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Abstract. The sign pattern defined by the real polynomial Q := Σd
j=0a j x j , a j ̸= 0, is the string σ(Q) :=

(sgn(ad ), . . . , sgn(a0)). The quantities pos and neg of positive and negative roots of Q satisfy Descartes’ rule
of signs. A couple (σ0, (pos,neg)), where σ0 is a sign pattern of length d + 1, is realizable if there exists a
polynomial Q with pos positive and neg negative simple roots, with (d −pos−neg)/2 complex conjugate
pairs and with σ(Q) = σ0. We present a series of couples (sign pattern, pair (pos,neg)) depending on two
integer parameters and with pos ≥ 1, neg ≥ 1, which is not realizable. For d = 9, we give the exhaustive list of
realizable couples with two sign changes in the sign pattern.

Résumé. La suite de signes des coefficients d’un polynôme réel Q := Σd
j=0a j x j , a j ̸= 0, est donnée par

σ(Q) := (sgn(ad ), . . . , sgn(a0)). Les quantités pos et neg de racines positives et négatives de Q satisfont la
règle des signes de Descartes. Un couple (σ0, (pos,neg)), où σ0 est une suite de signes de longueur d +1, est
« réalisable » s’il existe un polynôme Q avec pos racines simples positives et neg racines simples négatives,
avec (d −pos−neg)/2 paires complexes conjuguées et avec σ(Q) =σ0. Nous présentons une série de couples
(suite de signes, paire (pos,neg)) dépendant de deux paramètres entiers et avec pos ≥ 1, neg ≥ 1, qui ne sont
pas réalisables. Pour d = 9, nous donnons la liste exhaustive des couples réalisables avec deux changements
de signe dans la suite de signes.

Keywords. Real polynomial in one variable, hyperbolic polynomial, sign pattern, Descartes’ rule of signs.

Mots-clés. Polynôme à une variable réelle, polynôme hyperbolique, suite de signes, règle de Descartes.
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1. Introduction

This paper deals with a problem which is a natural extension of Descartes’ rule of signs. We
consider univariate real polynomials without vanishing coefficients. About such a degree d
polynomial Q, Descartes’ rule of signs states that the number pos of its positive roots is bounded
by the number c of sign changes in the sequence of its coefficients, the difference c −pos being
even, see [3, 6, 9, 10, 12, 17–20]. When applied to the polynomial Q(−x), this rule yields the result
that the number neg of its negative roots is bounded by the number p of sign preservations and
the difference p −neg is also even. In the case of hyperbolic polynomials, i.e. real polynomials
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with all roots real, one has pos = c and neg = p. Descartes’ rule of signs proposes only necessary
conditions. Our aim is to understand how far from sufficient they can be.

In what follows we use the quantity µ̃ := min(pos,neg) and we denote by λ̃ the number of
complex conjugate pairs of roots of Q. Hence the quantities which we introduce satisfy the
following relations in which [.] denotes the integer part:

pos ≤ c , neg ≤ p , λ̃= (d −pos−neg)/2 ,

c −pos ∈ 2Z , p −neg ∈ 2Z , λ̃≤ [d/2] ,

sgn(Q(0)) = (−1)pos and c +p = d .

(1)

Definition 1.

(1) A sign pattern of length d+1 is a string of d+1 signs+ and/or−. We say that the polynomial
Q := ∑d

j=0 a j x j defines the sign pattern σ(Q) := (sgn(ad ), . . ., sgn(a0)). Most often we deal
with monic polynomials in which case the first sign of the sign pattern is a +.

(2) Suppose that a sign pattern σ0 is given, with c sign changes and p sign preservations. An
admissible pair (i.e. a pair admissible for σ0) is a pair (pos,neg) satisfying conditions (1).
In this case we say that (σ0, (pos,neg)) is a compatible couple (or just couple for short).

(3) We say that this compatible couple is realizable if there exists a degree d real polynomial Q
with σ(Q) =σ0, with exactly pos positive and neg negative roots, all of them distinct.

(4) The pair (pos,neg) = (c, p), which is admissible for the sign pattern σ0, is its Descartes’
pair.

We study the following problem:

Problem 2. For a given degree d, which compatible couples are realizable?

In spite of its simple formulation the problem is not trivial at all. Descartes’ rule of signs
gives only necessary conditions, and Problem 2 is a realization problem. For d = 1, 2 and 3, all
compatible couples are realizable, but for d = 4, the couple ((+,−,−,−,+), (0,2)) is not (see [11]).
In fact, for d = 4, this is the only non-realizable couple up to the following equivalence.

Definition 3. For a given degree d, the Z2 ×Z2-action on the set of compatible couples is defined
by means of two commuting involutions. The involution

im : (σ(Q), (pos,neg)) 7−→ ((−1)dσ(Q(−x)), (neg,pos)) (2)

expresses the fact that the change of variable x 7→ −x changes the sign of every second coefficient
and the signs of the real roots. The involution

ir : (σ(Q), (pos,neg)) 7−→ (σ(QR (x)/Q(0))(pos,neg)) , QR (x) := xdQ(1/x) (3)

is connected with the property the reverted polynomial QR (i.e. Q read from right to left) to have the
same numbers of positive and negative roots as Q (reversion changes the roots to their reciprocals).
The normalizing factors (−1)d and 1/Q(0) are introduced to preserve the set of monic polynomials.
The orbit of each compatible couple under this action consists either of 2 or of 4 couples which
share the same values of λ̃ and µ̃ and which are simultaneously realizable or not. This is why we
use the same notation for couples and for their orbits. Sometimes we consider the orbits under the
Z2 ×Z2-action only of sign patterns, not of couples.

Notation 4. We denote by Σm1,m2,...,ms , mk ∈N, m1 +·· ·+ms = d +1, the sign pattern beginning
with a sequence of m1 signs + followed by a sequence of m2 signs − followed by a sequence of m3

signs + etc. Example:

(+,+,−,−,−,+,−,+,+,+) =Σ2,3,1,1,3 .
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Example 5. For d = 3, the orbit of the sign patternσ⋄ := (+,+,−,+) consists of four sign patterns:
σ⋄, ir (σ⋄) = (+,−,+,+), im(σ⋄) = (+,−,−,−) and ir (im(σ⋄)) = (+,+,+,−). The orbit of the sign
pattern Σ1,d−1,1 (d ≥ 3) consists of two sign patterns:

Σ1,d−1,1 = ir (Σ1,d−1,1) and im(Σ1,d−1,1) = im(ir (Σ1,d−1,1)) =Σ2,1,...,1,2

(d −3 units). For d even, both Σ1,d−1,1 and im(Σ1,d−1,1) are center-symmetric. For d odd, Σ1,d−1,1

is center-symmetric and im(Σ1,d−1,1) is center-antisymmetric.

Remark 6. For an orbit of length 2, one has either ir (σ(Q)) = σ(Q) or ir (im(σ(Q))) = σ(Q). One
has always im(σ(Q)) ̸= σ(Q), because the second components of these two sign patterns are
different.

Problem 2 is formulated for the first time in [2]. Up to the Z2 ×Z2-action, for d = 5 and d = 6,
there exist exactly 1 and exactly 4 non-realizable orbits respectively, see [1]. For d = 7 (see [7])
and d = 8 (see [7] and [13]) these numbers equal 6 and 19. In all these cases one has µ̃= 0 and the
exhaustive answer to Problem 2 is known. Details are given in Section 2.

For hyperbolic polynomials, the answer to Problem 2 is always positive, see [15, Proposition 1].
In other words, the orbit of any compatible couple in which the admissible pair is the Descartes’
pair is realizable. A tropical analog of Descartes’ rule of signs is studied in [8].

The first examples of non-realizable orbits with µ̃= 1 are found for d = 11 in [14] and for d = 9
in [4]. For d = 9, the orbit studied in [4] is the only non-realizable one with µ̃= 1. In this paper we
present a series of non-realizable orbits (depending on two integer parameters) with µ̃ = 1. The
series includes the examples for d = 11 and d = 9 already found. Besides, for d = 10 and d = 11,
we give the list of the orbits with µ̃= 1 which are either non-realizable or for which the answer to
Problem 2 is not known. We also show that for d ≤ 14, with the possible exception of one orbit
with d = 14, there are no non-realizable orbits with µ̃≥ 2. Finally, we give the exhaustive answer
to Problem 2 for d = 9, c = 2.

Definition 7. For d ≥ 9, we denote by Kn,q the orbit (Σ1,n,q,1, (1,d −3)), n ≥ 4, q ≥ 4, n+q = d −1,
hence with Descartes’ pair (3,d −3). The orbits Kn,q and Kq,n being the same one can assume that
n ≤ q.

Theorem 8. For d ≥ 9, the orbit Kn,q is not realizable.

The theorem is proved in Section 3.

Theorem 9.

(1) For d ≤ 14, with the possible exception of the orbit (Σ1,4,5,4,1, (2,10)) about which the
answer to Problem 2 is not known, there are no non-realizable orbits with µ̃≥ 2.

(2) For d = 10, for the orbits K4,5 = (Σ1,4,5,1, (1,7)) and (Σ1,4,4,2, (1,7)), one has (µ̃, λ̃) = (1,1).
The first of them is not realizable (see Theorem 8), for the second one the answer to
Problem 2 is not known. All other orbits with d = 10 and µ̃= 1 are realizable.

(3) For d = 11, the following two orbits (both with µ̃= λ̃= 1) are not realizable:

K5,5 = (Σ1,5,5,1, (1,8)) and K4,6 = (Σ1,4,6,1, (1,8)) .

For d = 11, with the exception of these two and of the following six orbits

(Σ1,4,5,2, (1,8)) , (µ̃, λ̃) = (1,1) , (Σ1,5,4,2, (1,8)) , (µ̃, λ̃) = (1,1) ,

(Σ2,4,4,2, (1,8)) , (µ̃, λ̃) = (1,1) , (Σ1,4,4,1,1,1, (1,6)) , (µ̃, λ̃) = (1,2) ,

(Σ1,4,1,1,4,1, (1,6)) , (µ̃, λ̃) = (1,2) , (Σ1,3,1,1,1,1,3,1, (1,4)) , (µ̃, λ̃) = (1,3) ,

(about which the answer to Problem 2 is not known), all other non-realizable orbits are
with µ̃= 0.
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The theorem is proved in Section 4. Our next result concerns orbits of sign patterns with two
sign changes. Sign patterns with none or one sign change are realizable, see [5, Example 1 and
Theorem 1], and the first examples of non-realizability are obtained for c = 2, see the beginning
of Section 2.

Theorem 10. For d = 9, the following orbits are not realizable:

(Σ1,8,1, (0,k)) , k = 3 , 5 and 7 ;

(Σ1,7,2, (0,ℓ)) , (Σ1,6,3, (0,ℓ)) and (Σ2,6,2, (0,ℓ)) , ℓ= 5 and 7 ;

(Σ1,5,4, (0,7)) , (Σ1,4,5, (0,7)) , (Σ2,4,4, (0,7)) , (Σ2,5,3, (0,7)) and (Σ3,4,3, (0,7)) .

All other orbits (Σm,n,q , (pos,neg)) with m > 0, n > 0, q > 0, m +n +q = 10, are realizable.

The theorem is proved in Section 5.

2. Preliminaries

We list here the non-realizable orbits for 4 ≤ d ≤ 8. In all cases one has µ̃= 0. For d = 4 and d = 5,
the non-realizable orbits are:

(Σ1,3,1, (0,2)) and (Σ1,4,1, (0,3)) . (4)

For d = 6, there are four such orbits:

(Σ1,5,1, (0,2)) , (Σ1,5,1, (0,4)) , (Σ1,1,1,3,1, (0,2)) and (Σ2,4,1, (0,4)) . (5)

For d = 7, there are six non-realizable orbits:

(Σ2,5,1, (0,5)) , (Σ2,4,2, (0,5)) , (Σ3,4,1, (0,5)) ,

(Σ1,4,1,1,1, (0,3)) , (Σ1,6,1, (0,3)) , (Σ1,6,1, (0,5)) .
(6)

For d = 8, the non-realizable orbits are the following ones:

Σ2,5,2 , Σ1,6,2 , Σ1,4,4 , Σ1,5,3 and Σ2,4,3 with (0,6) ,

Σ1,1,1,3,1,1,1 and Σ1,3,1,1,1,1,1 with (0,2) ,

Σ1,5,1,1,1 and Σ1,3,1,3,1 with (0,2) and (0,4) ,

Σ1,7,1 with (0,2) , (0,4) and (0,6) ,

Σ1,4,1,2,1 , Σ1,6,2 , Σ1,4,2,1,1 , Σ1,1,1,4,2 and Σ1,4,1,1,2 with (0,4) .

(7)

The following concatenation lemma (proved in [7]) is a basic tool for proving the relizability of
certain orbits.

Lemma 11. Suppose that the monic polynomials P1 and P2 of degrees d1 and d2, with sign
patterns represented in the form (+,σ1) and (+,σ2) respectively, realize the pairs (pos1,neg1) and
(pos2,neg2). Here σ j denotes what remains of the sign patterns when the initial sign + is deleted.
Then

(1) if the last position of σ1 is +, then for any ε > 0 small enough, the polynomial
εd2 P1(x)P2(x/ε) realizes the sign pattern (+,σ1,σ2) and the admissible pair (pos1 +
pos2,neg1 +neg2);

(2) if the last position of σ1 is −, then for any ε > 0 small enough, the polynomial
εd2 P1(x)P2(x/ε) realizes the sign pattern (+,σ1,−σ2) and the pair (pos1 + pos2,neg1 +
neg2). Here −σ2 is obtained from σ2 by changing each + by − and vice versa.
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Remark 12. We use the symbol ∗ to denote concatenation of couples or of sign pat-
terns. Lemma 11 implies that when one concatenates the compatible realizable couples
(Σm1,...,ms , (a,b)) and (Σn1,...,nℓ , (c,d)) one obtains the realizable couple

(Σm1,...,ms−1,ms+n1−1,n2,...,nℓ , (a + c,b +d)) = ((Σm1,...,ms , (a,b))∗ (Σn1,...,nℓ , (c,d)) .

If one considers only sign patterns instead of couples, then one can write

Σm1,...,ms−1,ms+n1−1,n2,...,nℓ =Σm1,...,ms ∗Σn1,...,nℓ .

When necessary we use more than two consecutive concatenations.

Consider a hyperbolic monic degree d polynomial without vanishing coefficients. Suppose
that the moduli of its roots are all distinct. Consider the order of these moduli on the real positive
half-axis. We note only at which positions the moduli of its negative roots are; this should be clear
from the following example.

Example 13. The polynomial

(x −1)(x +2)(x −3)(x −4)(x +5)(x −6)(x +7)(x +8)(x −9)

has five positive and four negative roots. We note the relative positions of the moduli of its
positive and negative roots by the letters P and N . The order of the moduli of the roots of the
polynomial is

|1| < |−2| < |3| < |4| < |−5| < |6| < |−7| < |−8| < |9|
which we note as

P < N < P < P < N < P < N < N < P .

Given a sign pattern (αd ,αd−1, . . . ,α0), α j = ±1, one can construct a hyperbolic degree d
polynomial defining this sign pattern using Lemma 11. At the first step one constructs the
linear polynomial P+ := x + 1 if αd = αd−1 or P− := x − 1 if αd = −αd−1. At each next step one
concatenates the previously obtained polynomial (which plays the role of P1 and which defines
the sign pattern (αd ,αd−1, . . . ,α j )) and the polynomial P+ or P− as P2 depending on whether
α j =α j−1 or α j =−α j−1 respectively.

Hence the modulus of each next root which is added during this construction is much smaller
than the moduli of the roots previously obtained. In the end the roots of the constructed
polynomial define the canonical order corresponding to the given sign pattern: one reads the
sign pattern from the right, to each consecutive equal (resp. different) signs of coefficients puts
in correspondence the letter N (resp. P ) and then inserts between any two consecutive letters the
sign <. E. g. the sign pattern (+,−,−,+,−,+,+,+,−) defines the canonical order

P < N < N < P < P < P < N < P .

Thus for every sign pattern, there exists a hyperbolic polynomial the moduli of whose roots define
the corresponding canonical order, see [15, Proposition 1].

3. Proof of Theorem 8

Proof.

(A). Suppose that a couple Kn,q is realizable by some polynomial Q. Using if necessary a linear
transformation x 7→ hx, h > 0, one can assume that one of the roots of Q is at 1. (We remind that
Q has three sign changes in the sequence of its coefficients, so by Descartes’ rule of signs Q has
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either 3 or 1 positive roots.) We denote by −xi the negative roots of Q, 0 < x1 ≤ x2 ≤ ·· · ≤ xd−3,
and we set

d∑
j=1

a j x j =: Q := (xd−3 +e1xd−4 +·· ·+ed−4x +ed−3)(x2 −ux + v)(x −1) ,

where ek are the elementary symmetric polynomials of the quantities xi . Hence ek > 0 and ad = 1.
We explicit some of the first and some of the last coefficients a j :

ad−1 = (e1 −1) − u ,
ad−2 = (e2 −e1) − (e1 −1)u + v ,
ad−3 = (e3 −e2) − (e2 −e1)u + (e1 −1)v ,
ad−4 = (e4 −e3) − (e3 −e2)u + (e2 −e1)v ,
a3 = (ed−3 −ed−4) − (ed−4 −ed−5)u + (ed−5 −ed−6)v ,
a2 = −ed−3 − (ed−3 −ed−4)u + (ed−4 −ed−5)v ,
a1 = ed−3u + (ed−3 −ed−4)v ,
a0 = −ed−3v .

(8)

(B). We introduce some notation:

Notation 14. In the plane of the variables (u, v) we consider the parabola P : v = u2/4 and the
straight lines (a j ) defined by the respective equations of the form a j = ·· · from the list (8). We set

c− := 23−4
p

30 = 1.09. . . , c+ := 23+4
p

30 = 44.90. . . , I := (c−,c+) ,

E1 :=∑d−3
ν=1 1/xν , E2 :=∑

1≤i< j≤d−3 1/(xi x j ) .
(see (11)

Hence ed−4 = ed−3 ·E1 and ed−5 = ed−3 ·E2.

Remark 15. Points above (resp. below) the parabola P correspond to polynomials x2 −ux + v
having two complex conjugate (resp. two real distinct) roots. Any polynomial from the parabola
has a double real root. Polynomials between the parabola and the u-axis have two positive roots
if u > 0 and two negative roots if u < 0. Polynomials below the u-axis have two roots of opposite
signs. Our aim is to show that the domain defined by the inequalities of the form a j > 0 or a j < 0
resulting from the sign pattern Σ1,n,q,1 does not intersect the domain {v > u2/4}. This is why in
what follows we assume that v > 0.

We consider first the case e1 > c−. As e1 > 1 and ad−1 < 0, one has u > 0 (see (8)).
For e1 ∈ I , from the definition of e1 = x1 +·· ·+xd−3 and E1 follows that{

e1 ·E1 ≥ (d −3)2 ≥ 49 hence E1 ≥ 49/c+ > 1 and

ed−4 = ed−3 ·E1 > ed−3 .
(9)

Lemma 16.

(1) For e1 ∈ I , the intersection point S of the straight lines (a1) and (ad−1) is below the
parabola P .

(2) Suppose that e1 ≥ c+ and that x1 ≤ 1. Then the point S is below the parabola P .

Proof of Lemma 16.

Part (1). One has (see (8))

(a1)∩ (ad−1) = S := ( e1 −1 , ed−3(e1 −1)/(ed−4 −ed−3) )

and ed−4 > ed−3, see (9). The point S is below the parabola P . This follows from

ed−3(e1 −1)/(ed−4 −ed−3) < (e1 −1)2/4

which is equivalent to
ed−3(e1 +3) < ed−4(e1 −1) (10)
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or to e1 +3 < (e1 −1)E1. However (see (9))

(e1 −1)E1 ≥ (e1 −1)(49/e1) = 49−49/e1 > e1 +3 ;

the second of these inequalities is equivalent to

e2
1 −46e1 +49 = (e1 − c−)(e1 − c+) < 0 , i.e. to e1 ∈ I . (11)

Part (2). For fixed sum x2 +·· ·+ xd−3, the sum
∑d−3
ν=2 1/xν is minimal if x2 = ·· · = xd−3. Hence for

x1 ≤ 1, one has

E1 ≥ 1+ (d −4)/(e1/(d −4)) = 1+ (d −4)2/e1 ≥ 1+36/e1 ,

so again ed−4 > ed−3. Inequality (10) can be given the equivalent form

1+4/(e1 −1) < ed−4/ed−3 = E1 .

However the inequalities E1 ≥ 1+36/e1 > 1+4/(e1 −1) hold true for e1 ≥ c+ from which part (2)
of the lemma follows. □

There exist no couples Kn,q satisfying the assumptions of Lemma 16 since the lemma implies
that the domain defined by the inequalities

v > u2/4, a1 = ed−3u + (ed−3 −ed−4)v > 0 and ad−1 = e1 −1−u < 0 , i.e. u > e1 −1 ,

is void. Indeed, the straight line (a1) has a positive slope, see (9)); it intersects the parabola P

at the origin and at a point with u > 0. Hence the whole sector {a1 > 0, u > e1 −1} is below the
parabola P .

(C). Suppose that xν ≥ 1, 1 ≤ ν≤ d −3, so e1 > c−. We consider the intersection point

T := (ad−4)∩ (ad−1) = ( e1 −1 , ((e3 −e2)(e1 −1)− (e4 −e3))/(e2 −e1) ) .

Observe first that for d ≥ 10 and xν ≥ 1, one has e2 − e1 > 0 and e3 − e2 > 0. We show that the
point T is below the parabola P . The straight line (ad−4) has a positive slope. Hence the domain
defined by the three inequalities

v > u2/4, ad−1 = e1 −1−u < 0 and ad−4 < 0, i.e. v < ((e3 −e2)u − (e4 −e3))/(e2 −e1),

is void, so there exist no couples Kn,q with e1 ≥ c+ and xν ≥ 1.
The point T is under the parabola P exactly when

((e3 −e2)(e1 −1)− (e4 −e3))/(e2 −e1) < (e1 −1)2/4 ,

i.e.

Ψ := 4(e3 −e2)(e1 −1)−4(e4 −e3)− (e1 −1)2(e2 −e1) < 0 .

We consider the quantity Ψ as a function of one of the variables xν (say, x1) when the other
variables xν are fixed. We denote here de j /dx1 by e ′j . Clearly e ′j = f j−1, where f j−1 is the
( j −1)st elementary symmetric polynomial of the quantities x2, . . ., xd−3; we set e0 = f0 = 1. Thus
e j = f j +x1 f j−1,

Ψ= e3
1 −e2

1e2 −2e2
1 −2e1e2 +4e1e3 +e1 +3e2 −4e4 and

Ψ′ = 3e2
1 −2e1e2 −e2

1 f1 −4e1 −2 f1e1 −2e2 +4 f2e1 +4e3 +1+3 f1 −4 f3 .

Substituting f j +x1 f j−1 for e j inΨ′ gives

Ψ′ =−( f1 +3x1 −1)( f 2
1 +x1 f1 −2 f2 −x1 +1)

=−( f1 +3x1 −1)(x1( f1 −1)+ f 2
1 −2 f2 +1) < 0 ,
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because f1 > 1 and f2 < f 2
1 /2. Thus Ψ′ < 0. Hence if one considers Ψ as a function in all the

variables x j , one finds that ∂Ψ/∂x j < 0. Hence Ψ takes its maximal value for x1 = ·· · = xd−3 = 1.
In this case e j =

(d−3
j

)
and

Ψ=−(d −2)(d −3)(d −4)/2 < 0 .

Thus for xν ≥ 1, one hasΨ< 0, e1 > c− and the point T is below the parabola P .

(D). Up to now we showed that there are no couples Kn,q for e1 > c−. For e1 ∈ I , this was deduced
from part (2) of Lemma 16; for e1 ≥ c+, this follows from part (2) of Lemma 16 (if x1 ≤ 1) and
from (C) (if x1 > 1). Suppose now that 0 < e1 ≤ c−. The involution ir (see (3)) transforms the
polynomial Q into a polynomial with sign pattern Σ1,q,n,1 and with e1 > c−; the factor x − 1 is
preserved and each of the other two factors of Q is replaced by a factor of the same form. For
e1 ≤ c−, at least d −4 of the quantities xν are < 1, so after applying the involution ir they become
1/xν > 1 and e1 becomes larger than d −4 ≥ 6. Thus the proof of Theorem 8 for 0 < e1 ≤ c− results
directly from its proof for e1 > c−. □

4. Proof of Theorem 9

(A). The proof of Theorem 9 is organised as follows. The proof of part (1) is given for each degree
from 10 to 14 in (B) – (F) respectively. Parts (B) and (C) of the proof are subdivided into (B1), (C1)
(in which we prove part (1) of the theorem for d = 10 and d = 11) and (B2), (C2) containing the
proofs of parts (2) and (3) of the theorem. Using the Z2 ×Z2-action (see Definition 3) one can
assume that pos ≤ neg. We remind that:

(i) For d ≤ 8, there are no non-realizable orbits with µ̃≥ 1 (see [1, 7] and [13]).
(ii) For d = 9, the only non-realizable orbit with µ̃≥ 1 is (see [4])

(Σ1,4,4,1, (1,6)) , with µ̃= 1 and λ̃= 1 . (12)

(iii) If the admissible pair of a given orbit is (0,0), (0,1), (1,0) or (1,1), then the orbit is
realizable. Indeed, if the admissible pair equals (0,0) or (0,1) (resp. (1,0)), then one
chooses a polynomial with the given sign pattern σ and adds to it a sufficiently large
positive (resp. negative) constant. If the admissible pair is (1,1), then one represents
the sign pattern in the form σ = (σ†,α,β), where α and β are its last two signs of σ. If
α = β (resp. α = −β), then one uses the concatenation (σ†,α), (1,0))∗ (Σ2, (0,1)) (resp.
(σ†,α), (0,1))∗ (Σ1,1, (1,0))).

(B). Suppose that d = 10.

(B1). Consider any compatible couple K♭ := (σ♭, (pos,neg)) with 2 ≤ pos ≤ neg. Represent the
sign pattern σ♭ as above in the form (σ†,α,β).

If α ̸= β and the couple K△ := ((σ†,α), (pos−1,neg)) is realizable, then the couple K♭ is also
realizable as K△∗ (Σ1,1, (1,0)).

If α = β and the couple K⋄ := ((σ†,α), (pos,neg−1)) is realizable, then one can realize K♭ as
K⋄∗(Σ2, (0,1)). However the couple K⋄ is realizable. Indeed, it is with d = 9 and either with µ̃= 1
when pos = neg = 2 (and there exist no such non-realizable couples) or with µ̃≥ 2 when neg ≥ 3,
hence again realizable. So the only situation in which one does not know whether the couple K♭

is realizable or not is when

α ̸=β and K△ =K4,4 = (Σ1,4,4,1, (1,6)) .

This means that K♭ = (Σ1,4,4,1,1, (2,6)) which is realizable as (Σ1,4,4, (2,6))∗ (Σ1,1,1, (0,0)). Hence all
couples with d = 10 and µ̃≥ 2 are realizable.
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(B2). We need some more notation:

Notation 17. We denote by K• a couple with µ̃= 1 and byσ• := (αd , . . . ,α0) its sign pattern, where
α j =+ or −, αd =+. We set σs :=αs (αs , . . . ,α0) and σs := (αd , . . . ,αs ). We discuss the possibility to
realize K• as Ks ∗K s , where the couples Ks , K s correspond to degree d − s and s polynomials
with sign patterns σs and σs .

Remark 18. Ifαs =+, then the admissible pair of Ks (resp. of K s ) is of the form (0, .) (resp. (1, .)).
If αs = −, then these admissible pairs are of the form (1, .) and (0, .) respectively. We remind that
for d ≤ 8, the admissible pairs of the form (1, .) are realizable, see the beginning of Section 2 and
part (A) of this proof.

Suppose first that s = 5 and α5 =+. Then the couple K 5 is realizable. If K5 is realizable, then
such is K• as well. The only possibility K5 not to be realizable is when K5 = (Σ1,4,1, (0,3)), see (4).
So we assume that σ• = (+,−,−,−,−,+, ?, ?, ?, ?,−). If α4 = −, then the couple K4 is realizable
and K 4 is not realizable only when K 4 = (Σ1,3,1, (0,2)). This means that σ• = Σ1,4,1,1,3,1, with
Descartes’ pair (5,5). This sign pattern is realizable with the admissible pairs (1, a), a = 3 or 5:

(Σ1,4,1,1,3,1, (1, a)) = ((Σ1,3, (1, a −3)) ∗ (Σ2,1,1,3,1, (0,3)) . (13)

If α5 = α4 = +, then K 4 is realizable whereas the couple K4 is not realizable only when it
corresponds to one of the four cases listed in (5). In each of them one has to take into account the
involution ir (see (3)), but not the involution im , because the latter makes the first component of
the admissible pair larger than 1. Hence σ4 = Σ1,4,2. Then we consider the couples K3 and K 3.
The latter is always realizable, so we assume that this is not the case of K3. Hence σ3 is obtained
from σ4 by adding a sign + to the right, i.e. σ3 =Σ1,4,3.

Ifσ2 =Σ1,4,3,1, then both K2 and K 2 are realizable, so we need to consider only the possibility
σ2 =Σ1,4,4. Thus in the end σ• =Σ1,4,5,1 or Σ1,4,4,2. These two sign patterns are realizable with the
admissible pairs (1, a), a = 3 and 5:

(Σ1,4,5,1, (1, a)) = (Σ1,4,1, (0,1)) ∗ (Σ5,1, (1, a −1)) ,

(Σ1,4,4,2, (1, a)) = (Σ1,4,1, (0,1)) ∗ (Σ4,2, (1, a −1)) .

The first of them is not realizable with the admissible pair (1,7) (see Theorem 8), for the second
one the answer is not known.

Suppose now that α5 =−. Then K5 is realizable while K 5 might not be only if σ5 = Σ1,4,1. In
this case we consider K6 and K 6. For α6 =+, the couple K 6 is realizable whereas K6 could be
non-realizable, if σ6 = Σ1,3,1 hence σ• = Σ1,3,1,1,4,1. This is the case (13) to which one has applied
the involution ir , so it is realizable. For α5 = α6 = −, one is, up to the involution ir , in the case
α10 =α5 =α4 =+, α0 =−, which was already considered.

(C). Suppose that d = 11.

(C1). We use the same notation as the one used in part (B1) of this proof; in particular, we denote
by K♭ := (σ♭, (pos,neg)) a compatible couple with µ̃ ≥ 2, where σ♭ = (σ†,α,β). As in part (B1) of
this proof we show that the only cases in which the couple K♭ is possibly non-realizable are when
α ̸=β and

K△ = ((σ†,α), (pos−1,neg)) = (Σ1,4,5,1, (1,7)) =K4,5 or (Σ1,4,4,2, (1,7)) ,

that is, K△ corresponds to one of the two cases mentioned in part (2) of the present theorem. In
these cases K♭ is realizable, because it equals respectively

(Σ1,4,5,1,1, (2,7)) = (Σ1,4,1, (2,3))∗ (Σ5,1,1, (0,4)) and

(Σ1,4,4,2,1, (2,7)) = (Σ1,4,1, (2,3))∗ (Σ4,2,1, (0,4)) .
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(C2). We use the notation and method of proof as developed in part (B2) of this proof. We are
looking for non-realizable couples K•. Suppose first that

1. α5 =+. Then the couple K 5 is realizable and the couple K5 might not be realizable only if σ5

corresponds to one of the cases (5) up to the involution ir . This means that σ5 is among the sign
patterns

Σ1,5,1 , Σ1,1,1,3,1 , Σ1,3,1,1,1 , Σ2,4,1 and Σ1,4,2 .

1.1. If α4 =+, then K 4 is realizable and σ4 is one of the sign patterns

Σ1,5,2 , Σ1,1,1,3,2 , Σ1,3,1,1,2 , Σ2,4,2 and Σ1,4,3 .

1.1.1. The second and third sign patterns of this list do not correspond to non-realizable cases,
see (6).

1.1.2. In the cases σ4 =Σ1,5,2 and σ4 =Σ2,4,2 the first component of the sign pattern σ8 must be 3
and the second must be ≥ 2; the sign pattern σ8 corresponds to realizable couples. Then one
concludes from (7) that σ• is one of the sign patterns

Σ1,5,5,1 , Σ1,5,4,2 , Σ2,4,5,1 and Σ2,4,4,2 .

The first of them is not realizable with the admissible pair (1,8), see Theorem 8; for the second,
third and fourth one the answer to this question is not known. (The second and third are in one
and the same orbit.) We show the realizability of the four sign patterns with the other admissible
pairs (1, a), a = 6, 4 or 2:

(Σ1,5,5,1, (1, a)) = (Σ1,5,3, (0, a −2)) ∗ (Σ3,1, (1,2))

(Σ1,5,4,2, (1, a)) = (Σ1,5,3, (0, a −2)) ∗ (Σ2,2, (1,2))

(Σ2,4,4,2, (1, a)) = (Σ2,4,3, (0, a −2)) ∗ (Σ2,2, (1,2)) .

1.1.3. In the case σ4 = Σ1,4,3 the first component of σ8 equals 2 and the second is ≥ 3. Using the
list (7) one obtains the following possibilities for σ•:

Σ1,4,5,2 , Σ1,4,6,1 , Σ1,4,4,3 and Σ1,4,4,1,1,1 .

The second of them is not realizable with the admissible pair (1,8) (see Theorem 8). The third
sign pattern is realizable with the admissible pair (1,8). Indeed, by [5, Theorem 3, part (iii)], the
couple (Σ4,4,3, (0,8)) is realizable, so one can set

(Σ1,4,4,3, (1,8)) = ((+,−), (1,0))∗ (Σ4,4,3, (0,8)) .

The realizability of other possible cases is given below; for the cases which are not covered by this
list the answer is not known.

(Σ1,4,5,2, (1, a)) = (Σ1,4,4, (0, a −2)) ∗ (Σ2,2, (1,2)) , a = 6, 4 or 2 ;

(Σ1,4,6,1, (1, a)) = (Σ1,4,4, (0, a −2)) ∗ (Σ3,1, (1,2)) , a = 6, 4 or 2 ;

(Σ1,4,4,3, (1, a)) = (Σ1,4,4, (0, a −2)) ∗ (Σ1,3, (1,2)) , a = 6, 4 or 2 ;

(Σ1,4,4,1,1,1, (1, a)) = (Σ1,4,4, (0, a −2)) ∗ (Σ1,1,1,1, (1,0)) , a = 4 or 2 .

1.2. If now α4 =−, the couple K4 is realizable, so one has to treat only the situation σ4 =Σ1,3,1 in
which K 4 is not realizable with the admissible pair (0,2). This, combined with the list (5), gives
the following sign patterns σ•:

Σ1,5,1,1,3,1 , Σ1,1,1,3,1,1,3,1 , Σ1,3,1,1,1,1,3,1 , Σ2,4,1,1,3,1 and Σ1,4,2,1,3,1 .



Yousra Gati, Vladimir Petrov Kostov and Mohamed Chaouki Tarchi 873

1.2.1. The first, fourth and fifth sign patterns are realizable with the admissible pairs (1,6), (1,4)
and (1,2):

(Σ1,5,1,1,3,1, (1, a +b)) = (Σ1,4, (1, a))∗ (Σ2,1,1,3,1, (0,b)) , a,b = 1 or 3 ,

(Σ2,4,1,1,3,1, (1, a +b)) = (Σ2,3, (1, a))∗Σ2,1,1,3,1, (0,b)) , a,b = 1 or 3 ,

(Σ1,4,2,1,3,1, (1, a +b)) = (Σ1,4, (1, a))∗ (Σ1,2,1,3,1, (0,b)) , a,b = 1 or 3 .

1.2.2. The second (resp. the third) sign patterns is realizable with the admissible pairs (1,4) and
(1,2) (resp. (1,2)); for the third sign pattern and for the admissible pair (1,4), the answer is not
known:

(Σ1,1,1,3,1,1,3,1, (1,4)) = (Σ1,1,1, (0,0)) ∗ (Σ1,3,1,1,3,1, (1,4)) ,

(Σ1,1,1,3,1,1,3,1, (1,2)) = (Σ1,1,1,3,1,1,1, (0,0)) ∗ (Σ3,1, (1,2)) ,

(Σ1,3,1,1,1,1,3,1, (1,2)) = (Σ1,3,1,1,1,1,1, (0,0)) ∗ (Σ3,1, (1,2)) .

2. α5 =−. The couple K5 is realizable while K 5 is not only if σ5 =Σ1,4,1.

2.1. Ifσ5 =Σ1,4,1 andα6 =+, then K 6 is realizable whereas K6 is not realizable only ifσ6 =Σ1,4,1,
so σ• = Σ1,4,1,1,4,1. This sign pattern is realizable with the admissible pairs (1,4) and (1,2) (for
(1,6), the answer remains unknown):

(Σ1,4,1,1,4,1, (1,4) or (1,2)) = (Σ1,3, (1,2)) ∗ (Σ2,1,1,4,1, (0,2) or (0,0)) .

2.2. If α5 =−, σ5 = Σ1,4,1 and α6 =−, i.e. σ6 = Σ2,4,1, then applying the involution ir (see (3)) one
transforms this case into σ5 =Σ1,4,2, α0 =−. This case was treated in 1.

(D). Suppose that d = 12. One can try to represent a given couple K• with µ̃ ≥ 2 as a concate-
nation of couples K ′ and K ′′ of degree 10 and 2 respectively. If K ′ is realizable, then such is
K• as well, because all compatible couples of degree 2 are realizable. So we assume that K ′ is
not realizable. Then one can assume that K ′ is one of the two couples of part (2) of the theorem.
Hence the sign pattern of K ′ is among the following ones:

Σ1,4,5,3 , Σ1,4,5,2,1 , Σ1,4,5,1,2 , Σ1,4,5,1,1,1 ,

Σ1,4,4,4 , Σ1,4,4,3,1 , Σ1,4,4,2,2 , Σ1,4,4,2,1,1 .

Represent these sequences of 4, 5 or 6 numbers in the forms (1, A) and (1,4,B), where A is the
sequence of the last 3, 4 or 5 of them, and B of the last 2, 3 or 4 respectively. If 3 ≤ pos ≤ neg, then

K• = (Σ1,1, (1,0)) ∗ K ♯ , where K ♯ = (Σ1,A , (pos−1,neg)) . (14)

The couple K ♯ is with d = 11 and µ̃≥ 2 hence realizable. Hence K• is also realizable.
Suppose that 2 = pos ≤ neg. Then one can write

K• = (Σ1,4, (1,3) or (1,1)) ∗ (Σ1,B , (a,b)) , (15)

where the admissible pair of K• is (a+1,b+3) if neg ≥ 4 or (a+1,b+1) if neg = 2 or 3. Each couple
(Σ1,4, (1,3)), (Σ1,4, (1,1)) and (Σ1,B , (a,b)) is realizable (for the latter one has d = 8 and µ̃ ≥ 1), so
K• is realizable.

(E). Suppose that d = 13 or d = 14. (For d = 14, we assume that the theorem is proved for d = 13.)
Similarly to part (D), one can try to represent a given couple K• with µ̃ ≥ 2 as a concatenation
of couples K ′ and K ′′ of degree 10 and 3 respectively (or 10 and 4 if d = 14). As in part (D), we
assume that K ′ is one of the couples of part (2) of the theorem. We denote the sign pattern of K•
by (1, A) and (1,4,B) with similar definition of A and B .

For 3 ≤ pos ≤ neg, we use formula (14). The couple K ♯ is with d = 12 (resp. d = 13) and µ̃≥ 2
hence realizable. For 2 = pos ≤ neg, we can use formula (15) with the reasoning after it except in
the case when (Σ1,B , (a,b)) is of the orbit of the couple (12) (resp. of one of the orbits of the couples
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of part (2) of the theorem). The first 8 signs of the sign pattern of K• are (+,−,−,−,−,+,+,+).
Further we treat separately the cases d = 13 and d = 14.

Suppose that d = 13. These first 8 signs imply that from the orbit of the sign pattern Σ1,4,4,1 =
ir (Σ1,4,4,1) one has to chooseΣ1,4,4,1 (and notΣ2,1,1,2,1,1,2 = im(Σ1,4,4,1) = ir (Σ2,1,1,2,1,1,2)) to be equal
to Σ1,B . Thus the sign pattern of K• is Σ1,4,4,4,1. The admissible pair equals (2,ν), ν= 9, 7, 5 or 3.
We set

(Σ1,4,4,4,1, (2,ν)) = (Σ1,2, (1,1)) ∗ K ∗ ∗ (Σ1,1, (1,0)) , K ∗ := (Σ3,4,4, (0,ν−1))

The first and the third couple in this concatenation are realizable. The couple K ∗ is realizable
for ν= 9, see [5, Theorem 4]. Hence there exists a real polynomial Q♮ with sign pattern Σ3,4,4 and
having 8 negative distinct roots and a complex conjugate pair. One can perturb the coefficients
of Q♮ without changing its sign pattern so that all its critical values become distinct. Hence for
suitable positive values of t one obtains polynomials Q♮+t having the sign patternΣ3,4,4 and with
exactly 6, 4 or 2 distinct negative roots and, respectively, 2, 3 or 4 conjugate pairs. Thus the couple
K ∗ (and (Σ1,4,4,4,1, (2,ν)) as well) is realizable for ν= 9, 7, 5 or 3.

(F). Suppose that d = 14. The first 8 signs of the sign pattern of K• (see (E)) mean that the sign
patternΣ1,B is in one of the orbits of the sign patternsΣ1,4,5,1 orΣ1,4,4,2, see part (2) of the theorem;
the first component of B must be ≥ 3. Hence Σ1,B is among the following sign patterns:

Σ1,4,5,1 , Σ1,5,4,1 or Σ1,4,4,2 .

For Σ1,B =Σ1,4,4,2, one has

K• = (Σ1,4,4,4,2, (2,ν+1)) = (Σ1,4,4,4,1, (2,ν)) ∗ (Σ2, (0,1)) ,

where ν = 9, 7, 5 or 3 and the first concatenation factor is realizable (see (E)). Hence K• is also
realizable. For Σ1,B =Σ1,4,5,1, one has

K• = (Σ1,4,4,5,1, (2,ν+1)) = (Σ1,2, (1,1)) ∗ K ∗ ∗ (Σ2,1, (1,1))

with K ∗ as in (E), so this case is also realizable. For Σ1,B = Σ1,4,5,1, the sign pattern of K• equals
Σ1,4,5,4,1. It is realizable with the admissible pairs (2,ρ), ρ = 2, 4, 6 or 8:

(Σ1,4,5,4,1, (2,ρ)) = (Σ1,4,1, (0,1)) ∗ (Σ5,4,1, (2,ρ−1)) .

For ρ = 10, the answer to Problem 2 remains unknown.

5. Proof of Theorem 10

(A). We consider first the (non)-realizable cases with the admissible pairs (0,1) and (0,3). Every
couple (Σm,n,q , (0,1)) with m +n + q = 2ℓ, ℓ ≥ 2, m > 0, n > 0, q > 0, is realizable – it suffices to
choose a polynomial with sign pattern Σm,n,q and to add to it a large positive constant. Further
we suppose that q ≥ m, otherwise one considers the couple from the same orbit (Σq,n,m , (0,3))
using the involution ir .

On the other hand any couple of the form (Σd+1, (0,k)) is realizable ([5, Example 1]). This
implies that for d = 9, any couple with q ≥ 3 and admissible pair (0,3) is realizable as

(Σm,n,q , (0,3)) = (Σm,n,q−2, (0,1))∗ (Σ3, (0,2)) .

The couple (Σ2,6,2, (0,3)) is realizable as

(Σ2,6,2, (0,3)) = (Σ2,6,1, (0,2))∗ (Σ2, (0,1)) ,

where the first factor is from the same orbit as

(Σ1,6,2, (0,2)) = (Σ1,6,1, (0,1))∗ (Σ2, (0,1))
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hence this orbit is realizable. We prove realizability of the orbit (Σ1,7,2, (0,3)) by direct construc-
tion. We set

G0 := x(x2 −1)2(x4 +2x2 +1) = x9 −2x5 +x ,

and then G1 := G0 − 0.0001(x + 1)8 + 0.2 which has three negative roots −1.09. . ., −0.84. . . and
−0.20. . . and three complex conjugate pairs of roots. The sign pattern defined by G1 is Σ1,7,2,
because

G1 = x9 −0.0001x8 −0.0008x7 −0.0028x6 −2.0056x5 −0.0070x4

−0.0056x3 −0.0028x2 +0.9992x +0.1999 .

Finally, the orbit (Σ1,8,1, (0,3)) is not realizable, see [16, part (i) of Theorem 4] (one has to apply the
involution im to the series of non-realizable examples described there).

(B). Suppose that the admissible pair is (0,5). If q ≥ 5, then one realizes the couple by the
concatenation

(Σm,n,q−4, (0,1))∗ (Σ5, (0,4)) .

Suppose that either q = 4 or q = 3 and m = 2 or 3. Then by [7, Theorem 9] the corresponding
couple (Σm,n,q−2, (0,3)) is realizable and one sets

(Σm,n,q , (0,5)) = (Σm,n,q−2, (0,3))∗ (Σ3, (0,2)) .

The couple (Σ1,8,1, (0,5)) is not realizable (see [16, part (i) of Theorem 4]). The following proposi-
tion settles the remaining cases:

Proposition 19. The couples (Σ1,7,2, (0,5)), (Σ1,6,3, (0,5)) and (Σ2,6,2, (0,5)) are not realizable.

The proposition is proved in Section 6.

(C). Suppose that d = 9 and the admissible pair is (0,7). The couple (Σ1,8,1, (0,7)) is not realizable,
see [16, part (i) of Theorem 4]. It follows from [5, Theorem 3] that if n = 1, 2 or 3, then such
a sign pattern is realizable with the admissible pair (0,7). The same theorem implies that for
m = 1, n ≥ 4, the couple (Σm,n,q , (0,7)) is not realizable. Proposition 1 in [5] says that the
couples (Σ3,4,3, (0,7)) and (Σ2,4,4, (0,7)) are not realizable. The remaining couples (Σ2,5,3, (0,7)) and
(Σ2,6,2, (0,7)) are not realizable by [7, Proposition 6].

6. Proof of Proposition19

Definition 20.

(1) A generalized sign pattern is a string of signs +, − and/or 0 beginning with a +. A real
polynomial P with positive leading coefficient is said to define a given generalized sign
pattern σ if the components of σ are equal to the signs of the corresponding coefficients of
P. Given a sign patternσ1 and a generalized sign patternσ2 of the same length,σ2 is called
adjacent to σ1 if it is obtained from σ1 by replacing some of its components (excluding the
initial +) by zeros. The closure of a given sign pattern is the set containing the sign pattern
and all generalized sign patterns adjacent to it.

(2) We call simultaneous shift a map τ± : x 7→ x ±ε, where ε > 0. We usually consider ε to be
sufficiently small.

Lemma 21. Given a real monic polynomial W :=∑d
j=0 a j x j with at least one vanishing coefficient,

there exists a simultaneous shift τ± after which all coefficients of W are non-zero and the initially
non-zero coefficients keep their signs. Moreover, if ak = 0 ̸= ak+1, then one can choose the sign + or
− in the definition of τ± so that after the shift the sign of the new coefficient ak be the desired one
(+ or −).
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Proof. After the shift all coefficients of W become non-constant polynomials in ε, so with the
exception of finitely-many values of ε they are all non-zero. After the shift the coefficient ak

becomes ak ± (k +1)ak+1ε+o(ε) from which the last statement of the lemma follows. □

Lemma 22. For d = 7, there exists no monic polynomial P :=∑7
j=0 a j x j satisfying simultaneously

the following conditions:

(1) one has P (0) > 0 and P defines either one of the sign patternsΣ1,6,1 orΣ1,5,2 or a generalized
sign pattern adjacent to one of them;

(2) P has 5 negative roots counted with multiplicity;
(3) P has either a complex conjugate pair of roots or a double positive root.

Proof. Suppose first that P has a complex conjugate pair of roots. Denote by −η j the negative
roots of P . Set P1 := x(x +η1) · · · (x +η5). Hence all coefficients of P1 are positive. For ε> 0 small
enough, the polynomial P2 := P − εP1 defines one of the sign patterns Σ1,6,1 or Σ1,5,2 and has
a complex conjugate pair. One can perturb the negative roots of P2 to make them all distinct
while keeping the signs of its coefficients the same and the presence of a complex conjugate pair.
However such a polynomial P2 does not exist, see [7, Theorem 9].

Suppose that P has a double positive root. Hence P is hyperbolic. If P has no vanishing
coefficients, then one can perturb the negative roots of P to make them all distinct without
changing the signs of the coefficients. After this one considers the polynomial P3 := P +δx4 with
5 distinct negative roots and defining the same sign pattern as P when δ> 0 is small enough. The
polynomial P3 has no double positive root, but a complex conjugate pair close to the double root
of P . Again by [7, Theorem 9] such a polynomial P3 does not exist.

Suppose that P has a double positive root and at least one vanishing coefficient. We remind
that P cannot have two consecutive vanishing coefficients ([14, Lemma 7]). For ε > 0 small
enough, all coefficients of P can be made non-zero as a result of a shift τ±. We consider the
following cases:

Case 1. One has a6 < 0 and a1 < 0 (resp. a2 < 0). A shift τ+ or τ− makes all coefficients between a6

and a1 (resp. between a6 and a2) non-zero. Hence they are all negative, otherwise by Descartes’
rule of signs P cannot have 5 negative roots. One perturbs the negative roots of P to make them
distinct while keeping the sign pattern. Then for δ > 0 small enough, the polynomial P +δx4

has still 5 distinct negative roots and the same sign pattern, but the double root gives birth to a
complex conjugate pair close to it. Such a polynomial does not exist, see [7, Theorem 9].

Case 2. One has a6 = 0 and a1 < 0 (resp. a2 < 0). A shift τ± with suitably chosen sign + or −
makes all coefficients between a7 and a1 (resp. between a7 and a2) non-zero, and in particular
a6 becomes negative. Again by Descartes’ rule of signs the rest of the coefficients between a7 and
a1 (resp. between a7 and a2) are negative and as in case 1 one concludes that such a polynomial
does not exist.

Case 3. One has a6 < 0 and a1 = 0 (resp. a2 = 0). A shift τ± with suitably chosen sign + or −
makes all coefficients between a6 and a0 (resp. between a6 and a1) non-zero, and in particular
a1 (resp. a2) becomes negative. The rest of the reasoning is as in case 2.

Case 4. One has a6 = a1 = 0 (resp. a6 = a2 = 0). Then a2 ̸= 0 (resp. a3 ̸= 0), see [14, Lemma 7],
hence a2 < 0 (resp. a3 < 0). A shift τ± with suitably chosen sign + or − makes all coefficients
between a7 and a0 (resp. between a7 and a1) non-zero, and in particular a6 becomes negative.
Hence the sign pattern of P is now Σ1,6,1, Σ1,5,2 or Σ1,4,3. One perturbs the negative roots of P to
make them distinct while preserving the sign pattern, and then adds to P the monomial δx4 with
δ > 0 small enough. The double root gives birth to a complex conjugate pair and P realizes one
of the couples (Σ1,k,7−k , (0,5)), k = 4, 5 or 6, which by [7, Theorem 9] is impossible. □
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Lemma 23. There exists no real monic degree 9 polynomial U satisfying the following conditions:

(1) its sign pattern is Σ1,7,2, Σ1,6,3 or Σ2,6,2 or it is a generalized sign pattern adjacent to one of
these sign patterns;

(2) it has 7 negative roots counted with multiplicity;
(3) it has either a double positive root or a complex conjugate pair.

Proof. First of all we observe that the last three components of the (generalized) sign pattern
cannot be (+,0,+), because in this case the polynomial U (−x) has less than 7 sign changes and
by Descartes’ rule of signs the polynomial cannot have 7 negative roots. Hence the coefficients
of x8, . . ., x3 (or x7, . . ., x3 in the case of Σ2,6,2) are non-positive. The one of x is non-negative and
can be 0 only if the one of x2 is non-positive.

If the polynomial U has a double positive root, then it is hyperbolic. Recall that by [14,
Lemma 7] the polynomial U has no two consecutive vanishing coefficients. One can perform
a simultaneous shift to make all coefficients non-zero and so that the coefficient of x8 (or of x7

in the case of Σ2,6,2) is negative. By Descartes’ rule of signs the sign pattern of the polynomial is
now Σ1,5,4, Σ1,6,3, Σ1,7,2, Σ2,6,2 or Σ2,7,1. One can perturb its negative roots to make them distinct
and then add to the polynomial a monomial δx4, where δ > 0 is small enough. Thus the sign
pattern is preserved and the double positive root gives birth to a complex conjugate pair close to
it. However such a polynomial does not exist, see [7, Proposition 6].

If U has a complex conjugate pair, then we change it to U1 :=U −ε∏7
j=1(x+η j ), −η j being the

negative roots of U . For ε> 0 small enough, all coefficients of U1 with the possible exception only
of the one of x8 are non-zero. After a simultaneous shift the coefficient of x8 becomes negative
and the sign pattern now equals Σ1,6,3, Σ1,7,2, Σ1,8,1 or Σ2,6,2. Then one perturbs the negative roots
to make them distinct, so the polynomial realizes one of the couples (Σ1,6,3, (0,7)), (Σ1,7,2, (0,7)),
(Σ1,8,1, (0,7)) or (Σ2,6,2, (0,7)) which is impossible, see [7, Proposition 6]. □

Definition 24. We call multiplicity vector the vector whose components are equal to the multi-
plicities of the negative roots of a real polynomial listed in the increasing order. The multiplicity
vector v⃗1 is adjacent to the multiplicity vector v⃗2 if v⃗1 is obtained by applying one or several times
the operation of replacing two consecutive components by their sum. Example: (5) is adjacent to
(3,2) which in turn is adjacent to (3,1,1).

Lemma 25. Suppose that there exists a degree 9 real monic polynomial V realizing the couple
(Σ1,7,2, (0,5)) (resp. (Σ1,6,3, (0,5)) or (Σ2,6,2, (0,5))). Then there exists a real monic degree 9 polyno-
mial satisfying the following conditions:

(1) it defines the sign pattern Σ1,7,2 (resp. Σ1,6,3 or Σ2,6,2);
(2) it has a double positive root;
(3) the multiplicity vector of its negative roots is among the following ones:

(1,2,2) , (2,1,2) , (3,1,1) , (1,1,3) , (3,2) , (2,3) .

Proof. The polynomial V has either 4 or 6 critical points for x < 0 (counted with multiplicity).
We denote them by −ξ4 <−ξ3 <−ξ2 <−ξ1; if they are 6, then between two consecutive negative
roots of V there are three critical points of which we choose the rightmost one. We denote the
corresponding critical values by ηi , where η4 > 0, η3 < 0, η2 > 0 and η1 < 0.

Suppose that η3 = η1. Then we add to V a positive constant (this does not change the sign
pattern) to obtain a polynomial with multiplicity vector (1,2,2).

Suppose that η3 < η1. We consider the family of polynomials Vt := V + t x, t ≥ 0 in which the
sign of the coefficient of x is +. As t increases, the critical value η4 decreases faster than η3 and η2

decreases faster than η1. Denote by t0 > 0 the smallest value of t for which one of the following
things happens:
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(1) One has η4 = η1. In this case we add to Vt0 a positive constant to obtain a polynomial
with multiplicity vector (2,1,2).

(2) One has η2 = η1. Then −ξ1 is a degenerate critical point of Vt0 . We add to Vt0 a positive
constant and get a polynomial with multiplicity vector (1,1,3).

Suppose that η3 > η1. Then for t = t0, one of the following things can take place in the
family Vt :

(3) One has η3 = η1. We add to Vt0 a positive constant and obtain a polynomial with
multiplicity vector (1,2,2).

(4) One has η4 = η3. Then −ξ3 is a degenerate critical point of Vt0 . We add to Vt0 a positive
constant and get a polynomial with multiplicity vector (3,1,1).

If (1) and (2) (resp. (3) and (4)) take place simultaneously, then the multiplicity vector of Vt0 is
(2,3) (resp. (3,2)). It is not possible for t = t0 to obtain an equality between η1, η2, η3 or η4 and
one of the two possible other critical values of Vt0 (if Vt0 has 6 and not 4 negative critical points),
because then one can add a positive constant to Vt0 and get a polynomial with 7 negative roots,
one conjugate pair and sign pattern Σ1,7,2, Σ1,6,3 or Σ2,6,2 which by Lemma 23 is impossible. □

Proposition 26. There exists no real monic degree 9 polynomial having 5 negative roots with
multiplicity vector having 1, 2 or 3 components, from the closure of the sign pattern Σ1,7,2, Σ1,6,3 or
Σ2,6,2, and having one double positive root.

Proof.

(A). We explain the method of proof on the example of the multiplicity vector (5) (one five-fold
negative root). We want to prove the non-existence of a polynomial

H5 := (x +1)5((x +u)2 + v)(x − c)2 , v > 0 , c > 0 , u ∈R .

One rescales the x-axis to make the negative root equal to −1. The index 5 corresponds to
the multiplicity vector (5). Hence the non-existence of such a polynomial H5 := ∑9

j=0 a j x j is

tantamount to the emptyness of the domain E5∩D5, where D5 ⊂R3 is defined by the inequalities

D5 : { (u, v,c) | v > 0 , c > 0 }

and E5 is the closed domain in R3 defined by the condition the signs of the coefficients of H5 to
correspond to the closure of one of the sign patterns Σ1,7,2, Σ1,6,3 or Σ2,6,2. We remind that each
coefficient of H5 is a polynomial in the variables (u, v,c), with a0 = c2(v +u2), . . ., a8 = 5+2u−2c.
If the interior of the domain E5 is non-empty, then E5 has a priori the structure of a stratified
manifold. Its stratum of maximal dimension corresponds to polynomials defining the sign
pattern Σ1,7,2, Σ1,6,3 or Σ2,6,2. The closure D5 of the set D5 is defined by the inequalities v ≥ 0,
c ≥ 0 and its border ∂D5 by v ≥ 0, c ≥ 0, cv = 0.

No polynomial H5 ∈ ∂D5 is from the closure of the sign pattern Σ1,7,2, Σ1,6,3 or Σ2,6,2. Indeed,
for c = 0 < v or c > 0 = u = v , one has H5 = x2H 1

5 , where H 1
5 (0) > 0. Then the (generalized) sign

pattern of H5 cannot be adjacent to Σ1,7,2 or Σ2,6,2, but only to Σ1,6,3 and the one of H 1
5 is adjacent

to Σ1,6,1. By Lemma 22 such a polynomial H 1
5 does not exist. For v = 0 < c, u > 0, non-existence

of H5 follows from Lemma 23. For v = 0 < c, u < 0, the polynomial H5 has four positive roots
(counted with multiplicity) which by Descartes’ rule of signs requires at least four sign changes in
the (generalized) sign pattern – a contradiction. Thus c = 0 or v = 0 is impossible.

(B). Next we consider the two subdomains D+
5 := D5 ∩ {u ≥ 0} and D−

5 := D5 ∩ {u ≤ 0}. They are
convex. To show that no polynomial H5 ∈ D+

5 (resp. H5 ∈ D−
5 ) has the necessary (generalized) sign

pattern we consider the planes T +
r : u + v + c = r (resp. T −

r : −u + v + c = r ), r ∈ R. It is clear that
for r < 0, one has T ±

r ∩D±
5 =; and T ±

0 ∩D±
5 = {(0,0,0)}, with (0,0,0) ∈ ∂D5.

We suppose that there exists a polynomial H5 ∈ D±
5 having the necessary (generalized) sign

pattern. Then it is not in ∂D±
5 and belongs to some plane T ±

r for some r = r0 > 0. At the point
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(0,0,0) at least one coefficient a j of H5 has the wrong sign. The least possible value of r0 is the
least one for which H5 ∈ E5, i.e. where the signs of all coefficients correspond to the closure of the
sign pattern Σ1,7,2, Σ1,6,3 or Σ2,6,2. So for r = r0, at least one of the coefficients a j of H5 vanishes,
because the corresponding polynomial(s) H5 belong to the border, but not to the interior of the
set E5.

We use the method of Lagrange’s multipliers as follows. We are looking for the minimal value
of the function T ±

0 on the hypersurface {a j = 0}. We construct the function

T̃ ±
j :=±u + v + c +λa j ,

where λ is a Lagrange multiplier. For j = 0, . . ., 8, we consider the system of equations

∂T̃ ±
j /∂λ= a j = ∂T̃ ±

j /∂u = ∂T̃ ±
j /∂v = ∂T̃ ±

j /∂c = 0 .

In each case we are looking for a solution with λ ∈ R and (u, v,c) ∈ D±
5 . It turns out that in each

case either there is no solution or the sign of u, v or c of the solution is not the right one or the
signs of the coefficients of the obtained polynomial H5 are in contradiction with the closure of
the sign pattern Σ1,7,2, Σ1,6,3 or Σ2,6,2. This can be established using computer algebra.

(C). The multiplicity vector (5) is adjacent to four multiplicity vectors with two components:
(4,1), (3,2), (2,3) and (1,4). We prove the non-existence of polynomials

Hk,5−k := (x +µ)k (x +1)5−k ((x +u)2 + v)(x − c)2 , k = 1, 2, 3, 4 ,

with µ> 1 and with (u, v,c) as above. Hence

R4 ⊃ Dk,5−k = {(u, v,c,µ) | v > 0 , c > 0 , µ> 1 } .

As in (A) one shows that no polynomial Hk,5−k ∈ ∂Dk,5−k with c = 0 or v = 0 has signs of the coef-
ficients from the closure of Σ1,7,2, Σ1,6,3 or Σ2,6,2. For µ= 1, one is looking in fact for a polynomial
H5 about which it was shown in (A)–(B) that it does not exist. Hence Ek,5−k ∩∂Dk,5−k =;.

(D). To prove that E j ,5− j ∩D j ,5− j = ; we use again the method of Lagrange multipliers. We set
D+

k,5−k
:= Dk,5−k ∩ {u > 0}, D−

k,5−k
:= Dk,5−k ∩ {u < 0}, S±

r : ±u + v + c + (µ− 1) = r (r ∈ R) and

S̃±
j :=±u + v + c + (µ−1)+λa j . In this case

a8 = jµ+ (5− j )+2u −2c , . . . , a0 =µ j c2(v +u2) .

For j = 0, . . ., 8, and for k as above, we consider the system of equations

∂S̃±
j /∂λ= a j = ∂S̃±

j /∂u = ∂S̃±
j /∂v = ∂S̃±

j /∂c = ∂S̃±
j /∂µ= 0 .

We are looking for a solution with λ ∈R and (u, v,c,µ) ∈ D±
k,5−k . In each case either there is no real

solution or the sign of u, v , c or µ−1 of the solution is not the right one.

(E). The possible multiplicity vectors with three components are (2,2,1), (2,1,2), (1,2,2), (3,1,1),
(1,3,1) and (1,1,3). The polynomials H j ,k,5− j−k defined after the multiplicity vectors ( j ,k,5− j−k)
are

H j ,k,5− j−k := (x +µ2) j (x +µ1)k (x +1)5− j−k ((x +u)2 + v)(x − c)2 ,

with (u, v,c) as above and 1 <µ1 <µ2. We set

R5 ⊃ D j ,k,5− j−k := {(u, v,c,µ1,µ2) | v > 0 , c > 0 , 1 <µ1 ,1 <µ2 } ,

i.e. we consider a domain larger than the strict analog of the domains D5 and D j ,5− j . (The strict
analog would be defined by 1 < µ1 < µ2 instead of 1 < µ1, 1 < µ2.) This is done with the aim to
simplify the computations. We set also D−

j ,k,5− j−k
:= D j ,k,5− j−k∩{u < 0}, K ±

r : ±u+v+c+(µ1−1) = r
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(r ∈ R) and K̃ ±
i := ±u + v + c + (µ−1)+ (µ2 −1)+λai . For i = 0, . . ., 8, and for ( j ,k) as above, we

consider the system of equations

∂K̃ ±
i /∂λ= ai = ∂K̃ ±

i /∂u = ∂K̃ ±
i /∂v = ∂K̃ ±

i /∂c = ∂K̃ ±
i /∂µ1 = ∂K̃ ±

i /∂µ2 = 0 .

We are looking for a solution with λ ∈ R and (u, v,c,µ1,µ2) ∈ D±
j ,k,5− j−k . In each case either there

is no real solution or the sign of u, v , c, µ1−1 or µ2−1 of the solution is not the right one or, when
a solution exists, the obtained polynomial H j ,k,5− j−k does not have a (generalized) sign pattern
from the closure of Σ1,7,2, Σ1,6,3 or Σ2,6,2. □
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