m(Vn(o,ℓ)) ≤CℓQ (n +1)Q

since Vn(o,ℓ) ⊆ B(o, (n +1)ℓ). □

We now connect growth to the doubling property.

Definition 30. Let (M ,d) be a homogeneous metric space. We say that (M ,d) is doubling if there
is a constant N such that each ball of radius 2r may be covered by at most N balls of radius r for all
r ∈R+. We say that (M ,d) is doubling at small scale or at large scale if the covering property holds
for all sufficiently small r or sufficiently large r .

Polynomial growth is often linked with the property of being doubling at large scale. Indeed, if
(M ,d) is proper quasigeodesic, then it is of polynomial growth if and only if it is doubling at large
scale; see, for instance, [20]. However, these two notions are not equivalent in our setting. More
precisely, if a metric space (M ,d) is doubling at large scale, it may fail to be of polynomial growth;
see Remark 31. However, if (M ,d) is doubling at large scale and proper, then it is of polynomial
growth; see Remark 32. Conversely, if (M ,d) is of polynomial growth, then it is proper, but it does
not need to be doubling at large scale; see Remarks 33 and 34. This paradoxical behaviour reflects
the fact that polynomial growth and properness are not quasi-isometric invariants when metrics
are not proper quasigeodesic.

Remark 31. The space (R,d), where d is given by d(x, y) = min{|x − y |,1}, is trivially doubling at
large scale, but is evidently not of polynomial growth.
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Remark 32. If a homogeneous metric space is proper and doubling, then it is of polynomial
growth. Indeed, if one and hence every ball of radius 2r may be covered by N balls of radius r ,
then it may be seen that

m(B(o,r )) ≤ N m(B(o,1))r log2(N )

when r > 1.

Remark 33. It is easy to construct homogeneous metric spaces of polynomial growth that are
not locally doubling (consider the product

∏
n∈N(R/2−nZ), where each factor has the metric

induced from the euclidean metric on R and the product has the ℓ∞-metric) and to construct
nonhomogeneous metric spaces of polynomial growth that are not doubling at large scale
(consider sparsely branchingR-trees of unbounded degree). The next example shows that having
polynomial growth does not even imply being doubling at large scale for proper connected
homogeneous metric spaces.

Consider the piecewise linear function D : [0,+∞) → [0,+∞) with nodes at (0,0), (1,1), and
(xn , yn), where n ∈N, given by xn = 22n+1

and yn = 22n
. The nodes all lie on the graph y = x1/2, so

D is evidently increasing and concave. Hence d(x, y) := D(|x−y |) is a translation-invariant metric
on R, and |B(x0,r )| = 2D−1(r ) for all r ∈R+.

Take r = yn , and consider the ratio

|B(0,2r )|
|B(0,r )| = D−1(2yn)

D−1(yn)
= D−1(2yn)

xn
.

We shall now show that the right-hand fraction is unbounded in n, which shows that d is not a
doubling metric.

If (x, y) lies on the line segment between (xn , yn) and (xn+1, yn+1), then

y − yn

x −xn
= yn+1 − yn

xn+1 −xn
= y2

n − yn

y4
n − y2

n
= 1

yn(yn +1)
,

so
x = xn + yn(yn +1)(y − yn).

Since 2yn ≤ yn+1, if D(x) = 2yn , then (x,2yn) lies on the line segment, and so x = xn + xn(yn +1)
and

D−1(2yn)

xn
= x

xn
= yn +2,

which tends to infinity as n increases.
The same argument also shows that if (x, y) lies on this line segment, then

|B(0, y)| = 2x = 2xn +2yn(yn +1)(y − yn)

≤ 2y2
n +2yn y(yn +1) ≤ 2y2 +2y2(y +1),

and it follows that d is of polynomial growth.

Remark 34. If (M ,d) is a homogeneous metric space of polynomial growth, then it is proper.
Indeed, if there were a noncompact closed ball B̆(p,r ), then there would be ε ∈ R+ and points xi

in B̆(p,r ), where i ∈N, such that d(xi , x j ) > 2ε if i ̸= j . But then it would follow that

C (r +ε)Q ≥ m(B̆(p,r +ε)) ≥ ∑
i∈N

m(B(xi ,ε)) =+∞,

which would be a contradiction.

2.7. Notes and remarks

Here we include some additional comments on the results established above.
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2.7.1. Homogeneous metric spaces

If f is a metric preserving mapping of a homogeneous metric space (M ,d), in the sense that
condition (1) holds, then f is surjective; this need not be true for metric preserving mappings of
general metric spaces. The proof involves first composing with an isometry, so that f (o) = o, then
using compactness to show that f is bijective on closed balls (defined relative to the Busemann
gauge), and finally letting the radius of the balls go to infinity.

2.7.2. Metric spaces and coset spaces

The simple observations of this section raise further questions about isometry groups. Given
a metric space (M ,d) and a transitive isometry group G of M , let o be a point in M and K be the
stabiliser of o in G . Is there a left-invariant metric dG on G such that

d(p, q) = min{dG (g ,h) : g (o) = p,h(o) = q}?

Under what circumstances do the stabilisers of all points in M have the same diameter? And if
we equip M with the metric d ′ that is defined by the right-hand side of the above formula, is it
true that G = Iso(M ,d ′)?

2.7.3. Modifying metrics

The use of pseudometrics leads to another interpretation of Theorem 6. Given a metric on a
homogeneous metric space (M ,d), we may define a family of pseudometrics ḋx , where x runs
over M , on the isometry group H , by setting ḋx (g ,h) := d(g x,hx) for all g ,h ∈ H . If g ,h ∈ H and
ḋx (g ,h) = 0 for all x in M , then g−1h acts trivially on M , so g = h. Thus expressions such as
supx∈M ḋx (g ,h), where x runs over M , only vanish when g = h. The pseudometrics ḋx satisfy the
inequality

ḋx (g ,h) = d(g x,hx) ≤ d(g x, g y)+d(g y,hy)+d(hy,hx)

≤ d(g y,hy)+2d(x, y) = ḋy (g ,h)+2d(x, y)

for all g ,h ∈ H , and if M is unbounded, then supx∈M ḋx (g ,h) might well be infinite. However, the
formula given in Theorems 6 and 7 is but one of many ways of combining these pseudometrics
to get a metric on H .

We will use Corollary 18 later. For future purposes, we note that if Ko and K are compact
subgroups of a Lie group G and Ko ⊂ K , then there exists a riemannian metric d on G/Ko such
that

d(g g ′kKo , g g ′′kKo) = d(g ′Ko , g ′′Ko) ∀g , g ′, g ′′ ∈G ∀k ∈ K .

All riemannian metrics are bi-Lipschitz equivalent.
The reader may wish to check whether the new metrics produced in Corollary 16 or Lemma 17

are proper or derived semi-intrinsic (as defined just before Lemma 3) or proper quasigeodesic or
geodesic if the initial metric has this property.

Corollary 19 shows that every pair consisting of a connected metrisable group H and a suitable
compact subgroup K thereof arises as a group of isometries of a homogeneous metric space and
the stabiliser of a point therein. However, this does not answer the subtler question, whether H is
necessarily the whole connected component of the identity in the full group of isometries of the
metric space. For example, if we take H and K to be Rn and {e}, and equip H/K (that is, Rn) with
a translation invariant metric, the connected component of the identity in the isometry group
may be larger that H . Indeed, the isometry group of Rn equipped with any translation invariant
riemannian metric is isomorphic to Rn ⋊O(n). However, if we use the ℓ∞ metric, then we can
ensure that the connected component of the isometry group is H . We do not know whether,
given a general pair H and K as in the corollary, there exists an admissible H-invariant metric d
on H/K such that H is the connected component of the identity in Iso(H/K ,d).
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2.7.4. Simply transitive isometry groups

Definition 23 deserves a further comment.
In the definition of a semidirect product, it suffices to suppose that G and K are closed

subgroups and G is normal, and the mapping (g ,k) 7→ g k is a bijection. Indeed, if gν → g in
G and kν → k in K , then gνkν → g k in H by definition. Conversely, if gνkν → g k in H , then
Gkν → Gk in the quotient group G\H , which is homeomorphic to K by [40, Theorem 5.26], that
is, kν→ k in K , and hence also gν→ g in G .

The results of this and the previous section offers us an alternative viewpoint on homogeneous
metric spaces and their isometry groups. We began by taking the basic object to be a metric space
(M ,d) with a topology that is compatible with the metric, and showed that a closed subgroup H
of the isometry group that acts transitively is a topological group with a metric compatible with
the topology, and that the projection from H to M is both a metric projection and a topological
projection (that is, it is continuous and open). However, we might also take the basic object to be
a metrisable topological group H , and consider various quotient spaces H/K with the quotient
topologies and quotient metrics, or even just a topological group H acting on a quotient space
H/K that may be endowed with a metric that is compatible with the quotient topology.

2.7.5. Invariant measure and growth

Suppose that M is the coset space G/K , where G is a (not necessarily connected) locally
compact group and K is a compact subgroup. We claim that if M is compact and countable, then
M is finite. Indeed, M admits a G-invariant Radon measure m, and the regularity of M implies
that there is an open set U of positive but finite measure. Since M is compact, m(M) must be
finite, since it may be covered by finitely many translates of U . All points of M have the same
measure. If points had measure 0, then M would have measure 0; hence points have positive
measure and the cardinality of M is m(M)/m({p}) for any point p.

3. Lie theory and metric spaces

This section is concerned with homogeneous metric manifolds, which for us are locally eu-
clidean, but not a priori smooth. However, as a consequence of the solution of Hilbert’s fifth
problem, they are quotient spaces of Lie groups, and hence may be given analytic structures such
that the connected component of the identity in the isometry group acts analytically.

In this section, we review the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure the-
orem of almost connected locally compact groups in Section 3.1 and then the Iwasawa theory of
maximal compact subgroups in 3.2. We prove our first main theorem, that homogeneous metric
spaces may be approximated by homogeneous metric manifolds, in Section 3.3. We next look at
more Lie theory and its interaction with metric spaces in Sections 3.4 and 3.5.

We consider more sophisticated Lie theory, such as the Levi and Iwasawa decompositions in
Section 3.6 and polynomial growth and amenability in Section 3.7, and see how this enables us
to prove our second main theorem, on the finer structure of homogeneous metric manifolds
in Section 3.8. We should mention that there have been exhaustive investigations into the
homogeneous spaces of semisimple Lie groups and those of solvable Lie groups, but the general
case seems less well known.

Many of the results here may be proved by a reduction to the riemannian case and then
appealing to the appropriate classical result. Indeed, as we shall see in Corollary 38, if two
homogeneous metric manifolds are isometric, then they admit riemannian structures for which
they are isometric. However, classical riemannian geometers did not consider quasi-isometries,
and at least some of our theorems are not true in the context of isometries, and are certainly not
in the literature (at least in forms that we are able to recognise).
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3.1. The main structure theorem

A locally compact group G is said to be almost connected if G/G0 is compact, where G0 is the
connected component of the identity in G ; this is closed and normal. The isometry groups of
homogeneous metric spaces are almost connected, by Theorem 6.

We recall without proof one version of the solution to Hilbert’s fifth problem by Gleason, Iwa-
sawa, Yamabe, Montgomery and Zippin. See, for instance, [58, Section 4.6] or [73, Theorem 1.6.1].

Theorem 35. Let G be an almost connected locally compact group. Then every neighbourhood U
of the identity in G contains a compact normal subgroup N such that G/N is locally euclidean. If
G is locally euclidean, then G may be given a unique analytic structure for which it is a Lie group.

The following related result was first stated by Szenthe [72]. Unfortunately, there was a mistake
in his argument, discovered by Antonyan, but the gap was filled independently by Antonyan and
Dobrowolski and by George Michael. See Glockner’s review [30] for the history and location of
the proof.

Theorem 36. If K is a compact subgroup of an almost connected locally compact group H, and⋂
h∈H hK h−1 = {e}, then the following are equivalent:

(i) H is a Lie group and H/K is a manifold;
(ii) H/K is locally contractible.

Corollary 37. Let K be a compact subgroup of an almost connected locally compact group H such
that H/K is connected and

⋂
h∈H hK h−1 = {e}. Suppose also that H/K is locally euclidean or that

H is locally euclidean. Then H and hence H/K may be given analytic structures, compatible with
their topologies, such that H is a Lie group and the action of H on H/K is analytic.

Proof. If H/K is locally euclidean, then so is H , by Theorem 36, so we may assume that H is
locally euclidean.

By Theorem 35, we may endow H with an analytic structure so that H becomes a Lie group,
and this analytic structure on H induces an analytic structure on H/K . These analytic structures
are compatible with the topologies of H and H/K . Further, H acts analytically on H/K . □

In particular, if (M ,d) is a homogeneous metric manifold, H is its isometry group, and K is the
stabiliser of a point o in M in H , then we may identify M with H/K and apply this corollary to
deduce that H and M have analytic structures such that H acts analytically on M .

In light of Theorems 35 and 36 and Lemma 40 below, there are several criteria which ensure
that H is locally euclidean or H/K is locally euclidean.

Corollary 38. Let (M1,d1) and (M2,d2) be homogeneous metric manifolds. Then there exist
analytic structures and left-invariant analytic infinitesimal riemannian metrics g1 and g2 on M1

and M2 such that

(i) Iso(M1,d1) ⊆ Iso(M1, g1) and Iso(M2,d2) ⊆ Iso(M2, g2); and
(ii) each isometry f from (M1,d1) to (M2,d2) is also an isometry from (M1, g1) to (M2, g2).

Proof. Write H1 and H2 for Iso(M1,d1) and Iso(M2,d2), and let K1 and K2 be the stabilisers in H1

and H2 of points o1 in M1 and o2 in M2; we may and shall identify M1 and M2 with H1/K1 and
H2/K2. By the previous result, H1 and H2 are Lie groups and act analytically on H1/K1 and H2/K2.

The action of K1 on H1/K1 induces an action of K1 on the tangent space to H1/K1 at the point
K . Take an inner product on this tangent space; then by averaging over the action of K1 using the
Haar measure of K1, we may assume that the inner product is K1-invariant. We may extend this
inner product to an analytic left-invariant infinitesimal riemannian metric g1 on H1/K1; the key
is that if h and h′ in H1 both map K1 to hK1, then h′ = hk for some k ∈ K1, and the K1-invariance
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of the inner product at the point K1 implies that h and h′ induce the same inner product at hK1.
It follows immediately that H1 acts on (H1/K1, g1) by riemannian isometries, and we conclude
that Iso(M1,d1) ⊆ Iso(H1/K1, g1).

If there are no isometries from (M1,d1) to (M2,d2), we repeat this argument to put a riemann-
ian metric on M2, and there is nothing more to prove.

Otherwise, we take one isometry f from (M1,d1) to (M2,d2); we may and shall suppose that
f (o1) = o2. Conjugation with f induces a homeomorphic isomorphism F of the isometry groups
Iso(M1,d1) and Iso(M2,d2), and F (K1) = K2. Hence we may identify f with the map xK1 7→ F (x)K2

from H1/K1 to H2/K2. The groups H1 and H2 are Lie groups, and continuous homomorphisms
of Lie groups are automatically analytic, so F is analytic.

We transport the infinitesimal riemannian metric g1 on H1/K1 to an infinitesimal riemannian
metric g2 on H2/K2, and then f is also an analytic riemannian isometry from (M1, g1) to (M2, g2);
further, Iso(M2,d2) ⊆ Iso(M2, g2).

Finally, if f ′ is any isometry from (M1,d1) to (M2,d2), then f −1 ◦ f ′ ∈ H1. It follows that f ′ is
also a riemannian isometry from (M1, g1) to (M2, g2). □

This result was proved for metric Lie groups in [48, Proposition 2.4].

3.2. Compact subgroups

We summarise some results about compact subgroups of connected locally compact groups, and
establish some corollaries of the structure theorems above.

Lemma 39 (After Iwasawa [43]). Let G be a connected locally compact group. Then every compact
subgroup of G is contained in a maximal compact subgroup K of G, and all maximal compact
subgroups are connected and conjugate to each other. The subgroup K is a deformation retract of
G.

If N is a connected normal subgroup of G and K is a maximal compact subgroup of G, then
N ∩ K is a maximal compact subgroup of N and K N /N is a maximal compact subgroup of
G/N ; conversely, if KN is a maximal compact subgroup of N and KG/N is a maximal compact
subgroup of G/N , then there exists a maximal compact subgroup K of G such that K ∩N = KN and
K N /N = KG/N .

Proof. The first result is [43, Theorem 13], and the second is [43, Lemma 4.10]. In both cases,
the results are first proved for Lie groups and then for groups that admit approximations by Lie
groups, as in Theorem 35. □

It follows that the intersection of all maximal compact subgroups is the unique maximal
compact normal subgroup of a connected locally compact group.

The following result is almost standard and may be extended (see [4]); compact contractibility
is the only new ingredient. We say that a topological space M is compactly contractible if, for
each compact subset S of M , there are x ∈ M and a continuous map F : [0,1]×S → M such that
F (0, s) = s and F (1, s) = x for all s ∈ S.

Lemma 40. If K is a compact subgroup of a connected locally compact group H, then the following
are equivalent:

(i) K is a maximal compact subgroup of H;
(ii) H/K is homeomorphic to a euclidean space;

(iii) H/K is contractible;
(iv) H/K is compactly contractible.
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Proof. By [58, p. 188], (i) implies (ii). It is trivial that (ii) implies (iii) and (iii) implies(iv). We prove
that (iv) implies (i) by modifying the argument of [4, Theorem 1.3] that shows that (iii) implies (i).

Suppose that (iv) holds. By [7], there is a maximal compact subgroup K0 of H that contains
K , and then by [58, p. 188], there is a map Φ : Rn → H such that the map (x, y) 7→ Φ(x)y is a
homeomorphism fromRn×K0 to H . Hence H/K is homeomorphic toRn×K0/K . The contraction
of the compact set K0/K in H/K composed with the projection onto K0/K is a contraction of
K0/K . From Antonyan [4], K0/K is contractible if and only if K = K0, so K is maximal. □

3.3. Proof of Theorem A

In this section, we prove our first main theorem, which we restate in more detailed form.

Theorem 41. Let (M ,d) be a homogeneous metric space, and H be the connected component of
the identity in Iso(M ,d).

(i) For all positive ε, there is a connected metric Lie group (Hε,dε) and a (1,ε)-quasi-isometry
ϕ : M → Hε.

(ii) There are an H-invariant metric d0 of M, a contractible metric manifold (M ′,d ′) and an
H-equivariant projection π from (M ,d0) to (M ′,d ′), such that the identity mapping is a
homeomorphic rough isometry from (M ,d) to (M ,d0), and π is a homogeneous metric
projection with compact fibre, and hence a rough isometry.

Proof. Let Ko be the stabiliser of a point o in M , so that M may be identified with H/Ko .
To prove part (i), take a compact normal subgroup N of H such that H/N is a Lie group and

No has diameter less that ε. Define

ḋ(g ,h) := sup
k∈N

d(g ko,hko).

By Lemma 17, ḋ is a continuous admissible left-invariant and right-Ko N -invariant pseudometric
on H , and

d(g o,ho) ≤ ḋ(g ,h) ≤ d(g o,ho)+2diam(No) ∀g ,h ∈ H .

By the second part of Lemma 15, there is an admissible metric d ′ on M ′ := H/Ko N such that

d ′(g Ko N ,hKo N ) = ḋ(g ,h) ∀g ,h ∈ H .

Hence (M ,d) is (1,ε)-quasi-isometric to the homogeneous metric manifold (M ′,d ′). By Theo-
rem 7, (M ′,d ′) is itself (1,ε)-quasi-isometric to the metric Lie group (H/N ,d ′

ε).
The proof of part (ii) is similar. Let K be a maximal compact subgroup of H such that Ko ⊆ K ,

whence Ko N ⊆ K , and take M ′ to be G/K . As before, we lift the metric d on M to a pseudometric
ḋ on H with kernel Ko , using Lemma 12, and then using Lemma 17, we define a left-invariant,
right-K -invariant pseudometric d̈ on H by

d̈(g ,h) := max{ḋ(g k,hk) : h ∈ K }.

This then induces H-invariant metrics d0 on G/Ko and d ′ on M ′ := G/K by Lemma 15, and the
projection from G/Ko to G/K has the required properties by construction. □

3.4. Lie groups and algebras

To say more about homogeneous metric spaces, we need more background on Lie theory; we
review some aspects thereof in this section. We begin with some standard definitions and results.

Recall that the adjoint group of a Lie algebra h is the Lie group of linear transformations of
h generated by the elements exp(ad(X )), where X ∈ h. Recall also that if H is a Lie group with
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Lie algebra h, and g is a subalgebra of h, then there is an analytic subgroup (or Lie subgroup) G
of H whose Lie algebra is g, but G need not be closed. Next, if G is an analytic subgroup of H ,
then G with its own Lie structure is analytically immersed, but not necessarily embedded, in H .
Of course, G is embedded if and only if it is closed. In light of this correspondence between Lie
groups and algebras, we denote the Lie algebra of a Lie group G by the corresponding fraktur
letter g.

We recall also that a discrete normal subgroup Γ of a connected Lie group G is central, since
{x ∈ G : xγx−1 = γ} is both open and closed in G for each γ ∈ Γ. Hence if G is connected and Γ is
a discrete central subgroup, then a discrete subgroup ∆ of G that contains Γ is central in G if and
only if ∆/Γ is central in G/Γ.

Finally, we recall that the differential of a homomorphismϕ of Lie groups is a homomorphism
of the Lie algebras, written ϕ∗.

Definition 42. A torus or toral group is a connected compact abelian Lie group, that is, a finite
power of the multiplicative group of complex numbers of modulus 1. A subalgebra t of a Lie algebra
h is compact if ad(U ) is semisimple and has purely imaginary eigenvalues on h for all U ∈ t and
is toral if it is abelian and compact. The subgroup T corresponding to a compact subalgebra need
not be compact, but Ad(T ) is a compact subgroup of Aut(h), and is a torus if t is toral.

If K is a compact subgroup of a connected Lie group H , then k is a subalgebra of h, and ad(U ) is
semisimple and has purely imaginary eigenvalues for all U ∈ k. Indeed, by averaging an arbitrary
inner product over K , using the Haar measure, we may produce an Ad(K )-invariant inner product
on h; then Ad(K ) is a group of orthogonal mappings of h. Hence if U in k, then exp(t ad(U ))
is semisimple with eigenvalues of modulus 1 for all t ∈ R, and ad(U ) is semisimple with purely
imaginary eigenvalues. If moreover K is a torus, then K is abelian and k is abelian; in this case
we may simultaneously diagonalise ad(K ) acting on the complexification of g. (For information
about complexifications of Lie algebras, see, for example, [74, p. 47].)

In general, the implicit use of an inner product to construct complements of subspaces that
are invariant under the action of a compact group K , or to decompose a space into a direct sum
of minimal invariant subspaces, or to show that ad(U ) acts semisimply with purely imaginary
eigenvalues for all U in its Lie algebra k will be referred to here as Weyl’s unitarian trick, though
for Weyl this was just the starting point. See [74, p. 342] for more information. Quite often the
compact group K will be a torus, and we usually write T rather than K in this case.

Finally we recall that, if G is a Lie group with Lie algebra g, then the radical R of G is
the maximal connected solvable normal subgroup of G , while the nilradical N is the maximal
connected nilpotent normal subgroup of G ; both are closed. Their Lie algebras r and n are
the maximal solvable and nilpotent ideals of g, also called the radical and nilradical or g. The
existence of these ideals may be established by showing that the sum of nilpotent or solvable
ideals is a nilpotent or solvable ideal respectively, whence the sum of all nilpotent or solvable
ideals is the largest nilpotent or solvable ideal respectively; it may then be seen that r and n are
characteristic ideals, in the sense that ϕ(r) = r and ϕ(n) = n for all automorphisms ϕ of g, which
implies that they are normal in G , whether or not G is connected. Sometimes we write R = rad(G)
and N = nil(G), or r= rad(g) and n= nil(g).

Remark 43. It is well-known that [g,r] ⊆ n.

For these results and much more, see Bourbaki [11, pp. 44–47 and p. 354] or Varadarajan [74,
pp. 204–207 and 244–245].

We will need a structural result concerning tori in a connected Lie group H ; this illustrates the
power of Lie theory in establishing results that are of interest in our study of homogeneous metric
spaces.
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Lemma 44. Let H be a Lie group with nilradical N . If T is a normal torus in H, then T ⊆ N . If K
is a maximal compact subgroup of N , then K is a normal torus in H, and central in the connected
component of the identity in H.

Proof. Let t and n be the Lie algebras of T and N . Since t and n are nilpotent ideals, so is t+n,
and since n is the maximal nilpotent ideal, t⊆ n, that is, T ⊆ N .

We now take a maximal compact subgroup K of N , and show that K is normal in H . As K is
also connected and nilpotent, K is a torus.

Let Z be the centre of N , which is closed and connected [74, Corollary 3.6.4], and so of the
form T ×V , where T is a torus and V is a vector space. Then T is the unique maximal compact
subgroup of Z . Since K Z /Z is a compact subgroup of the simply connected nilpotent group N /Z ,
whose only compact subgroup is trivial, K ⊆ Z , and hence K = T . Now Z is characteristic in H ,
in the sense that hZ h−1 = Z for all h ∈ H , and so hT h−1 is also a maximal compact subgroup of
Z ; thus hT h−1 = T . It follows that K = T is normal in H .

The differential ϕ∗ of a continuous automorphism ϕ of the torus T is a linear mapping of the
Lie algebra t that preserves the lattice Λ of points U such that exp(U ) = e; these mappings form
a discrete subgroup of GL(t). Hence Aut(T ) is a discrete group. The mapping h 7→ (t 7→ hth−1)
is continuous from H to Aut(T ), and so the connected component of the identity in H lies in its
kernel. In other words, T is central in the connected component of the identity in H . □

3.5. Lie theory and metric spaces

We return to the situation that arises in the context of isometry groups.
The main result of this section, Corollary 46, is an algebraic criterion for when a Lie group G2

may be made isometric to a metric Lie group (G1,d1).
The material in this section is largely an extension to the case of more general metrics of ideas

that go back many years to deal with riemannian Lie groups, which may be found in Helgason [38]
or Kobayashi and Nomizu [51, 52].

Lemma 45. Suppose that K is a compact subgroup of a connected Lie group H and denote by π
the quotient map from H to H/K . Let G be an analytic subgroup of H (not necessarily closed) such
that h= g⊕ k as vector spaces. Then

(i) H =GK ,
(ii) the map π|G : G → H/K is a covering map,

(iii) G is closed in H if and only if G ∩K is finite, and
(iv) if H/K is simply connected, then H =G ·K .

Proof. The derivative of the mapping (X ,Y ) 7→ exp(X )exp(Y ) from g⊕ k to H is nonsingular at 0,
whence H , G and K satisfy the hypotheses of Lemma 26 (withα taken to be the identity mapping).
Part (i) follows from Lemma 26(i).

Lemma 26(iii) implies that π|G : G → H/K is a covering map, which proves (ii); part (iii) is just
Lemma 26(iv).

Finally, if H/K is simply connected, then the covering map π|G is a homeomorphism, whence
G ∩K = {eH }. Part (iv) now follows from Lemma 26(v). □

We remind the reader that when H = G ·K , the spaces G and H/K are homeomorphic, and if
H is connected, so is K .

Corollary 46. Let G1 and G2 be connected simply connected Lie groups, let d1 be an admissible
left-invariant metric on G1, let H := Iso(G1,d1), and let K be the stabiliser of e1 in H. The following
are equivalent:
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(i) G2 may be made isometric to (G1,d1);
(ii) there is a Lie group monomorphism α : G2 → H such that we may write H = G1 · K =

α(G2) ·K ;
(iii) there is a Lie algebra monomorphism τ : g2 → h such that τ(g2)⊕ k= h.

Proof. This follows by combining Lemma 45 above with Theorem 22 (we may write H = G2 ·K )
and Corollary 37 (the isometry group of a metric Lie group is a Lie group). □

In the context of riemannian metrics, this result was well-known.
We conclude with the remark that, given a homeomorphism f : G1 →G2 of Lie groups, there is

a corresponding homeomorphism f̃ : G̃1 → G̃2 of their universal covering groups that induces an
isomorphism of their fundamental groups. Conversely, if f : G̃1 → G̃2 is a homeomorphism that
gives rise to an isomorphism of their fundamental groups, then G1 and G2 are homeomorphic.
By replacing homeomorphism with riemannian isometry, we see that Lie groups G1 and G2 may
be made isometric if and only if G̃1 and G̃2 may be made isometric with an isometry that induces
an isomorphism of the fundamental groups of G1 and G2.

3.6. Decompositions of Lie groups

We are going to deal with semidirect products R ⋊L, and refer the reader to Definition 23 for the
details. We shall also use the following nomenclature.

Definition 47. Suppose that Γ is a subgroup of the semidirect product R ⋊ L. We say that Γ is
strongly central if both (r,e) and (e, l ) are central in R ⋊L whenever (r, l ) ∈ Γ.

It will be useful to recall some features of the Levi decomposition of a connected Lie group G .
Write g for the Lie algebra of G . The Lie algebra of the universal covering group G̃ of G is also g,
and G is a quotient of G̃ by a discrete central subgroup Γ. The Levi decomposition writes g as the
sum r⊕ l, where r is the radical and l is a semisimple subalgebra of g, known as a Levi subalgebra.
While r is uniquely determined, l need not be, but all choices of l are conjugate under the adjoint
group of g.

Let R̃ and L̃ be the analytic subgroups of G̃ and R and L be the analytic subgroups of G
corresponding to r and l; R̃ and R are the radicals of G̃ and G , while L̃ and L are called Levi
subgroups. The subgroup L̃ is closed in G̃ but L need not be closed in G . Denote Γ∩ R̃ and Γ∩ L̃
by ΓR and ΓL .

The centre Z (L̃) of the simply connected semisimple group L̃ is discrete and contains a
finite index subgroup Z+(L̃) which is the intersection of the kernels of all finite dimensional
representations of L̃; in particular, Z+(L̃) is contained in the kernel of the restriction of the
adjoint representation of G̃ to L̃, and hence Z+(L̃) ⊆ Z (G̃)∩ L̃. Hence Z (G̃)∩ L̃ is of finite index
in Z (L̃). Similarly we consider Z+(L), the intersection of the kernels of all finite dimensional
representations of L, and show that Z (G)∩L is of finite index in Z (L). The subgroups Z+(L̃) and
Z+(L) do not depend on the choice of L̃ and L in the Levi decomposition, since all Levi subgroups
are conjugate to each other.

The next lemma summarises many properties of the Levi decomposition. These are certainly
known, but we are not aware of a reference in which they may all be found in the one place. Hence
we hope that our formulation will prove useful.

Lemma 48. Let G, Z (G), R, L, Z+(L), G̃, R̃, L̃, Z (L̃), Z+(L̃), Γ, ΓR and ΓL be as defined above. Then
the following hold.

(i) R̃ and L̃ are simply connected and closed in G̃, and R̃ is normal; further, G̃ is the semidirect
product R̃ ⋊ L̃ of these subgroups.
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(ii) R̃ and L̃ are the universal covering groups of R and L, and R and L may be identified with
R̃/ΓR and L̃/ΓL .

(iii) R is closed and normal in G, but L need not be closed. However, the subgroup Z+(L) L is
closed in G.

(iv) G may be identified with (R ⋊L)/Γ0, where Γ0 = Γ/(ΓR ×ΓL); moreover, |Γ0| = |R ∩L|.
(v) G is a semidirect product of its radical and a Levi subgroup if and only if R ∩L = {e} if and

only if Γ0 = {e} if and only if Γ= ΓRΓL .
(vi) R⋊L is the smallest covering group of G that is a semidirect product of its radical and a Levi

subgroup, in the sense that every covering group that is a semidirect product of its radical
and a Levi subgroup also covers R ⋊L.

(vii) L is closed in G if and only if Γ0L is closed in R⋊L if and only if the projection of Γ0 onto R
is closed in R.

(viii) Γ0 has a largest strongly central subgroup Γ1, whose index in Γ0 is bounded by
|Z (L̃)/Z+(L̃)|. We may identify G with (R ⋊L/Γ1)/(Γ0/Γ1), which is a finite quotient.

(ix) the subgroup R ∩L is discrete and central in L, and so is finite if L has finite centre. The
connected component of the identity in its closure (R ∩ L) in G is central in G. If Γ0 is
strongly central in R ⋊L, then R ∩L is central in G.

Proof. Item (i), the structure of G̃ , is well-known; see, for instance, [74, p. 244]. Item (ii) and
the first part of item (iii) are also standard; we prove the second part of (iii) below. Item (iv) is a
consequence of a standard isomorphism theorem. Items (v), (vi) and (vii) are trivial.

To prove item (viii), observe that if (r0, l0) ∈ Γ and (e, l0) lies in the centre of G̃ , then so does
(r0,e). We define Γ1 := {(r0, l0) ∈ Γ0 : (e, l0) ∈ Z (G̃)}; then Γ1 is a subgroup of Γ0.

In the semisimple group L̃, the set Z+(L̃) of elements that lie in the kernel of every finite
dimensional representation of L̃ is a subgroup of finite index in the centre Z (L̃) of L̃. The index of
Γ1 in Γ0 is bounded by Z (L̃)/Z+(L̃).

Now we prove (ix). Since r∩ l = {0} and R is closed and normal in G , R ∩L is a closed normal
zero-dimensional subgroup of L, so it is discrete and central in L, but it may not be closed in R.
Obviously R ∩L is finite if L has finite centre (for instance, if L is compact).

As noted before the statement of this lemma, L ∩ Z (G) is a subgroup of finite index of Z (L).
Hence R ∩L ∩ Z (G) is of finite index in R ∩L. Thus the closures of R ∩L ∩ Z (G) and of R ∩L in
G have the same connected component of the identity, and the closure of R ∩L ∩ Z (G) in G is
of finite index in the closure of R ∩L in G . Since the closure of a central subgroup is central, the
closure of R∩L∩Z (G) in G is central. We conclude that the connected component of the identity
in (R ∩L) is central, as required.

If moreover Γ0 is strongly central in R⋊L and h ∈ R∩L, then both (h,e) and (e,h) in R⋊L map
to h under the canonical quotient mapping, and so (h,h−1) ∈ Γ0, whence h is central in G .

Finally, we prove the second part of (iii). We repeat the above proofs for the quotient group
G/Z+(L) . The semisimple subgroup L′ in the Levi decomposition R ′L′ of G/Z+(L) is such that
Z+(L′) is trivial, and hence Z (L′) is finite, so that R ′ ∩L′ is finite and L′ is closed in G/Z+(L) ,
whence Z+(L) L is closed in G . □

Note in particular that (iv) and (vii) of the lemma imply that if R ∩L is finite, then L is closed
in G , while if R ∩L is infinite, and L may or may not be closed. Note also that every connected
Lie group G has a covering group that is a semidirect product of its radical and a Levi subgroup,
and the number of leaves in the cover is equal to the cardinality of R ∩ L, or equivalently, the
cardinality of Γ0. By contrast, to obtain a quotient that is a semidirect product of its radical
and a Levi subgroup, it may be necessary to factor out a subgroup of positive dimension: this
is illustrated by the following example.
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Example 49. Consider the connected, simply connected Lie group G̃ that is the semidirect
product Cn ⋊ (SU(n)×R), where the action of SU(n)×R on Cn is given by α(u, t )v = ei t uv . The
centre of this group may be identified with the subgroup of (SU(n)×R) of elements (u, t ) such
that ei t u is the identity matrix.

The centre Γ of G̃ is discrete but is not the product of the groups of central elements of the Levi
subgroup L (which is SU(n)) and of the central elements of the radical R (which is Cn ⋊R); hence
the group G := G̃/Γ has trivial centre and is not a semidirect product of the form R ⋊L, and has
no quotient of the same dimension that is a semidirect product of its radical and a Levi factor.
The group Γ is central, but unless n = 2, it is not strongly central, though by Lemma 48, it has a
subgroup Γ1 of finite index that is strongly central.

We recall the Iwasawa decomposition of a semisimple Lie algebra l and of a corresponding
connected semisimple Lie group L. The Lie algebra l may always be decomposed as a direct sum
of three subalgebras:

l= a⊕n⊕ k,

where ad(X ) is semisimple with real eigenvalues for all elements X in a, is semisimple with purely
imaginary eigenvalues for all elements X of k, and is nilpotent for all elements X in n. Further, a
is abelian and [a,n] ⊆ n, so a⊕n is also a subalgebra. The subalgebra k is in turn a direct sum t⊕k′,
where t, the centre of k, is a toral subalgebra and k′, the commutator subalgebra of k, is a compact
semisimple subalgebra.

The analytic subgroups A and N corresponding to a and n are closed in L, and simply
connected; further, AN is solvable, closed, simply connected, and exponential, that is, the
exponential mapping is a homeomorphism from a⊕ n to AN . The analytic subgroup K of L
corresponding to k is also closed, and is a covering group of a compact Lie group; thus it may
or may not be compact. We may always write K as V ×Kc , where V is a vector subgroup and Kc

is a compact subgroup, and Z (L) is a discrete subgroup of K . The Iwasawa decomposition of L is
the statement that

L = A ·N ·K . (16)

All Iwasawa decompositions of L or of l are conjugate to each other by an inner automorphism of
L or under the adjoint group of l.

Remark 50. If L is a connected semisimple Lie group with Iwasawa decomposition A ·N ·K , then
K is a deformation retract of the semisimple Lie group L, so L is contractible or simply connected
if and only if K is. From the classification of semisimple Lie groups (see, for instance, [38,
Chapter X]), L is contractible if and only if it is a product of copies of the universal covering group
of SL(2,R). Other simple Lie groups have compact subgroups that are not contractible.

Thus if G is a contractible Lie group, then G = R ⋊ L, where R is its radical and L a Levi
subgroup; both R and L are contractible. For connected solvable Lie groups, it is known that
contractibility and simple connectedness coincide, while the contractible Levi factor is as just
described.

It is worth pointing out that, for a simply connected semisimple Lie group L, the Lie algebra
of V is t and that of Kc is k′. For a general semisimple Lie group L, there is a projection π from its
universal covering group L̃ onto L, and π(V ) is the product of a torus (which is absorbed into Kc )
and a vector subgroup of V .

Lemma 51. Let G be a connected Lie group, r⊕ l be a Levi decomposition of g and a⊕n⊕ k be an
Iwasawa decomposition of l. Let L, AN and K be the analytic subgroups of G corresponding to l,
a⊕n and k. Then AN is a closed, solvable, connected and simply connected subgroup of G. Further,
Z (L) and Z+(L) are subgroups of K , K = Z K and L = Z L, where Z is the connected component of
the identity in (Z+(L)) .
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Proof. Let πR be the canonical projection of G onto G/R, where R is the radical of G , which
coincides with L♭ := LR/R ≃ L/(R ∩ L). Let K ♭, A♭ and N ♭ be the subgroups πR (K ), πR (A)
and πR (N ) of L♭; then A♭ · N ♭ ·K ♭ is an Iwasawa decomposition of L♭. Thus AN and A♭N ♭ are
simply connected exponential solvable Lie groups whose Lie algebras may be identified, and the
restriction πR |AN of πR to AN is a homeomorphic isomorphism onto A♭N ♭.

It follows immediately that AN is closed in G . Take a j ∈ A, n j ∈ N such that a j n j →
g ∈ G as j → +∞; we must show that g ∈ AN . Now πR (a j n j ) → πR (g ) in G/R, and the
Iwasawa decomposition of L♭ implies that there exist an ∈ AN such that πR (g ) = πR (an). The
identification of AN and A♭N ♭ in the first paragraph of this proof implies that a j n j → an in AN
and hence a j n j → an in G .

We have already noted that Z (L) is a discrete subgroup of L; a fortiori Z+(L) is a discrete
subgroup of L, central in G . The closure (Z+(L)) is a central analytic subgroup of G , and it
is immediate that (Z+(L)) = Z+(L)Z , where Z is the connected component of the identity in
(Z+(L)) . We have noted that K /Z+(L) is compact, and so there is a compact subset S of K such
that every element of K may be written as zs where z ∈ Z+(L) and s ∈ S. It follows that

K ⊆ (Z+(L)) S ⊆ Z+(L)Z S = Z K ;

it is obvious that Z K ⊆ K , and so equality holds.
Finally to identify L, we see that if a j ∈ A, n j ∈ N , k j ∈ K , and a j n j k j → g in G , then

πR (a j n j )πR (k j ) → πR (g ) in L♭, whence πR (a j n j ) → πR (an) for some a ∈ A and n ∈ N from the
properties of the Iwasawa decomposition of L♭, and hence a j n j → an from the identification of
AN and A♭N ♭. It is now immediate that k j converges in G to some element of Z K , and so L ⊆ Z L.
Conversely, Z L ⊆ L since Z ⊆ L and L ⊆ L □

Our next lemma links maximal compact subgroups to the Levi and Iwasawa decompositions.

Lemma 52. Suppose that G is a connected Lie group with radical R. Then the following hold.

(i) Given a Levi subgroup L with Iwasawa decomposition AN K , there exists a maximal
compact subgroup KR of R such that K commutes with KR ; if K is compact then KR K is
a maximal compact subgroup of G.

(ii) Given a maximal compact subgroup K ′
R of R, there exists a Levi subgroup L′ of G with

Iwasawa decomposition A′N ′K ′ such that K ′ commutes with K ′
R ; if K ′ is compact then

K ′
R K ′ is a maximal compact subgroup of G.

(iii) Given a maximal compact subgroup K0 of G, there exists a Levi subgroup L of G with
Iwasawa decomposition AN K such that K commutes with KR and K0 ⊆ KR K , where
KR = K0 ∩R.

Proof. To prove (i), take any Levi subgroup L of G ; then the group R ⋉L is a covering group of
G by Lemma 48. It is also a covering group of R ⋉ L/Z+(L). Hence G is locally isomorphic to
R ⋉L/Z+(L). Observe that two connected closed subgroups of G commute if and only if the two
connected closed subgroups of R ⋉L/Z+(L) with the same Lie algebras commute.

Let AN K be an Iwasawa decomposition of L; then AN (K /Z+(L)) is an Iwasawa decomposition
of L/Z+(L), and K /Z+(L) is a maximal compact subgroup of L/Z+(L). Extend K /Z+(L) to a
maximal compact subgroup Km of R ⋉ L/Z+(L). Then KR := Km ∩ R is a maximal compact
subgroup of R, and KmR/R, which is naturally isomorphic to Km/KR , is a maximal compact
subgroup of (R⋉L/Z+(L))/R, which is naturally isomorphic to L/Z+(L). Under this isomorphism,
the image of KmR/R is a maximal compact subgroup of L/Z+(L) that contains K /Z+(L), and
hence these subgroups coincide. Thus Km = (K /Z+(L))KR , and KR is a connected compact
solvable normal subgroup of the connected compact Lie group Km , and hence is a central torus.
It follows that K /Z+(L) and KR commute, and hence K and KR commute.
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If K is compact, then KR K is a compact subgroup of G ; further, KR K ∩R ≥ KR , but KR is a
maximal compact subgroup of R and so equality holds. It follows that KR K is a maximal compact
subgroup of G from the fact that KR and K are maximal compact subgroups of R and L.

Now we prove (ii). Given another maximal compact subgroup K ′
R of R, there exists r ∈ R

such that K ′
R = r KR r−1; then r Lr−1 is a Levi subgroup of G with Iwasawa decomposition

r Ar−1r N r−1r K r−1 and K ′
R commutes with r K r−1, as required.

We prove part (iii) by induction on the dimension of R, the radical of G . Suppose that the result
holds whenever dim(R) < r , and suppose that dim(R) = r . We consider two cases, according to
the properties of Z+(L).

If Z+(L) has dimension 0, then Z+(L) is discrete in G . We write G♭ for G/Z+(L) and consider
the local isomorphism π : G → G♭. Take a Levi decomposition R♭L♭ of G♭; then R♭ and L♭

are locally isomorphic to the subgroups R and L that arise in a Levi decomposition of G , but
Z+(L♭) = {e}, which means that the subgroup K in an Iwasawa decomposition of L is compact. It
is evident that π(K0) is contained in a maximal compact subgroup of G♭, and maximal compact
subgroups of G♭ are of the form KR K ♭. In this case, the desired result follows.

If Z+(L) has positive dimension, then Z , the connected component of the identity in Z+(L) ,
is a nontrivial closed connected normal subgroup of R. We let π : G → G/Z be the canonical
projection; the radical of the quotient group G/Z has dimension less than r , while a Levi factor
L♭ of the quotient is locally isomorphic to a Levi factor of G ; the main difference is that Z+(L♭) is
trivial. The result follows from the inductive hypothesis applied to G♭. □

We also need some information about maximal solvable subalgebras of a Lie algebra which
follows from the Levi decomposition and an argument of Mostow.

Lemma 53 (After Mostow [61]). Suppose that h is a Lie algebra. There exist finitely many maximal
solvable subalgebras g j of h such that every maximal solvable subalgebra g is conjugate under the
adjoint group to exactly one of the g j . Exactly one of these subalgebras, g0 say, has the property that
there is a compact subalgebra k of h such that g0 + k= h.

Proof. Let r be the radical of h and l be a Levi subalgebra of h, so that h = r⊕ l. Denote by π the
canonical projection of h onto the quotient q := h/r, which may be identified with l.

If g is a maximal solvable subalgebra of h, then r ⊆ g, since otherwise g+ r would be a larger
solvable subalgebra than g. Further, for subalgebras g of h that contain r, g is solvable if and only
if π(g) is solvable (this relies on that fact that if s1 and s2/s1 are solvable, so is s2). Consequently,
π(g) is a maximal solvable subalgebra of q if and only if g is a maximal solvable subalgebra of h.

Mostow [61] classified the maximal solvable subalgebras of the semisimple Lie algebra q
(showing that they correspond to Cartan subalgebras of q), and described finitely many maxi-
mal solvable subalgebras s j of q with the property that every maximal solvable subalgebra is con-
jugate to exactly one of these. The maximal solvable subalgebras s of q for which there exists a
compact subalgebra k of q such that s+ k = q are all conjugates under the adjoint group of q of
a particular subalgebra s0, which is a toral extension of the subalgebra a+n of q arising from an
Iwasawa decomposition of q.

We define g j :=π−1(s j ) and k′ to be the compact subalgebra of l that corresponds to kunder the
identification of l and q. Then g j is a maximal solvable subalgebra of h (containing r), and every
maximal solvable subalgebra of h is conjugate to one of these. Further,π(g0)+π(k′) = s0+π(k′) = q,
and π(k′) is compact, whence g0 + k′ = h. If s is a maximal solvable subalgebra of h and s+ k′′ = h
for some compact subalgebra k′′ of h, then π(s) is a maximal solvable subalgebra of q and
π(s)+π(k′′) = q for some compact subalgebra π(k′′) of q, whence π(s) is conjugate to s0 under
the adjoint group of q and hence s is conjugate to g0. □
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Suppose that H is a connected Lie group with centre Z (H). The above result implies that
there exist finitely many maximal connected solvable subgroups G j of H such that every maximal
solvable subgroup G is conjugate to exactly one of the G j . Since the closure of a connected
solvable group is connected and solvable, these maximal connected solvable subgroups are
closed. Exactly one of these subgroups, G0 say, has the property that H/G0Z (H) is compact.

While we are focussing on solvable Lie groups, we mention that for solvable groups, simply
connected and contractible coincide.

We conclude this part with two results about compact semisimple Lie algebras that we will use
later.

Lemma 54. Let l be a compact semisimple Lie algebra with a toral subalgebra t and a subalgebra
g such that l= t+g. Then l= g.

Proof. It suffices to show that t ⊆ g. By replacing t by a larger toral subalgebra if necessary, we
may suppose without loss of generality that t is a maximal abelian subalgebra of l.

It is well known (see, for instance, [74, Section 4.3]) that the compact semisimple Lie algebra
l with a maximal abelian subalgebra t contains finitely many three-dimensional subalgebras lα,
each isomorphic to su(2), with a basis {Xα,Yα,Uα}, where Uα ∈ t, such that

[Xα,Yα] =Uα, [Yα,Uα] = Xα and [Uα, Xα] = Yα.

Further, the Uα span t, so it will suffice to show that each Uα ∈ g.
It is also well known (see, for instance, [74, Section 4.3]) that l admits an inner product 〈·, ·〉

(the negative of the Killing form), such that the orthogonal projection πα onto Span{Xα,Yα,Uα}
has the property that

παV ∈RUα, [V , Xα] = [παV , Xα] and [V ,Yα] = [παV ,Yα] ∀V ∈ t.
Note that 〈Uα,Uα〉παV = 〈Uα,V 〉Uα for all V ∈ t.

Take a subalgebra lα, and write X , Y , U andπ instead of Xα, Yα, Uα andπα for ease of notation.
Since l= g+ t, there exist V ,W ∈ t such that X −V ∈ g and Y −W ∈ g. Now

〈U ,U 〉 [X −V ,Y −W ] = 〈U ,U 〉 ([X ,Y ]− [V ,Y ]− [X ,W ]+ [V ,W ])

= 〈U ,U 〉 ([X ,Y ]− [πV ,Y ]− [X ,πW ]+ [V ,W ])

= 〈U ,U 〉U +〈U ,V 〉X +〈U ,W 〉Y

= 〈U ,U 〉U +〈U ,V 〉V +〈U ,W 〉W +〈U ,V 〉 (X −V )+〈U ,W 〉 (Y −W ),

whence 〈U ,U 〉U +〈U ,V 〉V +〈U ,W 〉W ∈ g∩ t. Now

〈U ,U 〉 [〈U ,U 〉U +〈U ,V 〉V +〈U ,W 〉W, X −V ] = 〈U ,U 〉2 Y +〈U ,V 〉2 Y +〈U ,W 〉2 Y ,

so Y ∈ g, and

〈U ,U 〉 [〈U ,U 〉U +〈U ,V 〉V +〈U ,W 〉W,Y −W ] =−〈U ,U 〉2 X −〈U ,V 〉2 X −〈U ,W 〉2 X ,

so X ∈ g, whence U = [X ,Y ] ∈ g as required. □

Lemma 55. Let l and t be the Lie algebras of a compact semisimple Lie group L and a maximal
torus T thereof. Then there exist w1, . . . , w J in L such that Ad(w j )t = t and

∑J
j=1 Ad(w j )U = 0 for

all U ∈ t.
We do not prove this lemma, but state only that the w j are representatives of the finite group

N (T )/T , where N (T ) is the normaliser of T in L, that appear in the structure theory of compact
Lie groups, and in particular, the Weyl group. See, for instance, [75, Sections 3.9 and 3.10] for
much more on this.
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3.7. Polynomial growth and amenability

We now look at the structure of two particular types of Lie groups in more detail. If G is a
connected Lie group, then it is said to be of polynomial growth if and only if the Haar measures
of powers of sets U n grow polynomially in n. This is equivalent to its Lie algebra g being of type
(R), that is, the eigenvalues of ad X are purely imaginary for each X ∈ g. For instance, nilpotent
Lie groups and euclidean motion groups are of polynomial growth. For more on this, see [35, 46].

Lemma 56. Let G be a connected Lie group with radical R and a Levi subgroup L. Then G is of
polynomial growth if and only if R is of polynomial growth and L is compact. If G is of polynomial
growth, then maximal compact subgroups of G are tori if and only if G is solvable.

Proof. Both Guivarc’h [35, p. 345] and Jenkins [46, p. 123] showed that Lie groups are of polyno-
mial growth if and only if their radicals are of polynomial growth and their Levi subgroups are
compact. See also [24, Theorem II.4.8]. Then a connected Lie group G of polynomial growth is a
finite quotient of a group of the form R ⋊L, where R is solvable and L is a compact semisimple
Lie group.

Let K be a maximal compact subgroup of G ; this is a connected compact Lie group. Since K
contains a subgroup that is locally isomorphic to L, K is abelian if and only if G is solvable. □

Note that the universal covering group of SL(2,R) is contractible but not of polynomial growth.

Definition 57. An almost connected Lie group G with Lie algebra g is said to be amenable if each
Levi subalgebra of g is compact.

The standard definition of amenability of a group G involves the existence of a left-invariant
mean on L∞(G). The fact that for connected Lie groups this amounts to the definition above is
well known (see, for instance, [79, Corollary 4.1.9]. The extension to almost connected groups is
straightforward. It is also well known (and follows from the standard definition or from ours) that
connected closed subgroups and quotients of amenable groups are amenable.

It is clear that connected Lie groups of polynomial growth are amenable, but examples such
as the “ax +b-group”, which is solvable but not of polynomial growth, show that the converse is
false.

Lemma 58. Suppose that K is a maximal compact subgroup of a connected amenable Lie group
H, and that

⋂
h∈H hK h−1 = {e}. Then there is a closed connected solvable normal subgroup G of H

such that

(i) H =G ·K , whence G acts simply transitively on H/K ;
(ii) TG =G whenever T is an automorphism of H and T K = K .

Proof. Let N and R be the nilradical of and radical of H ; then N ⊆ R. Write H as RL, where L
is a necessarily compact Levi subgroup; in light of Lemma 52, we may assume without loss of
generality that L ⊆ K . The assumption on K implies that K ∩ Z (H) = {e}. We write n, r and so on
for the Lie algebras of these groups; then k∩Z (h) = {0}.

We are going to use the Killing form, a bilinear form on h defined by

B(X ,Y ) := trace(ad(X )ad(Y )) ∀X ,Y ∈ h.

This has many important properties, for which see, for instance, [11, pp. 33–50]; we will use the
following:

(a) if T∗ is an automorphism of h, then B(T∗X ,T∗Y ) = B(X ,Y ) for all X ,Y ∈ h;
(b) B(X , X ) < 0 for all X ∈ k\ {0} (because k is compact and k∩Z (h) = {0});
(c) B(X ,Y ) = 0 for all X ∈ h and all Y ∈ n;
(d) B([X ,Y ], Z ) = 0 for all X ∈ h if and only if Z ∈ r;
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We denote by g the subspace {X ∈ h : B(X ,Y ) = 0∀Y ∈ k}. Because k is semisimple, [h,h] ⊇ [k,k] = k,
and from (c) and (d) it follows that n⊆ g⊆ r. Then g is an ideal in h, from Remark 43, and h= g⊕k
from (b) and linear algebra.

Write KR for K ∩ R, which is connected since it is a maximal compact subgroup of R, and
abelian, since it is both compact and solvable, and so is a torus; further, KR ∩ N = {e} by
assumption and Lemma 44.

Let T be an automorphism of H that fixes K . Then T∗k= k, and from (a), T∗g= g.
Since K is a maximal compact subgroup, H/K is simply connected, and Lemma 45 implies that

the connected analytic subgroup G of R with Lie algebra g is closed, H =G ·K , and G acts simply
transitively on H/K . Further, if T is an automorphism of H and T K = K , then its infinitesimal
version T∗ is an automorphism of h and T∗k= k, whence T∗g= g and TG =G . □

Remark 59. This lemma may be extended to more general connected Lie groups H at the cost of
relaxing the requirement that G be normal. However, the following example shows that no such
result holds for all connected Lie groups.

Let H be the simply connected covering group of SU(n,1), where n ≥ 1, and K be a maximal
compact subgroup. Then H/K is contractible, but there is no solvable subgroup G of H that acts
transitively on H/K .

3.8. Proof of Theorem B

We are now ready to prove our next main theorem, which we restate, in a longer version.

Theorem 60. Let (M ,d) be a homogeneous metric manifold. Then there is a metric d ′ on M
such that the identity mapping on M from (M ,d) to (M ,d ′) is a homeomorphic rough isometry,
and there is a transitive closed connected amenable subgroup H× of Iso(M ,d ′); hence M is
homeomorphic to H×/K×, where K× is a compact subgroup of H×.

If M is a metric Lie group, then we may take K× to be a finite group; if M is a simply connected
metric Lie group, then we may take K× to be trivial.

If M is a contractible metric space, then we may take K× to be trivial and H× to be solvable, so
that M is homeomorphically roughly isometric to a connected, simply connected solvable metric
Lie group.

Proof. Let M be a homogeneous metric manifold, and suppose that H is a connected transitive
isometry group of M , so that we may identify M with H/Ko , where Ko is the compact stabiliser of
a point o in M . We may take H to be a Lie group that acts on M by analytic maps, by Theorem 36.

We begin with a short outline of the proof. Up to local isomorphism, the connected Lie group
H is a semidirect product R ⋊ L, where R is the solvable radical and L is a semisimple Levi
subgroup. Further, up to local isomorphism, L has an Iwasawa decomposition AN ·K , where
K is compact and AN is solvable. Then H = S ·K , where S is the closed solvable subgroup R⋊AN
of H . If H has a left-invariant, right-K -invariant metric d , then H is isometric to the group S ×K ,
equipped with a left-invariant metric d×, as described in Lemma 21. We need to deal with two
additional complications: first, we need to deal with groups H that are not semidirect products,
but quotients thereof, and second, we need to deal with the quotient H/Ko . Now we provide the
details.

We recall from Lemma 48 that, in general, there is a continuous open projection π : R⋊L → H ,
with discrete kernel, Γ say, and Γ has a subgroup of finite index Γ1 that is strongly central, that is,
if (r, l ) ∈ Γ1, then both (r,e) and (e, l ) are central in R ⋊L. In particular, this implies that l lies in
the subgroup K for any Iwasawa decomposition AN K of L.

Now L has an Iwasawa decomposition (see (16)) AN K , in which K =V ×Kc , where V is a vector
group which is compact modulo V ∩ Z+(L), and Kc is a maximal compact subgroup of L, while
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AN is solvable; as above, we write S for the solvable group R ⋊ AN , and then R ⋊L = S · (V ×Kc ).
Let Ko be the stabiliser of a point o in M in H , let Km be a maximal compact subgroup of H that
contains Ko and let KR = Km ∩R. Then Ko ⊆ (Z (L)+) KR Kc , by Lemmas 52 and 51. The subgroup
KR Kc ×V of H is compact modulo the centre of H , so that we may apply Corollary 18 to modify d
and obtain a new admissible metric d ′ on M , such that the identity map on M is a rough isometry
from (M ,d) to (M ,d ′), and

d ′(g g ′kKo , g g ′′kKo) = d ′(g ′Ko , g ′′Ko) ∀g , g ′, g ′′ ∈ H ∀k ∈ KR KcV. (17)

For simplicity of notation, we replace d ′ by d and assume that d has the invariance property (17).
We define ω : S × (V ×Kc ) → S · (V ×Kc ) by

ω(s,k) := sk−1 ∀s ∈ S ∀k ∈ (V ×Kc ).

Then ω is a homeomorphism. We lift the metric d on the space H/Ko , first to a pseudometric on
H with kernel Ko , and then to a pseudometric ḋ on the covering group S · (V ×Kc ) with kernel
π−1Ko : more precisely, we define

ḋ(x, y) := d(πxKo ,πyKo) ∀x, y ∈ S · (V ×Kc ).

Now ḋ is continuous, admissible, left-invariant and right-π−1(KR KcV )-invariant by construction.
By Lemma 21, ḋ× := ḋ ◦ (ω ⊗ ω) is a continuous admissible left-invariant pseudometric on
S × (V ×Kc ), whose kernel is a closed subgroup of S × (V ×Kc ), by Lemma 12. When we identify
points at ḋ×-distance 0, we obtain a S × (V ×Kc )-invariant admissible metric d× on the quotient
M×. Since the mapping ω from S × (V ×Kc ) to S · (V ×Kc ) is an isometry of pseudometric spaces,
the quotient metric space (M×,d×) is isometric to (M ,d).

Trivially, the amenable Lie group S ×V ×Kc acts transitively and isometrically on (M×,d×),
so there is a continuous homomorphism α : S ×V ×Kc → Iso(M×,d×). The image of α is the
product of the compact group α(Kc ) and the solvable group α(S ×V ), and so H×, the closure of
this image in Iso(M×,d×), is the commuting product of the compact group α(Kc ) and the closed
solvable group (α(S ×V )) . The intersection of these subgroups may be nontrivial, but H× is still
amenable. We may identify M× with the space H×/K×, where K× is the compact stabiliser in H×
of a point in M×.

This proves the general part of the theorem. However there are still some particular cases to
consider.

First, if M is a metric group, then we may take Ko to be trivial, and trace through the argument
above. We see that M× is a finite quotient of an amenable metric group, and the order of the
group that we factor out is bounded. Indeed, in this case, M may be identified with the covering
group R⋊L/Γ0, and by Lemma 48, Γ0 has a subgroup Γ1 of finite index such thatω−1Γ1 is central
and a fortiori normal in S × (V ×Kc ). Then M× may be identified with (S ×V ×Kc )/ω−1Γ0, which
is a finite quotient of the amenable Lie group (S ×V ×Kc )/ω−1Γ1. If M is also simply connected,
then no factoring out of discrete subgroups is involved, and we may identify M× with S ×V ×Kc .

Another special case is when M is contractible. In this case, M× is contractible, and so is of the
form H×/K× where K× is a maximal compact subgroup of H×, and H× is amenable. Then there is
a simply connected solvable group that acts simply transitively on M by Lemma 58. □

Remark 61. We may choose the metric in Theorem 41, in such a way that it is not necessary
to change the metric at the beginning of this theorem. Moreover, for any ε ∈ R+, there is a
homogeneous metric manifold of the form S ×K /K0, where K0 is a compact subgroup of S ×K ,
that is (1,ε)-quasi-isometric to the original space (M ,d0).

Before we move on, we make a few observations. It is evident that if we start with slightly
different hypotheses, we may modify the argument of the proof above to prove slightly different
results. For example, if we start with a riemannian metric, we may work throughout with
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riemannian metrics and bi-Lipschitz mappings rather than general metrics and rough isometries.
Or if we start with a semisimple Lie group, we do not need to consider the Levi decomposition.
Or if we are allowed to choose the metrics, then we may do so to ensure that we have an isometry
rather than a rough isometry. By doing this, we easily obtain the following corollaries, which are
really corollaries of the method of proof rather than of the result.

Corollary 62. Let (M ,d) be a homogeneous riemannian manifold. Then there is a riemannian
metric d ′ on M (so the identity mapping on M from (M ,d) to (M ,d ′) is bi-Lipschitz), such that
(M ,d ′) admits a transitive connected isometry group of the form S ×L, where S is solvable and L is
compact and semisimple; hence M is homeomorphic to (S ×L)/K , where K is a compact subgroup
of S ×L.

If M is a metric Lie group, then we may take K to be a finite group; if M is a simply connected
metric Lie group, then we may take K to be trivial.

If M is a contractible metric space, then we may take L and K to be trivial, so that M is bi-
Lipschitz to a connected, simply connected solvable metric Lie group.

Corollary 63. Let G be a connected Lie group. Then the following are equivalent:

(i) G may be made isometric to a connected simply connected solvable Lie group; and
(ii) G = R⋊L, where R is the solvable radical and L is a Levi subgroup of G; further, R is simply

connected and L is a direct product of finitely many (possibly zero) copies of the universal
covering group of SL(2,R).

Proof. If (i) holds, then G is contractible; by Remark 50, (ii) holds.
On the other hand, if (ii) holds, then G may be made isomorphic to a solvable Lie group by

Theorem 60. □

Corollary 64. Suppose that (G ,d) is either a simply connected metric Lie group or a connected
semisimple metric Lie group. Then there exist a connected Lie group H that is the product of
a solvable and a compact Lie group, and admissible left-invariant metrics dG and dH such that
(G ,dG ) and (H ,dH ) are isometric and the identity map is a rough isometry from (G ,d) to (G ,dG ).

Corollary 65. Let G be a connected semisimple Lie group with Iwasawa decomposition AN K .
Write K as V ×K0, where V is a vector group and K0 is compact. Then G may be made isometric to
the direct product AN ×V ×K0.

It seems reasonable to ask whether a general connected metric Lie group (G ,d) is homeo-
morphically quasi-isometric to an amenable connected metric Lie group. Example 49 provides
a counterexample. Indeed, with the notation of that example, we consider the group G = G̃/Γ,
and observe that the arguments used to prove Theorem 60 show that G̃ is homeomorphic to an
amenable direct product group G̃∗, and that G̃/Γ is isometric to G̃∗/Γ∗, where Γ∗ is the group
{(r, l−1) : (r, l ) ∈ Γ}. However, unless n = 2, the subgroup Γ∗ is not normal, but has a subgroup of
finite index that is normal. In this case, G∗/Γ∗ is not a group but is a finite quotient of a group.
Further, G̃/Γ1 is a finite covering group of G , and is isometric to the group G̃∗/Γ∗1 . More generally,
we state without proof the following variant of Theorem 60.

Theorem 66. Let (M ,d) be a homogeneous metric manifold. Then there is a metric d ′ on M such
that the identity mapping on M from (M ,d) to (M ,d ′) is a homeomorphic rough isometry, and
(M ,d ′) has a finite cover that admits a simply transitive connected isometry group of the form S×L,
where S is solvable and L is compact and semisimple; hence M is homeomorphic to (S ×L)/K .
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3.9. Notes and remarks

3.9.1. The main structure theorem

We have mentioned some of the contributors to the solution of Hilbert’s fifth problem, on the
structure of locally euclidean topological groups. It is worth pointing out that earlier the structure
of compact groups was elaborated by von Neumann, and that of solvable groups by Chevalley. For
much more, see [58].

Apropos of Corollary 38, riemannian geometers have known for a long time that spaces H/K ,
where K is a compact subgroup of a connected Lie group H , may be equipped with a riemannian
metric such that H acts by isometries, by choosing a K∗-invariant infinitesimal metric at the point
K of H/K and then translating this to the whole space. For instance, this fact is described as well
known in a 1954 paper of Nomizu [63].

3.9.2. Compact subgroups

It is well known that connected compact Lie groups contain maximal connected abelian
subgroups, or maximal tori, all of which are conjugate (see, for instance, [50, Corollary 4.35,
p. 255]). It is perhaps not so well known that all connected compact groups contain maximal
connected abelian subgroups, which are automatically closed, and all of these are conjugate.
See [41, Theorem 9.32] for more details.

We have stated Corollaries 37 and 38 for connected groups for simplicity, and Lemma 39 for
connected groups since Iwasawa did so. For the almost connected case, see [70, Theorem 32.5]
and the references cited there.

For more classical theory of the topology of Lie groups, see [68].

3.9.3. Proof of Theorem 41

Let o be a point in a homogeneous metric space (M ,d). Then there is a connected locally
compact group H that acts effectively and transitively on (M ,d) by isometries, and M may be
identified with the space H/Ko , where Ko is the stabiliser of o in H . Let K be a maximal compact
subgroup of H that contains Ko , and suppose that d is right-K -invariant, which may always be
arranged as in the proof of the theorem.

Then the collection of compact subgroups Kν of H such that Ko ⊆ Kν ⊆ K is a partially
ordered set, and in the corresponding collection of quotient spaces H/Kν, and by extending
the construction following Definition 9, we may find a family of homogeneous metric space
projections πν,ν′ : H/Kν → H/K ′

ν whenever Kν ⊆ K ′
ν, and the implicit constants in all these

projections are uniformly bounded. This family of projections is an inverse system, and H/Ko

is (trivially) the limit of spaces H/Kν as Kν shrinks down to Ko . If we restrict to the subgroups Kν

such that H/Kν is a Lie group, then the limit is no longer trivial if H/Ko is not a manifold.
When the spaces H/Kν and H/K ′

ν are manifolds, then H/Kν is a fibre bundle over H/K ′
ν.

However, in general, we cannot assert this: local triviality is a problem.

3.9.4. Lie groups

Apropos of the exponential mapping on a Lie group, it may be of interest that in some cases,
G = exp(g), while G = exp(g)exp(g) always (see [60]). When the exponential mapping is surjective,
we can relate the eigenvalues of the adjoint action ad to those of Ad, but in general matters are
somewhat murky.
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3.9.5. Decompositions of Lie groups

Under suitable conditions, a connected locally compact group H has a connected simply con-
nected locally compact universal covering group H̃ (an infinite dimensional torus is a counter-
example). We refer the reader to [8] for more information. Thus it would be possible to extend
the Levi decomposition to more general locally compact connected groups, but to discuss this
would take us too far from our main goals.

We give two more examples that illustrate what may happen in the Levi decomposition when
L is not closed. Let U denote the universal covering group of SL(2,R), and {kt : t ∈ R} be the
one-parameter subgroup of U that projects down to the standard rotation subgroup of SL(2,R),
parametrised so that kt projects to the rotation through an angle t ; thus the elements k2πn , where
n ∈Z, project to the identity of SL(2,R).

Example 67. Let G be the group (U×T )/Z , where T = {z ∈C : |z| = 1} and Z is the central discrete
subgroup {(k2πn ,ei n) : n ∈Z} of U×T . The Levi subgroup of G is an analytic subgroup, which may
be identified with U , and the radical is a torus, which may be identified with T ; these have an
intersection which is dense in the radical. This group cannot be written as a semidirect product
of its radical and a Levi factor, and nor can any finite covering group or finite quotient, though
a compact quotient of lower dimension is trivially a semidirect product of its radical and a Levi
factor.

Example 68. Let G be the group (U × U × R)/Z and Z be the central discrete subgroup
{(k2πm ,k2πn ,m +αn) : m,n ∈ Z}, where α is irrational. Then the Levi subgroup of G is an ana-
lytic subgroup, which may be identified with U ×U , and the radical is a line; these have an inter-
section which is dense in the radical. This group cannot be written as a semidirect product of its
radical and a Levi subgroup, and nor can any finite covering group or compact quotient.

3.9.6. Polynomial growth and amenability

A propos of Definition 57, the term was apparently coined by M.M. Day, to indicate the
existence of a left-invariant mean on a group. For us, amenable groups are amenable because
they are much more tractable than general Lie groups.

3.9.7. Proof of Theorem B

Theorem 60 shows that the class of solvable Lie groups is not closed under isometries. It was
already known (see [1, 57]) that the infinite covering group of SL(2,R) and the direct product of
R and the “ax +b-group” may be made isometric, even though the former group is not solvable
and the latter is.

We remark that rough isometry is connected to Cornulier’s [18] notion of commability; two
homogeneous spaces are commable if they may be connected by a finite number of projections
from a group G onto a quotient G/K , where K is a compact subgroup of G , and cocompact
embeddings; the arguments above show that G and G/K may be metrised (subject to some
topological separability) in such a way that the projection and section are rough isometries. But
when we allow metrics that are not proper quasigeodesic, then rough isometry need not imply
commability. For instance, infinite covering projections may be rough isometries, by Lemma 20,
but a space and its infinite cover are not commable.

Finally, it may be useful to recall that there is significant literature showing that the topology
alone comes close to determining compact Lie groups; see [42] and the works cited there. On
the other hand, relations such as (L,C )-quasi-isometry do not “see” compact factors at all if C is
sufficiently large.
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4. Solvable Lie groups

In the last section, in Section 3.3, we showed that homogeneous metric spaces are roughly
isometric to connected solvable Lie groups. In this section, we restrict our attention to such
groups. We discuss the classification of connected solvable Lie groups up to isometry, due
to Gordon and Wilson [31, 32] in the riemannian case; we extend their results to cover more
general metrics. We consider when two such groups may be made isometric, and make some
small contributions to the problem of their classification up to quasi-isometry, which has not yet
been achieved and seems to be a very difficult question. We present a different point of view to
previous authors and extend some existing definitions and results.

Before we describe our results in more detail, we remind the reader of Definition 23: H =G ·K
means that G and K are subgroups of H and the map (g ,k) 7→ g k is a homeomorphism from G×K
to H . Also, we write Z (H) and Z (h) for the centres of H and h.

Suppose that (G ,d) is a connected solvable metric Lie group, and that H is a connected closed
subgroup of the Lie group Iso(G ,d) that contains G , acting on itself by left translations. Let K
be the stabiliser in H of the point e in G . Then H = G ·K , by Remark 25, and Z (H)∩K = {e}, by
Remark 5. If moreover H is connected and solvable, then K is connected, compact and solvable,
and hence a torus; in this case, we usually write T instead of K .

Up to now, we have been looking at homogeneous metric spaces of the form H/K , where H is a
connected group and K is a compact subgroup. For example, we showed in Corollary 27 that if G1

and G2 are connected groups that both act simply transitively by isometries on a homogeneous
metric space (M ,d), and H is the connected component of the identity in Iso(M ,d) and K is the
stabiliser in H of a point in M , then it is possible to write H = G1 ·K = G2 ·K . However, this
does not tell us whether G1 and G2 are algebraically similar. In this section, we use the additional
information available from Lie theory to discuss when two connected solvable Lie groups are
isometric, or may be made isometric, or even when they are roughly isometric (and here there
are still many open problems). The first main step in doing this is to show that if G1 and G2 are
isometric connected solvable metric Lie groups, then there is a connected, solvable metric Lie
group H and a toral subgroup T such that H = G1 ·T = G2 ·T . We do this by appealing to a now
classical theorem of Mostow [61]. Then we proceed to a detailed analysis of solvable Lie groups
and their subgroups.

In Section 4.1, we examine derivations of Lie algebras, and particularly solvable Lie algebras,
in detail; in Section 4.2, we recall the definitions of the upper and lower central series and
properties of the exponential mapping from nilpotent Lie algebras to nilpotent Lie groups; and
in Section 4.3, we discuss the modifications of Gordon and Wilson [31, 32]. In Section 4.5, we
briefly describe “twisted versions” of solvable Lie groups, and show that two isometric connected
solvable groups are both twisted versions of the same connected solvable group. We connect
twisted versions of groups to the normal modifications of Gordon and Wilson [31, 32], and to
hulls and real-shadows of solvable groups in Section 4.6. In Section 4.7, we prove Theorem C and
a number of consequences. Much of what we do, or at least something similar, is known; we leave
a brief description of the history of this development to Section 4.8.

We end this introductory discussion with a lemma and a remark.

Lemma 69. Suppose that H is a connected solvable Lie group, and T is a toral subgroup of H such
that Z (H)∩T = {e}. Then there exists a closed connected subgroup G0 of H such that H =G0 ⋊T .

Proof. Let N be the nilradical of H . Then T ∩ N = {e} by Lemma 44, whence T N /N is a torus
isomorphic to T in the connected abelian Lie group H/N . Connected abelian Lie groups are all
products of tori and vector groups, and their structure is easy to understand. In particular, there
is a closed subgroup C of H/N such that H/N =C · (T N /N ); let G0 be the closed subgroup of H
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containing N such that G0/N = C . Then G0/N is normal in H/N , so G0 is normal in H . Since
T ∩N = {e}, as noted above, H =G0 ·T . □

Remark 70. Let (M ,d) be a metric solvmanifold, that is, a homogeneous metric manifold such
that the Lie group Iso(M ,d) contains a closed solvable subgroup H that acts transitively on
M . Let K be the stabiliser in H of a point in M ; then K is a compact subgroup of H , and M
is homeomorphic to H/K . The space H/K has a finite covering space H/T , where T is the
connected component of the identity in K , which is a torus, being compact, connected and
solvable. Further, since H is an isometry group, Z (H)∩T = {e}. Application of Lemma 69 to H and
T produces a subgroup G0 that acts simply transitively on H/T , and “almost simply transitively”
on H/K .

4.1. Derivations and automorphisms

Here we prove some preliminary results about derivations and introduce a little more notation.

Remark 71. Suppose that L is a diagonalisable linear map on a Lie algebra g; then there is a
direct sum eigenspace decomposition g = ∑

λgλ, where LX = λX for all X ∈ gλ. It is well known
that L is a derivation if and only if [gα,gβ] ⊆ gα+β for all eigenvalues α and β. Indeed, if X ∈ gα
and Y ∈ gβ, then

[LX ,Y ]+ [X ,LY ] = (α+β)[X ,Y ],

so if L is a derivation, then [X ,Y ] ∈ gα+β. Conversely if [X ,Y ] ∈ gα+β for all X ∈ gα and Y ∈ gβ
and all eigenvalues α and β, then the linearity of L implies that L[X ,Y ] = [LX ,Y ]+ [X ,LY ] for all
X ,Y ∈ g and L is a derivation.

Remark 72. If D is any derivation of a Lie algebra g, then D rad(g) ⊆ nil(g), by [45, Theorem 7,
p. 74]. In particular, [g, rad(g)] ⊆ nil(g). This implies that if v is a subspace of g and nil(g) ⊆ v ⊆
rad(g), then v is an ideal in g.

The next lemma is certainly known, but we are not aware of a proof in the literature, so we
provide one.

Lemma 73. Suppose that g is a real Lie algebra, and that d is an abelian algebra of semisimple
derivations of g. Then there are commuting abelian algebras dr and di of semisimple derivations of
g such that every element of dr has purely real eigenvalues, every element of di has purely imaginary
eigenvalues, and every element D of d may be written as a sum D = Dr +Di, where Dr ∈ dr and
Di ∈ di.

Proof. By considering the simultaneous eigenvalue decomposition of g under the action of d, we
may write the complexification gC as a “sum of root spaces”

∑
α∈Φgα, where Φ is a finite set of

linear mappings from gC to C and gα is the subspace of all X ∈ gC such that D X = α(D)X for all
D ∈ d. We write gγ = {0} if γ ∉Φ.

Define the linear mapping D on gC by requiring that D X :=α(D)X for all X ∈ gα and all α ∈Φ.
Since (α(D)+β(D)) =α(D)+β(D), Remark 71 implies that D is a derivation. Further, D +D has
real eigenvalues while D−D has purely imaginary eigenvalues. It remains to show that D restricts
to a linear mapping of g.

By linear algebra, g has a basis

{X j ,Y j ,Wk : j ∈ {1, . . . , J },k ∈ {1, . . . ,K }}

such that the subspaces Span{X j ,Y j } and Span{Wk } are irreducible and invariant for d. In the
complexification gC, each D ∈ d is diagonalised in the basis

{X j + i Y j , X j − i Y j ,Wk : j ∈ {1, . . . , J },k ∈ {1, . . . ,K }},
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with eigenvalues λ j and λ j and µk , say; here the λ j are strictly complex while the µk are real. By
definition, D(X j + i Y j ) =λ j (X j + i Y j ) and D(X j − i Y j ) =λ j (X j − i Y j ); it follows that

D X j = Reλ j X j + Imλ j Y j and DY j =− Imλ j X j +Reλ j Y j .

Since also DWk =µkWk , it follows by R-linearity that D preserves g, as required. □

Corollary 74 (After [54, Corollary 2.6]). Suppose that g is a Lie algebra and D is a derivation
of g. Then we may write D = Dsr + Dsi + Dn, where each summand is a derivation of g, each
summand commutes with the other summands, and Dsr is semisimple with real eigenvalues, Dsi is
semisimple with purely imaginary eigenvalues, and Dn is nilpotent. Moreover, the ranges Ran(Dsr),
Ran(Dsi) and Ran(Dn) are all subspaces of the range Ran(D).

Proof. Bourbaki [13, Proposition 4, p. 6] shows that we may write D as Ds +Dn, the commuting
sum of a semisimple and a nilpotent derivation. Further, Ds decomposes as the commuting sum
Dsr +Dsi of derivations, where the summands have real and purely imaginary eigenvalues, by
Lemma 73. It remains to show that Dsr and Dn commute, and to examine the ranges.

We choose a Jordan basis for g so that D is in real Jordan normal form; then in each block, the
nilpotent part commutes with the real and imaginary parts of the diagonal part, and the ranges
behave as claimed. □

4.2. Nilpotent Lie groups and algebras

We recall some standard definitions and properties of nilpotent Lie algebras.
The upper central series of a Lie algebra g is defined recursively:

g[0] := {0} and g[ j+1]/g[ j ] := Z (g/g[ j ]).

Then
g[0] ⊆ g[1] ⊆ g[2] ⊆ . . . .

The subspaces in this series increase strictly and then stabilise, that is, all later terms coincide.
The series reaches g if and only if g is nilpotent; in this case, the least positive integer ℓ such that
g[ℓ] = g is called the nilpotent length of g. Each g[ j ] is a characteristic ideal, that is, Dg[ j ] ⊆ g[ j ] for
any derivation D of g. The upper central series of the complexification gC is the complexification
of the upper series on g, that is, (gC)[ j ] = (g[ j ])C.

The lower central series of a Lie algebra g is also defined recursively:

g[0] := g and g[ j+1] := [g,g[ j ]]. (18)

Then
g[0] ⊇ g[1] ⊇ g[2] ⊇ . . . .

The subspaces in this series decrease strictly and then stabilise. The series reaches {0} if and
only if g is nilpotent; in this case, the least positive integer j such that g[ j ] = {0} coincides with
the nilpotent length of g. Each g[ j ] is a characteristic ideal, and the lower central series of the
complexification gC is the complexification of the lower central series on g.

If n is a nilpotent Lie algebra, then there is a connected simply connected (indeed, con-
tractible) Lie group N such that the exponential mapping is a diffeomorphism from n onto N ,
and exp(g) is a closed subgroup of N for every subalgebra g of n (see [74, Section 3.6]). But not all
nilpotent Lie groups are simply connected.

In general, every nilpotent Lie group N contains a maximal torus T that is central (see
Lemma 44), and N /T is simply connected. This implies that if g is a subalgebra of n that contains
t, the Lie algebra of the maximal torus T , then exp(g/t) is closed in N /T and it follows that exp(g)
is closed in N .
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4.3. Modifications

Many nonlinear problems on Lie groups may be solved by turning them into linear problems
on Lie algebras. This is certainly the case for us. Corollary 27 shows that we are interested in
examples of connected groups H with closed connected subgroups G0, G1 and K such that K
is compact and H = G0 ⋊K = G1 ·K . This implies that the corresponding Lie algebras satisfy
h = g0 ⊕ k = g1 ⊕ k and g0 is an ideal in h. In this situation, for all X ∈ g0, there exists a unique
σX ∈ k such that X +σX ∈ g1. Evidently, σ : g0 → k is linear and

g1 = {X +σX : X ∈ g0}.

The map σ and algebra g1 are examples of a modification map and a modification in the
terminology of Gordon and Wilson [32]. We shall be interested in modifications in the case where
k is the Lie algebra of a torus (so we write t).

The following technical lemma follows from Gordon and Wilson [32, Theorem 2.5]. We give a
different proof.

Lemma 75. Suppose that h is a Lie algebra of the form n⊕ t, where n is a nilpotent ideal and t is a
toral subalgebra such that t∩Z (h) = {0}. Suppose also that g is a subalgebra of h such that h= g⊕t.
Then g is an ideal in h.

Proof. We consider g as a modification of n, that is we choose σ : n→ t such that

g= {X +σX : X ∈ n}.

Since t is abelian and g is a subalgebra,

[X ,Y ]+ [σX ,Y ]− [σY , X ] = [X +σX ,Y +σY ] ∈ g ∀X ,Y ∈ n.

All terms on the left-hand side lie in n= Dom(σ), and σ(g∩n) = {0}, so

σ[X ,Y ] =σ[σY , X ]−σ[σX ,Y ] ∀X ,Y ∈ n. (19)

We are going to use induction on dim(h). If dim(h) is 0, 1 or 2, then g is trivially an ideal.
We assume for the rest of the proof that g′ is an ideal in h′ whenever h′, n′, t′ and g′ satisfy the
hypotheses of the lemma and dim(h′) < dim(h).

By Weyl’s unitarian trick, we may equip n with an inner product such that each of the family
of linear maps ad(t) is skew-symmetric. Since n is ad(t)-invariant, so is each member n[ j ] of the
lower central series (see Section 4.2), and there are (unique) ad(t)-invariant subspaces v[ j ] such
that n[ j−1] = v[ j ]⊕n[ j ]. It is not hard to show inductively that n[ j ] = ad(v[1]) jv[1]+n[ j+1], and hence
v[1] generates n. Further, as t is abelian, we may decompose the spaces v[ j ] into minimal ad(t)-
invariant subspaces, of dimension 1 or 2, which we label wk .

Step 1: a consequence of (19). Suppose that w j and wk are minimal ad(t)-invariant subspaces
of n, and σ[w j ,wk ] = {0}. We claim, and shall now prove, that

σ[σY , X ] = 0 ∀X ∈w j ∀Y ∈wk , (20)

or equivalently, σ[σX ,Y ] = 0, since in light of our hypothesis,

σ[σY , X ] =σ[σX ,Y ] ∀X ∈w j ∀Y ∈wk . (21)

If dim(wk ) = 1, then (20) holds, since ad(σX ) is skew-symmetric, so [σX ,Y ] = 0; similarly (20)
holds if dim(w j ) = 1. If both w j and wk are 2-dimensional, then, as the dimension of the space of
skew-symmetric maps of R2 is 1-dimensional, we may take an orthonormal basis {X0, X1} of w j

such that ad(σX0)|wk = 0. This implies that

σ[σY , X0] =σ[σX0,Y ] = 0 ∀Y ∈wk .
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Now there are two possibilities: either [σY , X0] = 0 for all Y ∈wk , or there exists Y ∈wk such that
[σY , X0] ̸= 0. In the former case, the skew-symmetry of ad(σY )|w j implies that ad(σY )|w j = {0},
for all Y ∈wk , and (20) holds. In the latter case, there exists Y ∈wk such that [σY , X0] = X1 and
hence σX1 = 0; coupled with the fact that ad(σX0)|wk = 0, this shows that ad(σX )|wk = 0 for all
X ∈w j and (20) holds in this case too from (21).

Step 2: the case where n is abelian. We recall that t∩Z (h) = {0}.
Since

[h,g] = [t,g]+ [g,g] ⊆ [t,g]+g,

g is an ideal if and only if [t,g] ⊆ g.
We consider the decomposition of n into ad(t)-invariant subspaces w j , as described in the

second paragraph of this proof. Since n is abelian, [w j ,wk ] = {0} for all j and k. If σX = 0 for all
X ∈w j and for all j , then g = n and we are done. Otherwise, we fix a summand w j and X ∈w j

such thatσX ̸= 0, and then our assumption that t∩Z (h) = {0} implies that there exists k such that
[σX ,wk ] ̸= {0}. Now σ[σX ,Y ] = 0 for all Y ∈wk and since ad(σX )|wk is surjective, σY = 0 for all
Y ∈wk . Then wk is a nontrivial ideal in h that is contained in n and in g. We may now write

h′ = n′⊕ t′ = g′⊕ t′,

where

h′ = h/wk , n′ = n/wk , g′ = g/wk , and t′ = (t+wk )/wk ≃ t,

and it is easy to show that h′, n′, t′ and g′ satisfy the hypotheses of the lemma and dim(h′) <
dim(h), and so g′ is an ideal in h′ by the inductive assumption and hence g is an ideal in h.

For the rest of the proof, we may and shall assume that n is not abelian.

Step 3: the induction on dimension argument. Suppose that n0 is a (nontrivial) ideal in h, that
n0 ⊆ n[1], and that σn0 = {0}, that is, n0 ⊆ n[1] ∩g. In this case, we may show that g is an ideal by
induction on dimension. Indeed, we may write

h′ = n′⊕ t′ = g′⊕ t′,

where

h′ = h/n0, n′ = n/n0, g′ = g/n0, and t′ = (t+n0)/n0 ≃ t.

By our inductive assumption, g′ is an ideal in h′, and hence g is an ideal in h, as required.

Step 4: minimal ad(t)-invariant subspaces. Suppose that there exists a subspace w j such that
σ(w j ) = {0}. Then for all X ∈w j , all Y ∈ n and all U ∈ t,

σ[X ,Y ] =σ[σX ,Y ]+σ[σY , X ] = 0

since σX = 0 by hypothesis and [σY , X ] ∈w j , and

σ[U , [X ,Y ]] =σ[[U , X ],Y ]+σ[X , [U ,Y ]] = 0

similarly. Define

n0 :=w j + [h,w j ]+ [h, [h,w j ]]+ . . . ;

then n0 is an ideal in h and σn0 = {0}, that is, n0 ⊆ g.
There are now two possibilities: n0 ̸⊆ v[1] or n0 ⊆ v[1]. In the first case, define n1 := n0 ∩n[1].

Then n1 is also an ideal which may be factored out much as in Step 3 to show that g is an ideal by
induction on dimension. Otherwise, n0 is central in n and an ideal in h, and may be factored out
so that induction on dimension again shows that g is an ideal.
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Step 5: Denouement. Take w j ⊆ n[ℓ−1]; then w j is an ideal in h, where ℓ is the nilpotent length
of n. If dim(w j ) = 2, then there exists X ∈ wk ⊆ n such that ad(σX )|w j ̸= 0. Now σ[σX ,Y ] = 0
for all Y ∈w j by (20) and hence σw j = {0}. We may factor out w j and show that g is an ideal by
induction on dimension, as in Step 3. Otherwise, if dim(w j ) = 1 and σw j = {0}, then w j is an
ideal which we may factor out to apply the induction on dimension argument and show that g is
an ideal. Finally, if dim(w j ) = 1 and σw j ̸= {0}, there exists wk ⊆ n such that [σw j ,wk ] =wk , and
now σwk = σ[σw j ,wk ] = {0} by (20), so again we may apply the result of Step 4 to conclude that
g is an ideal. □

4.4. Split-solvability and the real-radical

Recall that a solvable Lie algebra g is said to be split-solvable (or completely solvable) if the
eigenvalues of each ad(X ), where X ∈ g, are real. A connected Lie group G is said to be split-
solvable if its Lie algebra is split-solvable. If G is split-solvable and of polynomial growth, then the
eigenvalues of each ad(X ) are also purely imaginary, and so they are all zero, that is, G is nilpotent.
Similarly, every toral subalgebra t of a split-solvable Lie algebra g is central; indeed, if U ∈ t, then
the eigenvalues of ad(U ) are 0 because they are simultaneously real and purely imaginary, and
since ad(U ) is semisimple, then ad(U ) = 0.

Lemma 76. Suppose that G is a connected Lie group with Lie algebra g. The following conditions
are equivalent:

(i) the eigenvalues of each Ad(g ), where g ∈G, are positive;
(ii) the eigenvalues of each ad(X ), where X ∈ g, are real;

(iii) there are ideals g j in g that form a complete flag, that is,

{0} = g0 ⊂ g1 ⊂ ·· · ⊂ gn−1 ⊂ gn = g

and dim(g j ) = j for all j ; and
(iv) there are closed connected normal subgroups G j of G such that

{0} =G0 ⊂G1 ⊂ ·· · ⊂Gn−1 ⊂Gn =G

and dim(G j ) = j for all j .

Further, if the Lie algebra g satisfies condition (ii) and f1 ⊂ f2 ⊂ ·· · ⊂ fl−1 ⊂ fl is any partial flag of
ideals of g, then it is possible to choose the ideals g j in condition (iii) such that all the fk appear in
the complete flag.

Proof. The exponential mapping is both surjective and injective on simply connected split-
solvable Lie groups (see [23]); it follows that the exponential mapping is surjective on all split-
solvable Lie groups. Since exp(ad(X )) = Ad(exp(X )) for all X ∈ g, (i) and (ii) are equivalent.

See [50, p. 45] for the equivalence of (ii) and (iii). By passing to Lie algebras, it is clear that
(iv) implies (iii).

If (iii) holds and f′ and f′′ are ideals in g such that f′ ⊆ f′′, then f′+(g j∩f′′) is also an ideal in g, and
as j increases by 1, the dimension of f′+(g j ∩f′′) increases by at most 1. Thus by omitting repeated
terms and relabelling, we obtain a flag of ideals that starts at f′, increases in dimension by 1 at each
step, and arrives at f′′. By applying this observation with f′ and f′′ taken to be adjacent terms f j−1

and f j of the partial flag of ideals of g, and then concatenating the flags between f j−1 and f j for
different j , we obtain a complete flag that passes through all the ideals of the partial flag.

Let t be the Lie algebra of a maximal compact subgroup of G , which is necessarily a torus
since G is solvable, and central (as argued before the statement of this lemma). Choose a
basis {Z1, . . . , Zm} of t such that each exp(RZ j ) is a 1-dimensional torus in G , and let fk be
Span{Z1, . . . , Zk } when 1 ≤ k ≤ m.
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Extend the partial flag of ideals f1 ⊂ ·· · ⊂ fm to a complete flag of ideals g j , and let G j be the
normal analytic subgroup of G that corresponds to g j . If j ≤ m, then G j is closed by construction.
If j ≥ m, then g j ⊇ t, and g j /t is a subalgebra of g/t. Since G/T is connected and simply
connected, the analytic subgroup G j /T of G/T corresponding to g j /t is closed by [17, end of
Section II], whence G j is closed in G . □

Proposition 77. Let G be a split-solvable connected Lie group and H be a connected Lie group.

(i) If F is an analytic subgroup of G, then F is split-solvable.
(ii) If M is a closed normal subgroup of G, then G/M is split-solvable.

(iii) If T is a central torus in H then H/T is split-solvable if and only if H is split-solvable.
(iv) If G is a dense analytic subgroup of H, then H is split-solvable.

Proof. We will work with the Lie algebras.
Suppose that there are ideals g j in g such that

{0} = g0 ⊂ g1 ⊂ ·· · ⊂ gn−1 ⊂ gn = g,

and dim(g j /g j−1) = 1 for all j (or equivalently, dim(g j ) = j ). If f is a subalgebra of g, then
[f,g j ∩ f] ⊆ g j ∩ f, so g j ∩ f is an ideal in f, and

{0} = g0 ∩ f⊆ g1 ∩ f⊆ ·· · ⊆ gn−1 ∩ f⊆ gn ∩ f= f,

and dim((g j ∩ f)/(g j−1 ∩ f)) ≤ 1 for all j . After eliminating all ideals f∩ g j that agree with the
preceding ideal f∩ g j−1, we obtain a complete flag of ideals that shows that f is split-solvable.
Similarly, if m is an ideal in g, then so is g j +m, and

{0} = (g0 +m)/m⊆ (g1 +m)/m⊆ ·· · ⊆ (gn−1 +m)/m⊆ (gm +m)/m= g/m;

again, after elimination of redundant terms, we produce a flag of ideals that show that g/m is
split-solvable.

For part (iii), note that H is solvable if and only if H/T is solvable. If H is split-solvable, then so
is H/T by part (ii). Conversely, suppose that H/T is split solvable. If X ∈ h and λ is an eigenvalue
of ad(X ) acting on h, then there exists Y in the complexification hC of h such that ad(X )Y = λY .
For these X , λ and Y ,

ad(X + t)(Y + t) ⊆λ(Y + t),

and λ is an eigenvalue of the adjoint action of ad(X + t) acting on h/t, whence λ ∈ R Hence H is
split-solvable, as required.

To prove (iv), suppose that G is a split-solvable analytic subgroup of the connected Lie group
H . We need to show that H is split-solvable. Now if H is also simply connected, then G is closed
in H by [17, end of Section II], and so G = H and H is split-solvable.

Let T be a maximal torus in H . We propose to show that T is central in H ; it then follows that
GT /T is a dense split-solvable analytic subgroup of H/T , and H/T is simply connected, whence
GT = H and H/T is split-solvable, and so H is split-solvable.

Let m be the nilradical of g and M be the corresponding subgroup of G , hence of H . Let N be
the closure of M in H , and n be its Lie algebra. Since M is nilpotent, so is N , and since xM x−1 = M
for all x ∈G , we see first that xN x−1 = N for all x ∈G by closing M , and then that xN x−1 = N for
all x ∈ H since G is dense in H . If follows that N is normal in H and n is a nilpotent ideal in h.

For x ∈ H , we denote by Adm(x) the restriction of Ad(x) to m, and by pm(x, · ) its characteristic
polynomial:

pm(x,λ) := det
(
(Ad(x)−λI )|m

) ∀λ ∈C.

If x ∈ G , then Adm(x) has positive real eigenvalues so all roots of pm(x, · ) are positive real
numbers. By density, if x ∈ H , then pm(x, · ) is a limit of polynomials with positive real roots,
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so the roots of pm(x, · ) are nonnegative real numbers. However, Adm(x) is invertible, and so all
the roots of pm(x, · ) are positive.

If x ∈ T , then all the roots of pm(x, · ) are of modulus 1, by Weyl’s unitarian trick, and so all
the roots of pm(x, · ) are 1. Since Adm(x) is semisimple, it is the identity mapping. It follows that
conjugation by x fixes every point of M ; again by density, conjugation by x fixes every point of N .
Passing to the Lie algebras, if U ∈ t, then ad(U )|n = 0.

Now the commutator subgroup [G ,G] of G is contained in M (since [g,g] ⊆m), and by density,
the commutator subgroup [H , H ] of H is contained in N . Hence [h,h] ⊆ n, and so if Y ∈ hC is
an eigenvector for the adjoint action of ad(U ) (where U ∈ t) on hC corresponding to a nonzero
eigenvalue, then Y ∈ nC. It follows that all eigenvalues of ad(U ) are 0, and as ad(U ) is semisimple,
ad(U ) = 0 and U is central. We conclude that t is central, and we are done. □

The next two results are largely due to Jablonski [44].

Lemma 78. Let X and Y be elements of a solvable Lie algebra h. Then the spectrum of ad(X +Y )
is contained in the sum of the spectra of ad(X ) and ad(Y ).

Proof. This proof is due to Jablonski [44], and included for the convenience of the reader.
We may pass to the complexification hC without changing the eigenvalues. Now by Lie’s theo-

rem, ad(h) may be represented as an algebra of upper triangular matrices, and the eigenvalues of
ad(X ) correspond to the diagonal entries of the associated matrix. It follows that the eigenvalues
of ad(X +Y ) are sums of eigenvalues of ad(X ) and ad(Y ). □

Theorem 79 (After Jablonski [44]). Let G be a Lie group with Lie algebra g. Then g contains a
unique maximal split-solvable ideal s, which is characteristic in the sense that ϕ(s) = s for any
isomorphism ϕ : g→ g. The analytic subgroup S of G corresponding to s is closed, connected, and
normal in G. If G is connected and simply connected, then so is S. If T is a torus contained in S,
then T is normal in G and central in the connected component of the identity in G.

Proof. Jablonski [44, Proposition 2.1] showed that g contains a unique maximal split-solvable
ideal s; again we summarise the argument for the reader’s convenience. Let r and n denote the
radical and nilradical of g.

If s′ and s′′ are split-solvable ideals of g, then both are contained in r, and further, s′ + s′′ is
an ideal. If we can show that s′+ s′′ is split-solvable, then we may define s to be the sum of all
split-solvable ideals of g.

Take X ′ ∈ s′ and X ′′ ∈ s′′. Since s′ and s′′ are ideals and [g,r] ⊆ n, all the nonzero eigenvalues of
ad(X ′) and ad(X ′′) acting on r are realised on eigenvectors that lie in s′∩n and s′′∩n respectively.
Hence ad(X ′) and ad(X ′′) have real eigenvalues when acting on r, so ad(X ′ + X ′′) has real
eigenvalues when acting on r by Lemma 78, and a fortiori when acting on s′+s′′.

If ϕ : g → g is a Lie algebra isomorphism, then ϕ(s) is a solvable ideal in g. Further, if
[X ,Y ] = λY , then [ϕ(X ),ϕ(Y )] = λϕ(Y ), so that the eigenvalues of ad(ϕ(X )) coincide with those
of ad(X ), whence ϕ(s) is split-solvable.

We take S to be the Lie subgroup of G with Lie algebra s. Then S is normal in G , even if G is not
connected, since s is a characteristic ideal (in the sense above). The closure S is a connected
normal solvable subgroup of G , contained in the radical R of G , and is still split-solvable by
Proposition 77. If S were larger than S, its Lie algebra would be a larger split-solvable ideal than
s, which is absurd. Hence S is closed.

By [17, end of Section II], all analytic subgroups of a connected simply connected solvable
Lie group G are closed and simply connected. In particular, S is simply connected if G is simply
connected.

Finally, if T is a torus contained in S, with Lie algebra t, and U ∈ t, then ad(U ), acting on s,
has eigenvalues that are real as U ∈ s and purely imaginary as T is a torus; hence all eigenvalues
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of ad(U ) acting on s are 0. Moreover [U , X ] ∈ n ⊆ s for all X ∈ g because [r,g] ⊆ n, and so all
eigenvalues of ad(U ) acting on g are 0. Since ad(U ) is also semisimple because T is a torus, then
ad(U ) = 0 on g. Hence t⊆ n and T ⊆ N .

Lemma 44 now implies that T is normal in G and central in the connected component of the
identity in G . □

We call the Lie algebra s and the group S of the theorem above the real-radical of g and G , and
denote them by rrad(g) and rrad(G). The real-radical coincides with the nilradical in the special
case where G is of polynomial growth.

The role of the real-radical is highlighted by the following simple result.

Lemma 80. Suppose that H is a connected solvable Lie group with real-radical S, and T is a torus
in H. Then S ∩T ⊆ Z (H) and s∩ t⊆ Z (h).

Proof. If x ∈ S ∩T , then every eigenvalue of Ad(x) is of modulus 1 since x ∈ T by Weyl’s unitarian
trick, and is a positive real number since x ∈ S. Hence all eigenvalues are 1; since Ad(x) is
semisimple because x ∈ T , Ad(x) is the identity operator, whence x ∈ Z (H), and so S ∩T ⊆ Z (H).
A fortiori s∩ t⊆ Z (h). □

Split-solvable Lie subalgebras of solvable Lie algebras and the corresponding split-solvable
subgroups of solvable Lie groups have nice properties.

Theorem 81 (After Jablonski [44]). Suppose that g is a split-solvable subalgebra of a solvable
Lie algebra h and t is a toral subalgebra of h such that h = g⊕ t and Z (h)∩ t = {0}. Then g is the
real-radical of h. If g1 is a subalgebra of h such that h= g1 ⊕ t, then g1 is also an ideal in h.

Proof. We write n and s for the nilradical and real-radical of h.
First we are going to show that n⊆ g. This implies immediately that g is an ideal by Remark 72.

Then, since g is split-solvable by hypothesis, g is contained in s. The hypotheses and Lemma 80
imply that

dim(h)−dim(t) = dim(g) ≤ dim(s) ≤ dim(h)−dim(t),

so g= s.
Since h= g⊕ t⊇ n⊕ t, there is a unique linear mapping σ : n→ t defined by the condition that

X +σX ∈ g ∀X ∈ n.

Define
t̃ :=σ(n), ñ := n, h̃ := n⊕ t̃, and g̃ := {X +σX : X ∈ n}.

Since t is abelian, t̃ is a subalgebra of t; by Remark 72, h̃ is an ideal in h; and by linear algebra,
g̃= h̃∩g; hence g̃ is a subalgebra of h̃ and h̃= g̃⊕ t̃.

Clearly, ñ is a nilpotent ideal in h̃; if it were not the nilradical nil(h̃) of h̃, then it would be a
subalgebra thereof, and there would be some nonzero element U of t̃ in nil(h̃). Consider ad(U )
acting on h̃; this is semisimple since t̃ is toral, and nilpotent since U ∈ nil(h̃), and hence ad(U )
annihilates h̃. Since U ∈ t̃ ⊆ t, ad(U ) annihilates t as t is abelian and a by the definition of a.
Hence ad(U ) annihilates h, that is, U ∈ Z (h)∩ t. We conclude that U = 0 and hence ñ is also the
nilradical of h̃.

We fix X ∈ ñ and consider ad(X +σX ), acting on the complexified algebra (g̃)C; suppose that

[X +σX ,Y +σY ] =λ(Y +σY ),

where Y ∈ ñC \ {0} and λ ∈C\ {0}. On the one hand, since g is split-solvable, λ is real. On the other
hand, Y +σY ∈ ñC sinceλ ̸= 0, and soσY = 0. Now Y ∈ (ñC)[ j ] \(ñC)[ j+1] (see (18) for the definition
of the lower central series) for some j , whence

[σX ,Y ]+ (ñC)[ j+1] = [X +σX ,Y ]+ (ñC)[ j+1] =λY + (ñC)[ j+1],
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that is, λ is an eigenvalue of ad(σX ) acting on the quotient space ñC/(ñC)[ j+1]. Since ad(σX ) has
purely imaginary eigenvalues, λ is purely imaginary.

These conclusions are almost contradictory, and imply that all eigenvalues of ad(X +σX ),
acting on (g̃)C, are 0, and g̃ is nilpotent.

By Lemma 75, g̃ is an ideal in h̃; then g̃ ⊆ ñ as ñ is the largest nilpotent ideal in h̃; for
dimensional reasons, ñ= g̃. This completes the proof that n⊆ g.

Now suppose that h is a solvable Lie algebra with subalgebras g, g1, and t such that g is a split-
solvable ideal, t is toral, and h= g⊕ t= g1 ⊕ t; we shall prove that g1 is an ideal.

By the first part of this theorem, n⊆ g and g is an ideal; now by Weyl’s unitarian trick, we may
write g= n⊕a, where [t,a] = {0}. Much as before, there is a unique linear mapping σ : g→ t such
that

g1 = {X +σX : X ∈ g}.

As g1 is a subalgebra of h, g1 is an ideal if and only if [t,g1] ⊆ g1. Now [t,σg] = {0}, and g = n⊕a,
where [t,a] = {0}, so

[t,g1] = Span{[U , X +σX ] : U ∈ t, X ∈ g}

= Span{[U , X ] : U ∈ t, X ∈ g} = [t,g] = [t,n],
(22)

and hence g1 is an ideal if and only if [t,n] ⊆ g1.
Much as before, we define

t̃ := t, ñ := n, h̃ := n⊕ t, and g̃ := {X +σX : X ∈ n}.

Clearly h̃ is a subalgebra of h and h̃ = g̃⊕ t̃. Further, [t,a] = {0} and h = a⊕ h̃, whence Z (h̃)∩ t̃ =
Z (h)∩t= {0}; moreover, [̃t, g̃] = [̃t, ñ] by the argument used to prove that [t,g1] = [t,g] in (22). From
Lemma 75, g̃ is an ideal in h̃, and

[t,n] = [̃t, ñ] = [̃t, g̃] ⊆ g̃⊆ g1,

and hence g1 is an ideal, as required. □

Corollary 82. Suppose that G is a split-solvable subgroup of a connected solvable Lie group H and
T is a toral subgroup of H such that H =G ·T and Z (H)∩T = {e}. Then G is normal in H and hence
is the real-radical of H. If G1 is a subgroup of H such that H =G1 ·T , then G1 is also normal in H.

Proof. We reduce this proof to the previous result by considering the Lie algebras of the various
groups and subgroups. The fact that the Lie algebra g of G is an ideal and coincides with s
establishes that G is normal and the real-radical of H .

Next, if G1 satisfies the hypotheses of the theorem, then h is a solvable Lie algebra with
subalgebras g0, g̃, and t such that g0 is a split-solvable ideal, t is toral, h= g0 +g1, and h= g0 ⊕ t=
g1 ⊕ t. By the preceding theorem g1 is an ideal, and hence G1 is normal in H . □

We conclude with a result that shows that much of what we have done with solvable subgroups
of the isometry group of a solvable metric Lie group may be extended to amenable subgroups of
the isometry group.

Theorem 83. Let (G ,d) be a split-solvable metric Lie group. Suppose that G ⊆ H ⊆ Iso(G ,d), and
H is an amenable group. Then G is the real-radical of H, and H is of the form G ⋊K , where K is
the stabiliser in H of the identity e of G.

Proof. First, H = G · K by Remark 24. Next, since G is connected and the real-radical of H
coincides with the real-radical of the connected component of the identity in H , there is no loss
of generality in supposing that H is connected, and we assume this throughout this proof. We
use Lie algebra; let r, s and n be the radical, the real-radical and the nilradical of h. It will suffice
to show that g= s.
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Let π be the canonical projection of h onto the Levi factor ḣ := h/r, which is a compact Lie
algebra since H is amenable. Since g is solvable, so is ġ := π(g), and since ḣ is compact, ġ lies in
a maximal torus of ḣ. Similarly k̇ := π(k) is a compact subalgebra of ḣ. Evidently, ḣ= ġ+ k̇, and so
k̇= ḣ by Lemma 54.

Thus we may take a compact Levi subgroup L of H such that l ⊆ k, and a maximal torus t of l
such that g⊆ r⊕t. Write kR := k∩r; then by Lemma 52, we see that k= kR ⊕l and kR and l commute;
further, kR ⊕ t is a maximal torus of k.

The first step is to show that s ⊆ g. To do this, observe that s ⊆ r, and so g+ s is a subalgebra
of the solvable subalgebra r⊕ t of h. As h= g⊕ k, there is a subalgebra k0 of k, necessarily a torus,
such that g+s= g⊕ k0. By Theorem 81, g is an ideal in g⊕ k0. Now both g and s are split-solvable
ideals in r⊕ t, and so by Theorem 79, g+s is also split-solvable. For X ∈ g+s, the eigenvalues of
ad(X ), acting on g+ s, are all real; a fortiori, the eigenvalues of ad(X ), acting on n, are all real. If
g ̸= g+s, there would be a nonzero element Z of k∩ (g+s), and the eigenvalues of ad(Z ), acting
on n, would be both real and purely imaginary, and hence 0. Since ad(Z )r⊆ n, the eigenvalues of
ad(Z ), acting on r, are also 0. As Z ∈ k, ad(Z ) is semisimple, and so ad(Z )r= {0}. Moreover, since
Z ∈ r⊕ t and kR commutes with l, it follows that ad(Z ), acting on r⊕ t, is trivial. This implies that
exp(t Z ) commutes with G for all t ∈R, which is absurd, since K is a group of nontrivial isometries
of G , by Remark 5. The impossibility of this shows that s⊆ g.

The second step is to show that s= g. To do this, we use Weyl’s unitarian trick to decompose r
into two ad(k)-invariant subspaces, that is, write r= s⊕a, and hence

h= s⊕a⊕ l,

where each subspace is ad(k)-invariant. If X ∈ g∩ (a⊕ l), then X ∈ g∩ (a⊕ t), and we show that
X = 0 as follows: we write X =U +V , where U ∈ a and V ∈ t, and take k1, . . . , k J in L as described
in Lemma 55. Note that

Ad(k j )(U +V ) =U +Ad(k j )V ∈ r⊕ t,

and if [U +V ,W ] =λW for some λ ∈R, then

[Ad(k j )(U +V ),Ad(k j )W ] =λAd(k j )W,

and it follows from Lemmas 55 and 78 that J ad(U ) = ad
(∑

j Ad(k j )(U +V )
)
, acting in the solvable

algebra r⊕ t, has real eigenvalues. Since U ∈ r, [r,U ] ⊆ n, and by construction, [k,U ] = {0}, whence
s⊕RU is a split-solvable ideal in h. By the maximality of s, U = 0.

At this point, V ∈ l∩g, and so all the eigenvalues of ad(V ), acting on n, are both purely real and
pure imaginary. Consequently, much as argued for Z above, V = 0. □

Corollary 84 (After Wolf [77]). Suppose that (G ,d) is a nilpotent metric Lie group. Then G is
normal in Iso(G ,d) and is the nilradical of Iso(G ,d); further, Iso(G ,d) is of the form G ⋊K , where
K is the stabiliser in Iso(G ,d) of the identity e of G.

Proof. If G is nilpotent, then G is of polynomial growth, and so is Iso(G ,d). It follows that Iso(G ,d)
is amenable, and the previous result applies. □

4.5. Twisted versions of groups and isometry of solvable groups

We begin by recalling some results from Section 2 and an observation that arises from the work
of Alekseevskĭı [2].

If a connected Lie group G0 acts simply transitively and isometrically on a metric manifold
(M ,d) and H is an isometry group of (M ,d) containing G0, then we may write H =G0 ·K , where
K is the stabiliser in H of a base point in M , and the condition

⋂
h∈H (hK h−1) = {eH } holds. We

suppose that G0 is normal in H . If G1 is also contained in H and acts simply transitively and
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isometrically on M , then H = G1 ·K . Hence there is a continuous bijection T : G1 → G0 and a
continuous map Φ : G1 → K such that g = T(g )Φ(g ) for all g ∈G1. We check that

T(g h)Φ(g h) = g h = T(g )Φ(g )T(h)Φ(h) = T(g )T(h)Φ(g )Φ(g )Φ(h)

for all g ,h ∈ G1, where T(h)Φ(g ) := Φ(g )T(h)Φ(g )−1; thus Φ is a continuous homomorphism and
T(g ) = gΦ(g )−1, so both maps are smooth; further,

T(g h) = T(g )T(h)Φ(g ),

and T is a twisted homomorphism or cocycle. Further, G0 = {gΦ(g )−1 : g ∈G1}, as T is a bijection.
We summarise this discussion in the following definition and lemma.

Definition 85. We write G1 is a twisted version of G0 to mean that there exists a Lie group H,
containing G0 and G1 as closed subgroups, with G0 normal, and a Lie group homomorphism
Φ : G1 → K , where K is a compact subgroup of H, such that H =G1 ·K and G0 = {gΦ(g )−1 : g ∈G1}.
In this case, we also say that Φ is the twisting homomorphism.

Example 86. Let H denote the Lie group (R2 ⋊ SO(2))×R, and define closed subgroups G0 :=
(R2 ⋊ {0})×R and G1 := {(x, y, [α],α) : x, y,α ∈ R}, where [α] denotes the equivalence class of α
in SO(2), which we may identify with R/2πZ. Now both G0 and G1 are normal subgroups of
H . Define the subgroup K to be {(0,0)} × SO(2) × {0} and the homomorphism Φ : G1 → K by
(x, y, [α],α) 7→ [α]. Then {gΦ(g )−1 : g ∈ G1} = G0, and hence G1 is a twisted version of G0. In
this case, G0 is also a twisted version of G1, via the twisting homomorphism Φ′ : G0 → K given
by (x, y,0,α) 7→ −[α]. Thus the semi-direct product R2 ⋊R, where R acts on R2 by rotations
(embedded as G1), and the direct product R3 (embedded as G0), are twisted versions of each
other.

Note that if G1 is connected and solvable, then the closure (Φ(G1)) is connected, solvable and
compact, and so is a torus; we often write T instead of K in this case. This remark leads to our
next result.

Lemma 87. Let (G0,d) be a solvable metric Lie group, H be the connected component of the
identity in Iso(G0,d), K be the stabiliser in H of the point e in G, and T be a maximal torus of
K . Suppose that G0 is normal in H.

Then, for a connected solvable Lie group G, the following are equivalent:

(i) G may be made isometric to (G0,d);
(ii) G may be embedded in G0 ⋊T in such a way that G ·T =G0 ⋊T ; and

(iii) G is a twisted version of G0 with a twisting homomorphism Φ : G → T .

Proof. We recall that maximal tori of compact Lie groups are conjugate; hence the group G0 ⋊T
does not depend on the choice of T , up to isomorphism.

Suppose that G may be made isometric to (G0,d). From Corollary 27, there is an embedding of
G into H such that H =G ·K =G0 ·K , and G0 ·K =G0⋊K by assumption. The closure of the image
of G in the quotient (G0⋊K )/G0, which is isomorphic to K , is solvable, connected, and compact,
hence a torus, and so contained in a maximal torus. This implies that G ·T =G0 ⋊T .

Conversely, if we may embed G into G0 ⋊T in such a way that G0 ⋊T = G ·T , then we may
embed G into G0 ⋊K , and it may be checked that G0 ⋊K =G ·K ; again from Corollary 27, G may
be made isometric to (G0,d0).

The equivalence of (ii) and (iii)) follows from the discussion preceding Definition 85. □

In our situation, where we have solvable subgroups G1 and G2 of an isometry group H that we
want to show are algebraically similar, it would seem to be desirable to have G1 and G2 normal in
H , and a way to try to do this is to make H as small as possible. Our first two lemmas show that
H may be taken to be solvable.
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Proposition 88. Suppose that H is a connected Lie group with a connected compact subgroup K
and a connected solvable subgroup G of H such that H = G ·K . Let H0 be a maximal connected
solvable subgroup of H that contains G. Then

(i) H0 is unique up to conjugation in H;
(ii) T := H0 ∩K is a torus, and H0 =G ·T ; and

(iii) if G1 is a connected solvable subgroup of H such that H =G1 ·K , then there is a conjugate
Gh

1 of G1 in H contained in H0 such that H0 =Gh
1 ·T .

If moreover H acts effectively on H/K , then H0 acts effectively on H0/T .

Proof. As usual, denote by h the Lie algebra of H , by k the Lie algebra of K , and so on.
By hypothesis, h= g⊕k, and a fortiori h= h0+k. If H1 is a maximal connected solvable subgroup

of H that contains G , then h= h1 + k, and by Lemma 53, h1 is conjugate to h0 under the action of
the adjoint group of h, whence H1 is conjugate to H0 in H , and (i) holds.

Consider the action of H0 on the quotient space H/K . Since G acts transitively, H0 does so,
and the stabiliser in H0 of the point K in the quotient space H/K is H0 ∩K . Now H = G ·K , so
that H0 = G · (H0 ∩K ) = G ·T (by definition). Further, T is connected because H0 is connected
and H0 =G ·T , solvable because H0 solvable, and compact because it is a closed subgroup of K .
Hence T is a torus.

If G1 is a connected solvable subgroup of H such that H = G1 ·K , then h = g1 + k. If h′ is a
maximal solvable subalgebra of h that contains g1, then h= h′+k, and there exists h ∈ H such that
h0 = Ad(h)h′. It follows that Ad(h)g1 ⊆ h0, and it follows that hG1h−1 ⊆ H0 and H0 = hG1h−1 ·T .

Finally if H acts effectively on H/K , then so does the subgroup H0, and H/K may be identified
with H0/T . □

Let G1 and G2 be connected solvable Lie groups, and suppose that H is a solvable Lie group
with a toral subgroup T such that H = G1 ·T = G2 ·T and Z (H)∩T = {e}. Ideally, we would like
to deduce that G1 is a twisted version of G2, or vice versa, but unfortunately this is not quite true;
however, from Lemma 69, there is a subgroup G0 of H such that H = G0 ⋊T = G1 ·T = G2 ·T ,
and hence both G1 and G2 are twisted versions of G0. In the proof of Lemma 69, there were
many possible choices for G0, and it might be hoped that there is a choice with some additional
properties that are useful and make it unique.

For instance, suppose that H is of polynomial growth. One might hope that G0 is nilpotent,
but this is not always so. However, one may define an abelian extension H∗ of H , in which H
is a normal subgroup, with a toral subgroup T ∗ containing T , such that H∗ = G1 ·T ∗ = G2 ·T ∗,
whose nilradical N satisfies H∗ = N ⋊T ∗. Then G1 and G2 are both twisted versions of N , which
is known as the nilshadow of both G1 and G2. We shall describe a construction of the group H∗

like that of Alexopoulos [3], Dungey, ter Elst and Robinson [24], and Breuillard [16], and show that
one choice of G0 is the real-radical of H∗.

4.6. Hulls and real-shadows

In this section, we sketch the proof of the following theorem, whose roots are in results of
Cornulier [19, Section 2] and of Jablonski [44, Proposition 4.2], as well as earlier results of Gordon
and Wilson [31, 32] and even earlier work of Auslander and Green [5].

Theorem 89. Let G be a connected solvable Lie group. Let T be a maximal torus in a maximal
compact subgroup of the automorphism group of G, let H be the semidirect product G ⋊T , and let
G0 be the real-radical of H. Then H =G0⋊T ; further, there is a smallest subtorus J of T , unique up
to isomorphism, such that

G ⋊ J =G0 ⋊ J ; (23)

G is a twisted version of G0, with twisting homomorphism into J , and vice versa.
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Proof. Maximal compact subgroups of Aut(G) are connected and conjugate in Aut(G), and
maximal tori of a given maximal compact subgroup K are conjugate in K . Hence H is unique
up to isomorphism, and so G0 is too.

We now show that H = G0 ⋊ T , using Lie algebra. We choose a maximal torus with some
convenient properties. Let g and n be the Lie algebra of G and its nilradical. Take a Cartan
subalgebra c (see [13, pp. 13–15]) of g. The quotient (n+c)/n is a Cartan subalgebra of the abelian
Lie algebra g/n, by [13, Corollary 2, p. 14]; hence n+ c = g. Hence we may take a subspace a of c
such that

g= n⊕a. (24)

Denote by πa and πn the corresponding projections of g onto a and n. Then

(a) ads(X )Y = 0 and [ads(X ),ads(Y )] = 0 for all X ,Y ∈ c; and
(b) the map X 7→ ads(πaX ) is a Lie algebra homomorphism from g onto an abelian subalge-

bra of der(g), the Lie algebra of derivations of g.

Item (a) is proved as part of the proof of Proposition III.1.1 of [24]; item (b) is Lemma 3.1 of [16].
(To be precise, these authors have a type (R) assumption, but, as they state, this is not needed.)

We define the homomorphism ϕ : g→ der(g) by

ϕ(X ) := adsi(πaX ),

that is, the “imaginary part” (as in Lemma 73) of the semisimple derivation ads(πaX ) constructed
above. This homomorphism annihilates n, and also s, and its image is a toral subalgebra of der(g).
Consider the closure J in Aut(g) of the analytic subgroup corresponding toϕ(a). Then J is a torus.
(It is an abuse of notation to call this torus J , but we shall later check that it does satisfy (23), and
so the abuse is justified.)

Let T be a maximal torus of Aut(g) that contains J , and define the Lie algebra h to be the
semidirect sum algebra g⊕ t, with Lie product given by

[(X ,D), (Y ,E)] := ([X ,Y ]+D(Y )−E(X ),0) (25)

for all X ,Y ∈ g and all D,E ∈ t. In this proof, we write elements of h as ordered pairs rather than
as sums as we feel that this helps understanding. The subspace g0 of g is defined by

g0 := {(X ,−ϕ(X )) : X ∈ g}.

(Again, we are abusing notation here, but proving the next claim justifies the abuse.) We claim
that

(a) h= g0 ⊕ t;
(b) the map τ : X 7→ (X ,−ϕ(X )) is a bijection from g to g0, and further,

[τ(X ),τ(Y )] = τ([X ,Y ]rrad),

where

[X ,Y ]rrad = [X ,Y ]−ϕ(X )Y +ϕ(Y )X ∀X ,Y ∈ g; (26)

(c) g0 is an ideal and is the real-radical of h.

Parts (a) and (b) follow immediately from the definitions.
Third, g0 is an ideal since [h,h] ⊆ n⊕ {0} ⊆ g0, by (25) and Remark 72. To see that g0 is split-

solvable, we suppose that X ∈ g, Y ∈ gC \ {0}, and

([X ,Y ]−ϕ(X )Y +ϕ(Y )X ,0) = [(X ,−ϕ(X )), (Y ,−ϕ(Y ))] =λ(Y ,−ϕ(Y ));
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it will suffice to show that λ is real. If λ ̸= 0, then ϕ(Y ) = 0, so we may suppose that Y ∈ nC,
whence, from (25), ad(X )Y −ϕ(X )Y =λY , which implies that

(adsr(πaX )+adn(πaX )+ad(πnX ))Y = (ad(πaX )+ad(πnX )−adsi(πaX ))Y

=λY .

Consider the lower central series of nC, as in (18). Since Y ̸= 0, there exists j ∈ N such that Y ∈
(nC)[ j ] \ (nC)[ j+1]. Now all (nC)[ j ] are invariant under all derivations of nC, and in particular under
adsr(πaX ), adn(πaX ) and ad(πnX )). Thus these operators have quotient actions on the quotient
algebra (nC)[ j ]/(nC)[ j+1], which we write as qadsr(πaX ), qadn(πaX ) and qad(πnX ). Evidently,
qad(πnX )) = 0, qadsr(πaX ) is semisimple with real eigenvalues, qadn(πaX ) is nilpotent; further,
the last two quotient operators commute. The eigenvalues of qadsr(πaX ) and of qadsr(πaX )+
qadn(πaX ) coincide by [12, Theorem 1, p. A.VII.43]. So all the eigenvalues of ad(X ,−ϕ(X )) are
real, and g0 is indeed split-solvable.

From Theorem 81, g0 is the real-radical of h.
Next, we consider the groups that correspond to these Lie algebras. We have already seen that

T is a torus. By Theorem 79, the connected analytic subgroup G0 of H whose Lie algebra is g0

is closed and normal, and by Lemma 45, H = G0T . If g ∈ G0 ∩T , then the eigenvalues of Ad(g ),
acting on g0, are both real since G0 is split-solvable, and of modulus 1, since T is a torus, and
hence are all 1. Since T is a torus, Ad(g ) is semisimple, and so Ad(g ), acting on g0, is the identity
mapping. As T is abelian and h= g0⊕t, Ad(g ) acts trivially on h. It follows that g ∈ Z (H). However,
H =G ⋊T and T is a torus of automorphisms of G , so if g ∈ T ∩ Z (H), then g = e. Thus G0 ∩T is
trivial and H =G ⋊T =G0 ⋊T .

We organised matters so that h= g⊕ t= g0 ⊕ t; however, by construction, g⊕ j= g0 ⊕ j, where j
is the Lie algebra of J , and there is no proper subtorus of J whose Lie algebra has this property. At
group level, H/G may be identified with T in Aut(G) and J is the smallest subtorus of T that may
be identified with the closure of G0G/G therein. Thus

G ⋊ J =G0 ⋊ J ,

as required. We have seen that H and hence G0 are unique up to isomorphism: it follows that J is
too. □

Definition 90. The real-shadow of G is the group G0 of Theorem 89, which is the real-radical of
both G⋊ J and of G⋊T (by Corollary 82 and by definition). The hull of G is defined to be the group
G ⋊ J =G0 ⋊ J , which is the smallest solvable group containing both G and G0. The corresponding
Lie algebras are also called the real-shadow and hull of g.

Remark 91. Let G0 and G be connected solvable Lie groups, with G0 split-solvable.
Let K be a torus of automorphisms of G and define H := G ⋊K . Suppose that we may write

H = G0 · K . Then G0 is normal in H , by Corollary 82; thus G ⋊K = G0 ⋊K . By assumption,
Z (H)∩K = {e}, so there is no nontrivial element of K that acts trivially on G0. We may suppose
that K is a subtorus of the maximal torus T of automorphisms of G that appears in Theorem 89,
and then J ⊆ K ⊆ T . Therefore G0 is the real-radical of G ⋊ J , and G0 is the real-shadow of G .

Let K be a torus of automorphisms of G0 and define H :=G0 ⋊K . Suppose that we may write
H =G ·K . Let J be the smallest subtorus of K such that G ⊆G0 ⋊ J ; then G is normal in G0 ⋊ J by
Corollary 82, and G0 ⋊ J =G ⋊ J . Therefore G0 is the real-shadow of G .

Remark 92. If G is split-solvable, then it is isomorphic to its real-shadow. If G is of polynomial
growth, then its real-shadow coincides with its nilshadow, since in this case the real-radical and
the nilradical of the hull are the same.
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4.7. Applications to metric Lie groups

Now we look at some of the consequences of the theory that we have developed, not only in
Section 4, but also earlier.

We recall that a connected solvable Lie group is simply connected if and only if it is con-
tractible. Thus a Lie group that may be made isometric to a connected simply connected solv-
able Lie group is contractible. By Remark 50, a contractible Lie group G may be written as R ⋊L,
where the radical R is simply connected and the Levi subgroup L is a direct product of finitely
many (possibly zero) copies of the universal covering group of SL(2,R). Conversely, Theorem 60
shows that a Lie group G with the structure just described may be made isometric to a solvable
Lie group. By contrast, if a Lie group G may be made isometric to a connected simply connected
nilpotent Lie group, then G is contractible and of polynomial growth, and by Lemma 56, G is
solvable.

These observations are the underlying reason for the inclusion of a solvability hypothesis in
many but not all of the upcoming results.

Corollary 93. Let (G ,d) be a connected solvable metric Lie group, H be a maximal connected
solvable subgroup of Iso(G ,d) containing G, and T be the stabiliser in H of the point eG in G. Let
G0 be a normal subgroup of H such that H = G0 ⋊T , as in Lemma 69, and let G1 be a connected
solvable Lie group. Then the following are equivalent:

(i) G1 may be made isometric to (G ,d);
(ii) G1 may be embedded in H in such a way that H =G1 ·T ; and

(iii) G and G1 are both twisted versions of G0 with twisting homomorphisms into T .

Proof. If G1 may be made isometric to (G ,d), then there is an embedding of G1 in Iso(G ,d),
by Theorem 22, hence an embedding of G1 in H by Proposition 88, and so H contains closed
subgroups G1 and T such that H =G1 ·T . Conversely, if G1 may be embedded in H in such a way
that H =G1 ·T , then G1 may be made isometric to (G ,d) by Corollary 27.

The equivalence of (ii) and (iii) follows from Theorem 89. □

Corollary 94. Let (G ,d) be a connected solvable metric Lie group. Let G∗ and G0 be the hull and
the real-shadow of G, and write G∗ =G ⋊ J , as in Theorem 89. Then the following are equivalent:

(i) G0 may be made isometric to (G ,d); and
(ii) d is invariant under conjugation by elements of J .

Proof. If d( j g j−1, j h j−1) = d(g ,h) for all g ,h ∈ G and all j ∈ J , then we may view d as a G∗-
invariant metric on G∗/J , hence as a G0-invariant metric on G∗/J , and hence as a metric on G0.

Conversely, if G0 may be made isometric to (G ,d), then we may embed G and G0 into a
maximal connected solvable subgroup H of Iso(G ,d), by Proposition 88, and write H = G0 ·T =
G ·T for a suitable torus T . By Corollary 82, H = G0 ⋊T . We may take a smaller subgroup H0 of
H of the form G0 ⋊ J , where J is a subtorus of T , that is minimal subject to the requirement that
G ⊆ H0, and then, by Remark 91, G is normal in H0, and H0 and G0 are the hull and real-shadow of
G . We may identify G with H0/J and the metric d is H0-invariant, and a fortiori is J-invariant. □

We now restate (and expand slightly) Theorem C.

Theorem 95. Let G0 be a connected split-solvable Lie group, T be a maximal torus in Aut(G0), and
d0 be a T -invariant metric on G0. Let G1 be a connected solvable Lie group. Then the following are
equivalent:

(i) G1 may be made isometric to G0;
(ii) G1 may be made isometric to (G0,d0);

(iii) G0 is the real-shadow of G1;
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(iv) G1 may be embedded in H :=G0 ⋊T in such a way that H =G1 ·T ; and
(v) G1 is a twisted version of G0 with twisting homomorphism into T .

Proof. Before we start our proof, we note that the existence of a T -invariant metric d0 on G0 is
shown in Corollary 19.

It follows from Theorem 89 and Remark 91 that (iii) and (iv) are equivalent, and from the
discussion preceding Definition 85 that (iv) and (v) are equivalent. Further, it is immediate
that (ii) implies (i).

Suppose that (i) holds; then there exists a metric d on G0 such that G1 may be viewed
as a closed subgroup of Iso(G0,d) that acts simply transitively on G0, as in Theorem 22. By
Proposition 88, there exists a connected solvable subgroup H of Iso(G0,d) such that H =G0⋊K =
G1 ·K , where K is the stabiliser in H of e in G0; since H is connected and solvable, so is K and since
K is also compact, K is a torus. Now (iii) holds, by Remark 91.

To complete the proof, suppose that (iv) holds. Then it is immediate that G1 may be viewed as
a closed subgroup of Iso(G0,d0) that acts simply transitively on G0, as in Theorem 22, and so (ii)
holds. □

The following are corollaries of Theorem 95 and the theory that we have developed. This
first follows immediately from the riemannian version of Corollary 19 (which is well known) and
Theorem 95

Corollary 96. Let G0 be a connected split-solvable Lie group. Then there exists a riemannian
metric d0 on G0 such that every connected solvable Lie group that may be made isometric to G0

may be made isometric to (G0,d0).

Part of the next corollary also follows immediately from Theorem 95.

Corollary 97. Let G1 and G2 be connected solvable Lie groups. Then G1 and G2 may be made
isometric if and only if their real-shadows are isomorphic.

Proof. First, suppose that G0 is the real-shadow of both G1 and G2, and take a metric d0 on the
real-shadow G0 that is invariant under a maximal torus T of Aut(G0). Then both G1 and G2 may
be made isometric to (G0,d0).

Conversely, suppose that G1 and G2 are connected solvable Lie groups that admit admissible
left-invariant metrics d1 and d2 such that (G1,d1) and (G2,d2) are isometric. Let H be a maximal
connected solvable subgroup of the Lie group Iso(G1,d1), and T be the stabiliser of the identity e
of G1 in H . By Corollary 93, there is a normal subgroup G of H such that

H =G ⋊T =G1 ·T =G2 ·T.

Let T ∗ be a maximal torus of Aut(G) that contains T , and let G0 be the real-radical of H∗ :=
G ⋊T ∗, so that H∗ = G0 ⋊T ∗ by Theorem 89. Now G1 ⊆ H0 ⊆ H∗ and G2 ⊆ H∗ similarly. We
may check that G1 and G2 act simply transitively on H∗/T ∗, whence H∗ := G1 ·T ∗ = G2 ·T ∗. By
Theorem 95, G0 is the real-shadow of both G1 and G2. □

Of course, if G1 and G2 have the same real-shadow G0, then not only may they be made
isometric to G0, but to (G0,d0), where d0 is the metric of Corollary 96.

We have already observed that in the nilpotent case, stronger results are possible.

Corollary 98. Let G1 and G2 be connected Lie groups and assume that G1 is nilpotent. The
following are equivalent:

(i) G2 and G1 may be made isometric;
(ii) G2 is solvable and of polynomial growth and G1 is its nilshadow.
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Proof. From Theorem 95, (i) and (ii) are equivalent if G2 is solvable; hence it suffices to assume
that and (i) holds and show that G2 is solvable.

Since G1 is nilpotent, it is of polynomial growth; hence G2 is also of polynomial growth by
Lemma 29. Further, G1 and G2 are homeomorphic, so their universal covering groups G̃1 and G̃2

are also homeomorphic. As G̃1 is contractible, G̃2 is too. We know that G̃2 is of the form R ⋊L,
where R is solvable and L is compact semisimple; it follows that L is trivial and so G̃2 and G2 are
solvable. □

This leads to the following, which should be compared to a result of Kivioja and Le Donne [48].

Corollary 99. If G1 and G2 are connected nilpotent Lie groups, and both may be made isometric
to the same connected Lie group G (not a priori solvable, and possibly with different metrics), then
G is solvable and G1 and G2 are isomorphic.

Proof. By the previous corollary, G is solvable and of polynomial growth, and both G1 and G2 are
isomorphic to the nilshadow of G . □

In the preceding corollary, if “nilpotent” is replaced with “split-solvable”, we cannot deduce
that G must be solvable. However, if we replace “nilpotent” with “split-solvable” and we assume
a priori that G is solvable, then the conclusion that G1 and G2 are isomorphic still holds, as they
are both isomorphic to the real-shadow of G .

There are examples in the work of Gordon and Wilson [31, 32] and of Jablonski [44] where
stronger results hold for split-solvable groups if an a priori assumption of unimodularity is
included.

Our final corollaries are concerned with quasi-isometry rather than isometry. A general
observation is that if two Lie groups may be made isometric using arbitrary admissible left-
invariant metrics, then they may be made isometric for the derived semi-intrinsic metrics of (5),
or for suitable riemannian metrics, as in Corollary 38, and hence they are quasi-isometric when
equipped with admissible left-invariant proper quasigeodesic metrics, as all such metrics on a
given group are quasi-isometric. We recall from Theorem 60 that a contractible homogeneous
metric manifold (M ,d) is homeomorphically roughly isometric to a connected, simply connected
solvable metric Lie group. With an additional hypothesis of polynomial growth, more may be
said.

Corollary 100. Let (M ,d) be a contractible homogeneous metric manifold. Suppose further that
d is proper quasigeodesic and that M is of polynomial growth, as in (15). Then (M ,d) is quasi-
isometrically homeomorphic to a simply connected riemannian nilpotent Lie group.

Proof. Theorem 60 shows that (M ,d) is roughly isometrically homeomorphic to a simply con-
nected solvable metric Lie group (H ,dH ); by construction, (H ,dH ) is proper quasigeodesic.

Let N be the nilshadow of H . By Theorem 95, there are metrics d ′
H and d ′

N on H and N
such that (H ,d ′

H ) and (N ,d ′
N ) are isometric. We may assume that d ′

H and d ′
N are riemannian,

by Corollary 96.
Finally, d is proper quasigeodesic and all admissible left-invariant proper quasigeodesic

metrics on a Lie group are quasi-isometric, so the identity map on H is a quasi-isometry from
dH to d ′

H . □

With a slightly weaker hypothesis, we obtain a slightly weaker conclusion.

Corollary 101. Let (M ,d) be a homogeneous metric space of polynomial growth, and suppose
that the metric d is proper quasigeodesic. Then (M ,d) is quasi-isometric to a connected simply
connected nilpotent riemannian Lie group.
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Proof. Theorem 60 shows that (M ,d) is roughly isometric to a simply connected solvable metric
Lie group (H ,dH ), which is a metric quotient of (N ,d) with compact fibre, and hence also of
polynomial growth.

We now repeat the argument of the previous corollary. □

If (M ,d) is a homogeneous metric space of polynomial growth, then the argument above
shows that there is an admissible metric d ′ on M , such that (M ,d ′) is of polynomial growth and
quasi-isometric to a connected simply connected nilpotent riemannian Lie group. For example,
we may take d ′ to be a derived semi-intrinsic metric, as defined just before Lemma 3.

4.8. Notes and remarks

4.8.1. Modifications

Recall that Gordon and Wilson [32, Definition 2.2] define the Lie algebra g to be a modification
of the solvable Lie algebra n when there is a Lie algebra h that contains both n and a compact
subalgebra k such that n∩ k = {0}, together with a linear map σ : n → k, such that [σ(n),n] ⊆ n
and g = {X +σX : X ∈ n} is a solvable subalgebra of h. Further, they define g to be a normal
modification provided that, in addition, [σ(n),g] ⊆ g. It should be pointed out that these
definitions may be simplified: first, since [σ(n),n] ⊆ n, it follows that t = σ(n) is a compact and
solvable subalgebra of k, and hence toral. Since the subalgebras n, g and t are all subalgebras of
the solvable algebra n⊕t, we may simplify matters by taking h and k to be n⊕t and t. In particular,
g is a normal modification when it is an ideal in n⊕ t.

With the terminology just discussed, our Lemma 75 states that modifications of nilpotent
Lie ideals are normal. Gordon and Wilson [32] proved the stronger result that modifications of
nilpotent subalgebras are normal. However, our results imply theirs. Indeed, by the discussion
above, it suffices to consider a modification g of a nilpotent Lie algebra n inside an algebra n⊕ t,
where t is toral. By Theorem 81, n is actually an ideal, and then by Lemma 75, g is an ideal in n⊕t.

4.8.2. Split-solvability and the real-radical

The real-radical, at the Lie algebra level, appears in the work of Jablonski [44]. In particular, the
Lie algebra part of Theorem 79 and Theorem 81 are due to him. In the language of Gordon and
Wilson [31, 32], the second part of Theorem 81 states that modifications of split-solvable groups
are normal.

It was shown by Wolf [77] that a connected riemannian nilpotent group is normal in its
isometry group. On the other hand, the examples of symmetric spaces of the noncompact type
show that a riemannian split-solvable connected Lie group G need not be normal in its isometry
group H ; we may write H =G ·K , where K is the stabiliser of a base-point, but it is certainly false
that H =G ⋊K . So Theorem 81 and Corollary 82 are perhaps a little surprising.

One important way in which our approach differs from that of Gordon and Wilson is that
we use Mostow’s theorem [61] on maximal solvable subgroups to reduce questions of possible
isometry of solvable groups to questions of possible isometry of solvable groups in a solvable
supergroup. This enables us to avoid some of the complications that arise in dealing with general
Lie groups and algebras.

4.8.3. Twisted versions of groups and isometry of solvable groups

Definition 85 is close to a proposal of Alekseevskĭı [2], who used the expression twisting rather
than twisted version (or rather his translator did). Actually, he considered the related question
whether {gΦ(g )−1 : g ∈G1} is a subgroup if G1 is normal and Φ : G1 → K is a homomorphism. His
answer is not definitive, but the situation is now clearer due to the contributions of Gordon and
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Wilson [31, 32], who looked at the corresponding question at the Lie algebra level, namely, when
{X +ϕ(X ) : X ∈ g1} is a subalgebra.

4.8.4. Hulls and real-shadows

The idea of using a Cartan subalgebra of g to find a good complement of nil(g), as in Theo-
rem 89, or to construct the nilshadow, seems to be due to Alexseevskĭı. However, his class of solv-
able groups is restricted to those which arise in the study of riemannian homogeneous spaces of
nonpositive curvature, and for these groups, the Cartan subalgebra a is abelian; extra ideas are
needed to deal with general solvable Lie groups. These are due to Alexopoulos (in the polynomial
growth case).

The following example shows that not all the Cartan subalgebras that appear in the “shadow
construction” are abelian. We take the Lie algebra g with basis {U ,V , X ,Y , Z } and commutation
relations determined by linearity, antisymmetry and the nonzero basis commutation relations

[X ,Y ] = Z , [X ,U ] =U , [Y ,V ] =V.

This is a solvable extension of the abelian algebra Span{U ,V } by the nilpotent algebra
Span{X ,Y , Z }. The Cartan subalgebra Span{X ,Y , Z } is nilpotent and not abelian.

The nilshadow appears in work of Auslander and Green [5], where the group G∗ is called the
hull of G ; it seems that the term nilshadow was first used in [6]. Interestingly, it seems that type
(R) also appeared for the first time in [5]. Their construction of the nilshadow used ideas from the
theory of algebraic groups. An alternative construction of the nilshadow, based on Lie algebras,
appears in the work of Gordon and Wilson [31, 32], phrased in the language of modifications;
their work was not restricted to groups of polynomial growth, and perhaps for this reason they
did not make explicit the connection with the construction of Auslander and Green. The Lie
algebraic construction of the nilshadow was found later by Alexopoulos [3], and developed by
Dungey, ter Elst, and Robinson [24] and by Breuillard [16]. The nilshadow has been used quite
extensively in the area of harmonic analysis on Lie groups, and in applications to nonriemannian
metric geometry of Lie groups.

What we call the real-shadow is more recent. For groups that need not be of polynomial
growth, the detailed investigation of Gordon and Wilson [31, 32] identified a special subgroup
G0, said to be in standard position, that is sometimes split-solvable. Cornulier [19] developed an
object that he called the trigshadow, using techniques closer to those of Auslander and Green, and
in particular working at group level rather than algebra level. In the recent work of Jablonski [44],
which has roots in the work of Gordon and Wilson, the idea of a maximal split-solvable ideal
appears and the real-shadow as viewed as a maximal split-solvable ideal of a larger Lie algebra.

Our construction of the hull G∗ is like that of Alexopoulos, Dungey, ter Elst and Robinson, and
of Breuillard.

Recall from Lemma 69 that if H is a solvable Lie group with a toral subgroup T such that
Z (H)∩T = {e}, then we may find a normal subgroup G0 of H such that H =G0 ⋊T . Gordon and
Wilson [31, 32] spend some effort on finding a choice of G0 “in standard position”. Essentially
this is a group which is “as real as possible”. From our point of view, the construction of G0

proceeds, using Lie algebras, as follows: first, take a Cartan subalgebra c of h containing t (this
is possible), and then a subspace a of c such that h= n⊕a⊕t. Replace any X ∈ a such that adsi(X ),
the imaginary part of the semisimple part of ad(X ), as in Corollary 74, coincides with ad(U ) for
some U in t by X −U . This produces a new subspace ã such that h= n⊕ ã⊕ t. Let g0 be n⊕ ã.

Gordon and Wilson often use the Killing form to construct nice subalgebras, such as the
nilshadow of a solvable Lie algebra, and orthogonal complements of compact subalgebras appear
in their development, much as in Corollary 58.
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4.8.5. Consequences and applications

Gordon and Wilson [32, Example 2.8] give examples of nonisomorphic connected simply
connected solvable Lie groups G1 and G2 that are isometric, but they are not isometric to their
real-shadow.

The universal covering group H of the groupR2⋊SO(2) of rigid motions ofR2 that preserve ori-
entation is a simply connected three-dimensional solvable Lie group that admits a left-invariant
subriemannian metric d such that (H ,d) is not bi-Lipschitz equivalent to any nilpotent group.
Indeed, the two simply connected three-dimensional nilpotent Lie groups are the abelian group
R3, which is the nilshadow of H , and the nonabelian Heisenberg groupH. However, if d is a suit-
able left-invariant subriemannian metric on H , then (H ,d) is not even quasiconformally equiva-
lent to either R3 or H; see [25]. Nevertheless, (H ,d) is locally bi-Lipschitz to H with the standard
subriemannian metric.

Apropos of Theorem 81 and Corollary 82, in the riemannian case, the normality of a nilpotent
Lie group N in its isometry group was proved by Wolf [77] and rediscovered by Wilson [76].

In the special case where (M ,d) is of polynomial growth, so is every group G that acts simply
transitively and isometrically on (M ,d). If any such group G is nilpotent, then G is normal in
Iso(M ,d) by Corollary 84. This was extended to unimodular split-solvable groups by Gordon and
Wilson [31, 32].

Corollary 99 was known for nilpotent G and arbitrary metrics, and for solvable G with rie-
mannian metrics; see [2, 31, 32, 48, 76, 77]. Kivioja and Le Donne also showed that isometries of
nilpotent metric Lie groups are affine, that is, are composed of translations and group automor-
phisms.

5. Characterisation of metrically self-similar Lie groups

In this section we present a study of homogeneous metric spaces that admit a (non-trivial) metric
dilation. Recall that a metric dilation of factor λ in a metric space (M ,d) is a bijection δ of M such
that d(δx,δy) = λd(x, y) for all x, y ∈ M . Note that dilations of factor 1 are isometries; since we
are interested in the case when δ is not an isometry, we will always assume that λ ̸= 1, unless
otherwise stated.

Theorem D, which appears here as Theorem 109, characterises all homogeneous metric
spaces that admit a metric dilation as metrically self-similar Lie groups.

Definition 102. A metrically self-similar Lie group is a triple (G ,d ,δ), where G is a connected Lie
group, d is an admissible left-invariant metric on G, and δ is an automorphism of G such that
d(δx,δy) =λd(x, y) for some λ ̸= 1.

In the rest of this section, we will give a more precise description of metrically self-similar
Lie groups in Section 5.1 and some motivation for their study. In particular, we will show how
metrically self-similar Lie groups appear as tangents to doubling spaces in Section 5.2 and as
parabolic boundary of Heintze groups 5.3. Finally, we prove Theorem D in Section 5.4.

5.1. Properties of self-similar Lie groups

The basic examples of metrically self-similar Lie groups are finite dimensional normed vector
spaces, where the dilation is scalar multiplication. Several other examples are already available
when G =R2.

If α,β> 1, then the automorphisms δλ corresponding to the matrix(
λα 0
0 λβ

)
(27)
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are all dilations of factor λ for metrics including

d((x, y), (x ′, y ′)) = max{|x −x ′|1/α, |y − y ′|1/β}

or, when α=β,
d(x, y) = ∥x − y∥1/α

where ∥·∥ is any norm on R2. In [55, Proposition 5.1], it is shown that when α=β= 2, there exists
a homogeneous metric d whose spheres are fractals in R2.

When α> 1, the automorphisms δλ corresponding to the matrix

λα
(
cos(logλ) −sin(logλ)
sin(logλ) cos(logλ)

)
(28)

are dilations of factor λ for the metric d(x, y) = ∥x − y∥1/α, where ∥ ·∥ is the euclidean norm.
If α > 1, then there is a left-invariant metric d on R2 for which the automorphisms δλ,

corresponding to the matrices (
λα λα log(λα)
0 λα

)
, (29)

are dilations of factor λ. These dilations appear in [10] in the study of visual boundaries of
Gromov hyperbolic spaces. See also [78] for further results and examples in Rn .

Definition 103. A (positive) grading of a Lie algebra g is a decomposition g = ⊕
t∈R+ vt such that

[vs ,vt ] ⊆ vs+t for all s, t ∈R+. A Lie group G is gradable if it is simply connected and its Lie algebra
admits a grading.

Note that finitely many vt have positive dimension, because g has finite dimension; further, a
gradable group is nilpotent. When G is a gradable Lie group with Lie algebra grading g=⊕

t∈R+ vt ,
we may define the standard dilations δλ : G →G by requiring that the differential (δλ)∗ acts as the
scalar λt on vt . It is known that, for standard dilations, a metric d exists on G so that (G ,d ,δλ) is
a metrically self-similar Lie group if and only if vt = {0} for all t ∈ (0,1), see [29]. For much more
on gradable groups, see [56] and the references cited there.

Gradable groups are the only Lie groups that admit an automorphic dilation, by the following
theorem.

Theorem 104 (Siebert, [69]). Let G be a connected Lie group and suppose that there exists a Lie
group automorphism δ : G →G such that

lim
n→+∞δ

n g = eG ∀g ∈G . (30)

Then G is gradable, nilpotent and simply connected.

Corollary 105. If (G ,d ,δ) is a metrically self-similar Lie group, then G is gradable, nilpotent and
simply connected. Moreover, all metric dilations on (G ,d) are affine.

Proof. Since a metrically self-similar Lie group admits a contractive automorphism by definition,
the first statement follows from Theorem 104.

If f : G → G is a metric dilation of factor µ > 0, then it is also an isometry from (G ,µd) to
(G ,d), and by [48, Proposition 2.4], isometries between connected nilpotent Lie groups are group
isomorphisms composed with translations. □

The proof of Theorem 104 constructs a grading of g in terms of the generalised eigenspaces of
the automorphism δ. If δ is a metric dilation with factor λ< 1, then the contraction property (30)
is clearly satisfied. Vice versa, if we fix δ and λ, the following proposition gives a necessary and
sufficient condition for the existence of a distance such that δ is a dilation of factor λ. It follows
from Proposition 106 that if δ satisfies (30), then there is a distance for which δ is a dilation of
some factor λ.
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Proposition 106 ([54, Theorem D]). Suppose that G is a Lie group, δ is a Lie group automorphism
of G and 1 ̸=λ ∈R+. The following statements are equivalent:

(i) there is an admissible distance on G for which δ is a dilation of factor λ, and
(ii) the Lie group G is connected and simply connected, the eigenvalues of δ∗ have modulus no

greater than λ if λ< 1, no less than λ if λ> 1, and the complexification of δ∗ is diagonal-
isable on the generalised eigenspaces corresponding to the eigenvalues of modulus λ.

For instance, Proposition 106 implies that, if α = 1, then for no λ ̸= 1 is the map in (29) a
dilation of factor λ for any left-invariant distance on R2.

One observes that in the examples we gave there is not only one dilation but a one-parameter
family of dilations δλ, one for each factor λ ∈ R+. In fact, this is the general scenario, up to bi-
Lipschitz changes of the distance, as we will explain.

A multiplicative one-parameter subgroup of Aut(G), by which we mean a mapping λ 7→ δλ
from R+ to Aut(G) such that δλλ′ = δλδλ′ , is determined by its infinitesimal generator, which is a
derivation A of g such that

(δλ)∗ = e(logλ)A . (31)

We say that d is A-homogeneous if δλ is a metric dilation of factor λ for d for all λ ∈R+.
For example, the dilations in (27), (28), and (29) are of the form e(logλ)A , where A is the matrix(

α 0
0 β

)
,

(
0 −α
α 0

)
, and

(
α α

0 α

)
.

In terms of the derivation A, the characterisation in Proposition 106 is equivalent to requiring
that the real parts of the eigenvalues of A are all at least 1, and that A is diagonalisable over C on
the generalised eigenspaces corresponding to the eigenvalues with real part equal to 1. See [54,
Theorem B]. The standard dilations have this property.

Proposition 107 ([54, Theorem C]). If (G ,d ,δ) is a self-similar metric Lie group, where δ is
a metric dilation of factor λ, then there is A ∈ der(g) with eigenvalues in [1,+∞) and an A-
homogeneous distance d ′ on G such that δ is also a dilation of factor λ for d ′. Further, for any
such A and d ′, the identity mapping from (G ,d) to (G ,d ′) is bi-Lipschitz.

Note that such a bi-Lipschitz change of the distance may be necessary. For instance, consider
the piecewise linear function D : [0,+∞) → [0,+∞) with nodes at (0,0), and (4n ,2n), where n ∈Z.
The nodes all lie on the graph y = x1/2, so D is increasing and concave, and d(x, y) := D(|x − y |) is
a translation-invariant metric on R. Then δ(x) = 4x is a metric dilation of factor 2, but d does not
admit dilations whose factors are not integer powers of 2. However, d is bi-Lipschitz equivalent
to d ′, where d ′(x, y) =√|x − y |, which has dilations of every factor.

One interesting consequence of Proposition 107 is that the “imaginary part” of the derivation
A may be dropped. For instance, distances with dilations of the form (28) are bi-Lipschitz
equivalent to distances with dilations of the form (27) and α = β. On the contrary, any distance
d with dilations of the form (29) cannot be bi-Lipschitz equivalent to any distance d ′ with
dilations of the form (27), because d does not attain its conformal dimension, as explained in [10,
Section 6], while d ′ does.

5.2. Self-similar Lie groups as tangent spaces

Theorem D, together with the above description of metrically self-similar Lie groups, leads
to a metric characterisation of homogeneous metric spaces that are homothetic, that is, that
admit dilations for every positive factor, see [54, Theorem E]. In fact, homogeneous homothetic
metric spaces are isometric to metrically self-similar Lie groups endowed with a A-homogeneous
distance.
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It follows that metrically self-similar Lie groups are the typical tangents to doubling metric
spaces with unique tangents.

Proposition 108 ([54, Theorem F]). Let X be a metric space with a doubling measure µ. Assume
that X has a unique (p-dependent) tangent at µ-almost every p in X . Then for µ-almost every p in
X , the tangent to X at p is a metrically self-similar Lie group Gp endowed with an A-homogeneous
distance, for some A in der(gp ).

5.3. Self-similar Lie groups as parabolic visual boundaries

A well known motivation for the study of metrically self-similar Lie groups is their appearance
as parabolic visual boundaries of negatively curved homogeneous riemannian manifolds. More
precisely, Heintze [37] showed that every simply connected negatively curved homogeneous rie-
mannian manifold is isometric to a riemannian Lie group (G , g ) that is a semidirect product
N ⋊A R, where N is a simply connected nilpotent Lie group and at the Lie algebra level, R acts
on n by a derivation A whose eigenvalues have strictly positive real parts. The parabolic visual
boundary of (G , g ) may be identified with the Lie group N endowed with a A-homogeneous dis-
tance, as we will explain below. It is important to remark that the quasi-isometric classification of
Heintze groups is equivalent to the quasi-symmetric classification of their parabolic boundaries,
which in turn reduces to a bi-Lipschitz classification of metrically self-similar Lie groups (see [49]
and references therein).

We now explain how the parabolic boundary is identified with a metrically self-similar Lie
group. The construction is well known, but we include it here for completeness. A Heintze group
G = N ⋊ARmay always be equipped with a left-invariant infinitesimal riemannian metric g such
that the maximum sectional curvature is −1, and N × {0} is orthogonal to {1N }×R. Denote by dg

the distance function induced by g .
The vertical line with support {1N }×R is length minimising between any two of its points, as

one may check directly by comparing any path with its own projection to the line {1N }×R. By
using the left-invariance of the distance, we deduce from this that there exists µ ∈R+ such that all
the curves s 7→ (n,µs), where n ∈ N , are isometric embeddings. Let ξ : [0,+∞) → G be the curve
s 7→ (1N ,µs). Following [39, p. 383], we define the parabolic visual boundary ∂∞(G ,dg ) of (G ,dg )
to be the set of isometric embeddings γ : R→ (G ,dg ) that satisfy

lim
s→+∞dg (γ(s),ξ(s)) = 0. (32)

The parabolic visual boundary is then equipped with the so-called Hamenstädt distance:

d(σ,γ) := exp

(
−1

2
lim

s→+∞(2s −dg (σ(−s),γ(−s)))

)
. (33)

On a Heintze group, the expression in (33) need not satisfy the triangle inequality; here it does,
because we constructed a CAT(−1) metric on G and chose the unit speed parametrisation of the
ray ξ. See both [39, p. 383] and [14] or [15, Proposition 2.17].

Next we explain how the Lie group N may be identified with ∂∞(G ,dg ). In one direction, to
each element n ∈ N we associate the infinite geodesic γ(s) = (n,µs). To show that this is indeed
well defined, one needs to verify that (32) holds. We denote by ϕs the automorphism of N with
differential es A . By using the group law of the semidirect product and the left-invariance of g , we
calculate that

lim
s→+∞dg ((n,µs + s0), (1N ,µs)) = lim

s→+∞dg ((1N ,µs)(ϕ−µs n, s0), (1N ,µs))

= lim
s→+∞dg (((ϕ−µs n, s0), (1N ,0))

= dg ((1N , s0), (1N ,0)) = s0/µ

(34)
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for any s0 ∈R. In particular, putting s0 = 0, the curve γ satisfies (32).
In the other direction, we consider γ ∈ ∂∞(G ,dg ) and write (n, s0) ∈ N ⋊A R for the point γ(0).

If we can show that s0 = 0, that is, γ(0) ∈ N × {0}, then we will have found a natural map from
∂∞(G ,dg ) to N . Let σ be the infinite geodesic s 7→ (n,µs + s0). First, from (34),

lim
s→+∞d(σ(s),ξ(s)) = s0/µ.

We see that

0 ≤ lim
s→+∞d(σ(s),γ(s)) ≤ lim

s→+∞d(σ(s),ξ(s))+ lim
s→+∞d(ξ(s),γ(s)) ≤ s0/µ.

Thus the triangle formed by the points γ(0) =σ(0),σ(s) and γ(s) has two sides of length s and one
side of length at most s0/µ. Because the space (G ,dg ) is CAT(−1) and s may be taken arbitrarily
large, the triangle has to be degenerate, that is, γ=σ.

Using the correspondence above, we view d as an admissible left-invariant distance function
on N (to show admissibility, [54, Theorem A] may be used). A computation analogous to (34)
proves that

d(ϕt (n),ϕt (n′)) = exp

(
−1

2
lim

s→+∞(2s −dg ((ϕt (n),−µs), (ϕt (n′),−µs)))

)
= exp

(
−1

2
lim

s→+∞(2s −dg ((1N , t )(n,−µs − t ), (1N , t )(n′,−µs − t ))

)
= exp

(
−1

2
lim

s→+∞(2s −dg ((n,−µs − t ), (n′,−µs − t )))

)
= exp

(
−1

2
lim

h→+∞
(2(h − t/µ)−dg ((n,−µh), (n′,−µh)))

)
= et/µ exp

(
−1

2
lim

h→+∞
(2h −dg ((n,−µh), (n′,−µh)))

)
= et/µd(n,n′).

The differential of the map δt := ϕµ log(t ) is (δt )∗ = (ϕµ log(t ))∗ = eµ log(t )A , and thus t 7→ δt is the
one-parameter subgroup of automorphisms associated to the derivation µA and d(δt n,δt n′) =
td(n,n′) for all n,n′ ∈ N . We have thus proved that, after the identification of N with the parabolic
visual boundary, the Hamenstädt distance is (µA)-homogeneous on N .

5.4. Proof of Theorem D

We restate Theorem for the reader’s convenience.

Theorem 109. If a homogeneous metric space admits a metric dilation, then it is isometric to
a metrically self-similar Lie group. Moreover, all metric dilations of a metrically self-similar Lie
group are affine.

The last sentence in Theorem 109 was proved in Corollary 105. Throughout this section, we
assume that (M ,d) is a homogeneous metric space,λ ∈ (1,+∞), andδ is a bijection of M such that
d(δx,δy) = λd(x, y) for all x, y ∈ M . Since M is locally compact and isometrically homogeneous,
it is complete, and the Banach fixed point theorem shows that δ has a unique fixed point, o say.
We prove a few preliminary results.

Lemma 110. The metric space (M ,d) is proper and doubling.

Proof. The ball B(o,r ) is relatively compact for all sufficiently small r ; using the dilation we see
that this holds for all r ∈R, and (M ,d) is proper.
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We now show that (M ,d) is a doubling metric space. Since the closed ball B̆(o,λ) is compact,
there are points x1, . . . , xk ∈ B̆(o,λ) such that

B̆(o,λ) ⊆
k⋃

i=1
B(xi ,1/2).

Take R ∈R+, and define n := ⌊logλR⌋, so that 1 ≤λ−nR <λ. Then

δnB(xi ,1/2) ⊆ δnB(xi ,λ−nR/2) = B(δn xi ,R/2),

and so

B(o,R) = δn(B(o,λ−nR)) ⊆ δn(B(o,λ)) ⊆
k⋃

i=1
B(δn xi ,R/2).

Since (M ,d) is isometrically homogeneous, (M ,d) is doubling. □

Let H denote the connected component of the identity in Iso(M ,d).

Lemma 111. The space M is contractible, and H and M may be given analytic structures,
compatible with their topologies, such that the Lie group H acts on M analytically and transitively.
Moreover H is of polynomial growth.

Proof. Defineπ : H → M byπh := ho and T : H → H by T h := δ◦h◦δ−1; thenπ◦T = δ◦π. Let K be
the maximal compact normal subgroup of H . Note that T (K ) = K , since T is an automorphism
of H . Then π(K ) is a compact subset of M : let r := max{d(o, p) : p ∈π(K )}. Then

π(K ) =πT −1(K ) = δ−1π(K ) ⊆ B(o,λ−1r ),

which implies that r = 0. Therefore π(K ) = {o}, and K is contained in the stabiliser in H of
the point o in M ; by Remark 5, K = {eH }. By the Montgomery–Zippin structure theory (as in
Theorem 35 and Corollary 37), H and M may be given analytic structures, compatible with their
topologies, such that M is a manifold and the action of H on M is analytic.

Since M is a manifold and admits a metric dilation, it is compactly contractible, and hence
contractible by Lemma 40. Since moreover M is doubling and proper by Lemma 110, it is of
polynomial growth by Remark 32. By Lemma 29, H is a group of polynomial growth. □

Proof of Theorem 109. Let (M ,d) be a homogeneous metric space. Let δ be a metric dilation of
factor λ ∈ (1,+∞) and with fixed point o. Let H denote the connected component of the identity
in Iso(M ,d). By Lemma 111, H is a Lie group of polynomial growth and hence is amenable, and
M may be identified with H/K , where K is the stabiliser of o in H ; further, M is contractible, so K
is a maximal compact subgroup of H by Lemma 40.

We may now apply Lemma 58, and deduce that there exists a connected Lie subgroup G of H
such that the restricted quotient map h 7→ h(o) from G to M is a homeomorphism. We use this
homeomorphism to make G into a metrically self-similar Lie group isometric to (M ,d).

Define the metric dG on G by dG (h,h′) := d(h(o),h′(o)). It is clear that this is an admissible
metric, and it is left-invariant because

dG (hh′,hh′′) = d(h(h′(o)),h(h′′(o))) = d(h′o,h′′o) = dG (h′,h′′)

for all h,h′,h′′ ∈G . Further, define the map T on H by

T g := δ◦ g ◦δ−1.

Then T is a Lie group automorphism of H . Since T K = K , Lemma 58 implies that T G =G . Thus
T |G is a Lie group automorphism of G .

We note that after the identification of G with M , the map T |G coincides with δ. Indeed,

(T h)(o) = (δhδ−1)(o) = δ(ho),

and the proof is complete. □
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