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Abstract. The paper sheds a new light on the fundamental theorems of complex analysis due to P. Fatou, F.
and M. Riesz, N. N. Lusin, I. I. Privalov, and A. Beurling. Only classical tools available at the times of Fatou are
used. The proofs are very simple and in some cases – almost trivial.

Résumé. L’article apporte un nouvel éclairage sur les théorèmes fondamentaux de l’analyse complexe dus à
P. Fatou, F. et M. Riesz, N. N. Lusin, I. I. Privalov et A. Beurling. Seuls les outils classiques disponibles à l’époque
de Fatou sont utilisés. Les preuves sont très simples et dans certains cas, presque triviales.
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1. Introduction and the main result

Let U and T be the open unit disk and the unit circle in C, respectively. For a function f defined
on U we denote by f (eiθ) the radial limit of f at eiθ if the limit exists. The following classical
theorems of P. Fatou [4] (cf. [3, Theorem 2.1]) and of F. and M. Riesz [11] (cf. [3, Theorem 2.5]) are
among the most fundamental results of complex analysis.

Theorem A (P. Fatou, 1906). Let f be analytic and bounded on U . Then for almost all eiθ on T
the non-tangential limit f (eiθ) exists.

Theorem B (F. and M. Riesz, 1916). Let f be analytic and bounded on U such that f (eiθ) = 0 on a
set E of positive measure on T . Then f is identically zero.

For univalent functions the analogous results are due to A. Beurling [1] (cf. [3, Theorem 3.5]).

Theorem C (A. Beurling, 1940). Let f be univalent on U . Then: (i) at every point eiθ of T , except
possibly a set of zero (logarithmic) capacity, the radial limit f (eiθ) exists; (ii) f (eiθ) = limr→1 f (r eiθ)
cannot be constant on any positive capacity set on T .1

1The referee has kindly noted that Beurling [1] announces (ii) in [1] before stating Théorème II and proves it at the
end of the proof of that theorem.
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Theorem A presents the property of almost everywhere existence of the radial limits of
bounded analytic functions, while Theorem B is the boundary uniqueness property of the same
functions. Both these properties (theorems) have been presented and extended in many books
and papers. Under the lights of the influential original works of Fatou and F. and M. Riesz, quite
naturally, Theorem A and Theorem B have been universally regarded as two fundamental, but
different properties of analytic functions. For instance the well known paper [2] by L. Carleson,
emphasizing the difference between Theorem A and Theorem B, begins with the following sen-
tences:

“For a large number of classes C of functions f (z) regular in the unit circle, we have very
complete knowledge concerning the existence of a boundary function

F (θ) = lim
r→1

f (r eiθ),

the classical result being that of Fatou. However, very little is known about the properties of this
boundary function F (θ), and in particular about the sets E associated with the class C , having the
property that f (z) vanishes identically if F (θ) = 0 on E . Let us call a closed set of this kind a set
of uniqueness for the class C. If E is not a set of uniqueness, we speak of a set of multiplicity. Our
whole knowledge in this direction seems to be contained in a classical result of F. and M. Riesz:
E is a set of uniqueness for the class of bounded functions if and only if it has positive Lebesgue
measure.”

The present paper sheds a new light on the theory and shows that, in fact, the boundary
uniqueness property is a direct corollary, or a particular case, of the property of the existence
of the radial limit. Indeed, the radial limit cannot be constant on a set E precisely because the
radial limit exist on E (or a. e. on E), as the following theorem shows.

Theorem 1. Let f be univalent (respectively, zero free and bounded analytic) on U such that
f (eiθ) = 0 on a subset E of T . Then f generates a univalent (respectively, bounded analytic)
function g on U such that g has no radial limit on E. Furthermore, if f ̸= 0 is bounded analytic
with zeros on U such that f (eiθ) = 0 on E, then f generates a bounded analytic g on U which has
no radial limit on E except perhaps a subset of E of measure zero.

Remark 2. If f in Theorem 1 is zero free, analytic and bounded, the relation between f and g is
especially simple and given explicitly by the equation g (z) = e−i loglog f (z), as below proof implies.
Also, as noted in [3, p. 57], with no loss of generality it is enough to prove Theorem C just for
bounded univalent functions and we use the same reduction in our proof of the univalent case of
Theorem 1.

1.1. Elementary proof of Theorem 1 for the case of zero free, bounded analytic f

Let f be zero free, analytic and bounded on U such that f (eiθ) = 0 on E . We may assume f is
bounded by 1.

Then f (z) = eh(z), where h is analytic, ℜh(z) < 0 on U and h(eiθ) = ∞ on E . We have an
analytic logh(z) = log |h(z)|+ iargh(z) on U with π/2 < argh(z) < 3π/2. Then g (z) = e−i logh(z) =
eargh(z)(coslog |h(z)|− isinlog |h(z)|) is analytic and bounded by e3π/2. On each radius ending on
E the oscillation of g exceeds eπ/2. The proof is over. □

The proof of the remaining part of Theorem 1 is also simple. Note that already just proved part
of Theorem 1 mplies a theorem of Lusin [6] (formulated below).

Obviously Theorem 1 implies that the part (ii) of Theorem C is a corollary of part (i) of
Theorem C. Similarly, Theorem 1 derives Theorem B from Theorem A. Thus it gives the first
unified proof of boundary uniqueness for univalent or merely analytic functions.
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Our approach extremely simplifies the case of univalent functions and below new proof of
part (ii) of Theorem C should be compared with its prior proof; cf. the proof of part (ii) of
Theorem C in [3, pp. 61–64], or in [1].

Lusin has proved the following important converse of Theorem A (see [7] or [6]).

Theorem D (N.N. Lusin, 1919). Let E be a subset of T of measure zero. Then there exists an
analytic and bounded function f on U such that the radial limit f (eiθ) does not exist at each
eiθ ∈ E.

The following classical result is due to Privalov [8] (cf. [9, p. 295] or [12, p. 276]).

Theorem E (I.I. Privalov, 1919). Let E be a subset of T of measure zero. Then there exists a zero
free, analytic and bounded (by 1) function f on U such that f (z) tends to 0 as z approaches, in an
arbitrary manner (in particular, radially), any point of E.

Since the function f existing by Theorem E is zero free, analytic and bounded, and f (eiθ) = 0
on E , the zero free case of Theorem 1 implies that Theorem D is nothing else but an obvious
corollary of Theorem E.2 Since also Privalov’s proof of Theorem E is a simple construction, we
arrive to the first elementary self-contained proof of Theorem D, which is in a sharp contrast to
its (very complex) original proof. We present the proof of Theorem E.

1.2. Proof of Theorem E

Denote E1 = {x ∈ [0,2π] : eix ∈ E }. Let {Gn} be a sequence of open sets on [0,2π] such that
E1 ⊂ Gn+1 ⊂ Gn and the measure of Gn is less than 1

n4 . Let fn be the characteristic function of
Gn . Denote f (x) =∑∞

n=1 n2 fn(x). Obviously f ≥ 0 and f ≥ n2 fn ≥ 0 for all n. Since∫ 2π

0
f (x)dx =

∞∑
n=1

∫ 2π

0
n2 fn(x)dx <

∞∑
n=1

n2 1

n4 <∞,

f is summable.
Let U (r eiθ) and Un(r eiθ) be the Poisson integrals of f and n2 fn , respectively. Then U (r eiθ) ≥

Un(r eiθ). Obviously, Un(r eiθ) continuously extends to Gn and Un(eix ) = n2 for x ∈Gn . For a fixed
eix ∈ E , we have x ∈Gn (for all n). Thus, for r eiθ → eix , we have liminfU (r eiθ) ≥ liminfUn(r eiθ) =
limUn(r eiθ) = n2, which implies that limU (r eiθ) =∞.

Let V (r eiθ) be a conjugate harmonic function of U (r eiθ). The bounded analytic function
(1+U + iV )−1 (or e−U−iV ) has the required properties. The proof is over. □

Lusin and Privalov have been collaborating for many years in topics involving Theorem D and
Theorem E, and Theorem D even appears again in their joint paper [7] (essentially with same
original difficult proof of 1919), but they did not notice that Theorem D immediately follows
from Theorem E. Perhaps it is hard to overestimate the importance of Theorem D as a converse
to Theorem A, but unfortunately it is much less known than Theorem A. Our elementary proof
of Theorem D is easily accessible even for the students. This will help to make Theorem D more
popular.3

2If in the proof in Subsection 1.1 the starting function f is taken to be the function existing by Theorem E, then the
proof in Subsection 1.1 just becomes a proof of Theorem D.

3Theorem A is proved in the standard textbooks on complex analysis, but, as a rule, none of them (say, W. Rudin’s
comprehensive “Real and Complex Analysis”) even mentions on the existence of Theorem D. Including Theorem D
(with its new proof) in textbooks will complete the presentation of the classical theory as it shows that the conclusion
of Theorem A is precise (cannot be improved).
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2. A conformal mapping approach for Theorem 1

In this section, we use the Riemann mapping theorem to prove a proposition which implies
Theorem 1. But the main purpose of this proposition is to prove Theorem 1 in case of univalent
functions. For bounded analytic functions we also have an alternative proof based on the
theorem of F. Riesz on the boundary values of Blaschke products.

Let D be a simply connected “double comb” domain in the w-plane obtained from the square

{w = u + iv : 0 < u < 1, 0 < v < 1}

by taking off the line segments l2n = {
u + iv : u = 1

2n , 0 ≤ v ≤ 3
4

}
and l2n+1 =

{
u + iv : u = 1

2n+1 , 1
4 ≤

v ≤ 1
}

for all values of n (n = 1,2, . . .). Denote by AB the closed set {iv : 0 ≤ v ≤ 1} (the left side of
the original square). It contains no accessible boundary points of D . In other words, there is no
Jordan arc in D ending at a point of AB (to approach to AB , a Jordan arc has to “oscillate”).

Proposition 3. Let ϕ map U conformally onto D. Then there exists a point ξ on T such that ϕ has
no limit as z approaches ξ along any Jordan arc γ, γ\ {ξ} ⊂U , ending at ξ.4

Let Γ be a halfopen Jordan arc in D , oscillating and approaching to AB asymptotically. For
instance, as such Γ, one can take the polygonal in D joining the sequence of the points M1( 1

2 , 7
8 ),

M2( 1
3 , 1

8 ), M3( 1
4 , 7

8 ), M4( 1
5 , 1

8 ), ... We may assume that Γ is given by an equation w = w(t ), 0 ≤ t < 1,
where w(t ) is continuous on [0,1) and w(0) ≡ M1( 1

2 , 7
8 ) is the initial point of Γ. Let Γ1 be a Jordan

arc in D having the same initial point w(0) as Γ and ending at an accessible boundary point w1

of D (Γ1 \ {w1} ⊂ D), and such that w(0) is the only common point of Γ and Γ1.
The following proposition is obvious.

Proposition 4. The set Γ∪Γ1 divides the domain D into two domains D1 and D2 such that the
boundaries of both D1 and D2 contain either all segments l2n or all segments l2n+1 except finitely
many of such segments.

Morera’s theorem and the elementary (inner) uniqueness theorem immediately imply:

Proposition 5. If f is continuous in a domain Ω and analytic in Ω \ L where L is a line segment,
then f is analytic inΩ. If in addition f (z) = c on L, then f is identically c onΩ.

Proof of Proposition 3. Let w = ϕ(z) be a conformal map of U onto D (as in Proposition 3).
Denote by z = ψ(w) the inverse of w = ϕ(z). The image ψ(Γ) of Γ is a halfopen Jordan arc in
U given by the equation w = ψ(w(t )), 0 ≤ t < 1. Note that ψ(Γ) ends at a point ξ ∈ T , because
otherwise ψ(Γ) has to have two accumulating points a and b on T , and the function ϕ cannot
have radial limits on one of the two complementary to a and b open arcs of T , which contradicts
to Theorem A. Now we show that ξ ∈ T has the property formulated in Proposition 3.

Let γ, γ \ {ξ} ⊂ U , be an arbitrary Jordan arc ending at ξ. If γ and ψ(Γ) share points (other
than ξ) at each neighborhood of ξ, then there is nothing to prove (because as Γ, the curve ϕ(γ)
too would be oscillating and approaching to AB in D). Thus, by deleting some initial portion of
γ if necessary, we may assume that γ and ψ(Γ) have no common point other than ξ. Let us join
the initial points of γ and ψ(Γ) by an arc δ⊂U such that δ has no other common point with γ or
with ψ(Γ). The curve ψ(Γ)∪δ∪γ divides U into two domains. One of them, let denote it by U1,
has only one point of T , namely ξ, on its boundary.

Assume by contrary thatϕ(z) has a limit equal to q as z approaches ξ along γ. This means that
q is an accessible boundary point of D (and the Jordan arc ϕ(γ) ends at q). The Jordan arc ϕ(δ)
joins in D the initial points of Γ and ϕ(γ), and ϕ(δ) has no other common point with them. Let

4Note that the existence of ξ follows from the famous prime end theorem of Carathéodory (1913); simply take as ξ
the point corresponding (under the mapping ϕ) to the prime end of D the impression of which is AB . Below we give an
elementary proof of the same fact avoiding the concept of prime end.
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us take ϕ(γ)∪ϕ(δ) as Γ1 and apply Proposition 4; we conclude that there exists either a segment
l2n+1 or a segment l2n lying on the boundary of the image ϕ(U1) of U1. For briefness, denote this
segment by l .

Because ξ is the only boundary point of U1 belonging to T , the conformal mapping ψ(w)
of ϕ(U1) onto U1 will be continuously extended to the set l once we put ψ(w) = ξ on l . Now
Proposition 5 implies thatψ(w) is identically equal to ξ, which is impossible sinceψ is a univalent
function. This contradiction completes the proof of Proposition 3. □

We close this section by a discussion on Blaschke products. Let {an} be a sequence of (non-
zero) numbers in U such that

∑∞
n=1(1−|an |) <∞. It is well-known that this condition is necessary

and sufficient for the infinite product B(z) = ∏∞
n=1

|an |
an

an−z
1−an z to be uniformly convergent on

compact subsets of U . Of course, B(z) is bounded (by 1) and analytic in U , and the zeros of
B(z) are precisely the numbers of the sequence {an}. More generally, a Blaschke product is the
following function B(z) = zm ∏∞

n=1
|an |
an

an−z
1−an z , where m ≥ 0 is an integer.

By Theorem A, of course, the radial limits of a Blaschke product exist a.e. on T . In 1923 F.
Riesz [10] (cf. [3, Theorem 2.11]) proved the following result.

Theorem F (F. Riesz, 1923). A Blaschke product B possesses radial limits of modulus 1 for almost
all eiθ on T

An elementary proof of this theorem can be found in K. Hoffman’s book5 (see [5, bottom of
p. 65 – top of p. 66]). We present this proof.

Proof of Theorem F. Denote by Bn the nth partial product of B . For natural n > m,

∥Bm −Bn∥2 = 1

2π

∫ π

−π
|Bm −Bn |2 dt = 1

2π

∫ π

−π
[|Bm |2 +|Bn |2 −2ℜBnB m]dt .

Since |Bn | = 1 on T ,

∥Bm −Bn∥2 = 1

2π

∫ π

−π

[
2−2ℜ Bn

Bm

]
dt = 2

[
1−ℜ 1

2π

∫ π

−π
Bn

Bm
dt

]
.

Because n > m, Bn/Bm is analytic on U . Thus 1
2π

∫ π
−π

Bn
Bm

dt = Bn
Bm

(0) =∏n
j=m+1 |a j |, and

∥Bm −Bn∥2 = 2

(
1−

n∏
j=m+1

|a j |
)

.

Since
∑∞

j=1(1−|an |) <∞, the infinite product
∏∞

j=1 |a j | converges, and, therefore, {Bn} is Cauchy.

Then {Bn} converges to some g in H 2. This L2 convergence on T implies the uniform convergence
of {Bn} to g on compact subsets of U . Thus g (z) = B(z) on U , and so g = B . Since {Bn} converges
to B (on T ) in L2, a subsequence {Bkn } converges to B a.e. on T . Thus |B | = 1 a.e. on T. The proof
is over. □

3. Proofs

For zero free, bounded analytic functions the proof of Theorem 1 was given in above Subsec-
tion 1.1. Now we prove the theorem for the univalent functions; at the same time, this provides
yet another proof for zero free, bounded analytic functions. Then we complete the proof of The-
orem 1 by reducing the proof of the remaining case (of bounded analytic functions with zeros) to
the case of zero free, bounded analytic functions.

5I am indebt to Don Marshall for calling my attention to this proof.
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3.1. Proof of Theorem 1

Let f be bounded, univalent (or analytic and zero free) on U , and let f (eiθ) = 0 on E . (Since
f (eiθ) = 0 on E , of course, f is zero free on U also in case if f is univalent.) We may assume f is
bounded by 1. Then f (z) = eh(z), where h is univalent (or analytic), ℜh(z) < 0 on U and h(eiθ) =∞
on E . Let the univalent function ϕ and the point ξ ∈ T be as in Proposition 3, and let ψ(ζ) be a
fractional-linear mapping of the left half plane onto the unit disk under which ∞ corresponds
to ξ. Then the function g (z) = ϕ(ψ(h(z))) does not have radial limits on E . Next, g is bounded
analytic, and if f is univalent, then with h also g is univalent. This completes the proof in case of
univalent (or bounded analytic and zero free) functions.

Finally, let f ̸= 0 be a bounded analytic function such that f (eiθ) = 0 on E , and let {an} be the
sequence of zeros (each zero repeated as often as it’s multiplicity) of f in U . It is well-known
that

∑∞
n=1(1−|an |) <∞. Let B(z) be a Blaschke product which has zeros precisely at the points of

the sequence {an}. Then f (z) = B(z) f1(z), where f1 is bounded analytic and zero free on U . By
Theorem F, |B(eiθ)| = 1 a.e. on T. Thus, f1(eiθ) = 0 on some E1 ⊂ E such that E \ E1 is of Lebesgue
measure zero. Therefore f1 generates a bounded analytic g which does not have radial limits
on E1. The proof is over. □

Remark 6. Since f1 is zero free, g (z) = e−i loglog f1(z) as in Remark 2, and thus we have g (z) =
e−i loglog f (z)

B(z) as an explicit equation which connects f and g in case of bounded analytic func-
tion f .
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