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Abstract. We study the relations between the notion of purity of a t-module introduced by Anderson and that
of almost strict purity for a t-module introduced by Namoijam and Papanikolas (concept already mentioned
by G. Anderson and D. Goss).

Résumé. On étudie les relations entre la notion de pureté d’un t-module introduite par Anderson et celle
de presque pureté pour un t-module introduite par Namoijam et Papanikolas (concept déjà mentionné par
G. Anderson et D. Goss).
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1. Introduction

In [1], G.W. Anderson defined t-modules and the notion of purity. Related to t-modules, C.
Namoijam and M. A. Papanikolas defined the notion of almost strict purity in [4, Remark 4.5]
(concept already mentioned by G.Anderson in [1, Section 2.2] and D.Goss in [2, Remark 5.5]),
then they proved that an almost strictly pure t-module is pure. We are interested here in the
reciprocal, and with the help of the work of A. Maurischat in [3] we show that these two notions
are not equivalent by presenting a counter-example (see Theorem 3).

2. Purity

Let K a perfect field containing Fq . We let τ : K → K denote the q-th power Frobenius map and
K {τ} be the ring of twisted polynomials in τ over K , subject to the relation, τa = aqτ for any a ∈ K .

We further consider the skew Laurent series ring over K in σ := τ−1

K ({σ}) :=
{ ∞∑

i=k
aiσ

i

∣∣∣∣∣ k ∈Z, ai ∈ K

}
.
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Consider ℓ : Fq [t ] → K a homomorphism of Fq -algebras and denote σ= τ−1.
A t-module (E ,ϕ) over K of dimension d is by definition an Fq -vector space scheme E over

K isomorphic to Gd
a together with a homomorphism of Fq -algebras ϕ : Fq [t ] → Endgrp,Fq (E)

into the ring of Fq -vector space scheme endomorphisms of E , such that for all a ∈ Fq [t ], the
endomorphism dϕa on Lie(E) induced by ϕa fulfills the condition that dϕa −ℓ(a) is nilpotent.

We will fix in the following (E ,φ) a t-module on K of dimension d as well as a coordinate
system κ, i.e. an isomorphism of schemes in Fq -vector spaces κ : E ≃ Gd

a defined on K . With
respect to this coordinate system, we can represent φt by a matrix D ∈ Md (K {τ}).

Let pri :Gd
a →Ga (1 ≤ i ≤ d) be the projection to the i -th component of Gd

a , and let κi = κ◦pri .
Let κ̂ j :Ga → E be defined by κ̂ j = κ−1 ◦ inj j where inj j :Ga →Gd

a is the natural injection into the
j−th component.

We say that E is almost strictly pure if there is some integer s ≥ 1 such that

D s = A0 + A1τ+·· ·+ Arτ
r

with Ar ∈GLd (K ).
The t-motive M(E) of E is the free K {τ}-module of rank d with base {κ1, . . . ,κd } with a t-action

on this base defined by

t .

κ1
...
κd

= D

κ1
...
κd

 .

We define in a similar way the dual t-motive M as the free K {τ}-module of rank d of basis
{κ̂1, . . . , κ̂d } whose t-action (on the right) on this basis is defined by(

κ̂1 · · · κ̂d
) · · · t = (

κ̂1 · · · κ̂d
)

D.

We say that E is abelian if M(E) is a finitely generated K [t ]-module. In this case, we define w(M)
the weight of M by

w(M) = d

rk(E)
where rk(E) is the rank of M as a K [t ]-module (that is finite because E is abelian).

We moreover consider:

• The ring of formal power series in 1
t with coefficients in K denoted by K

[[ 1
t

]]
.

• The field of Laurent series in 1
t with coefficients in K denoted by K

(( 1
t

))
(that is the field

of fractions of K
[[ 1

t

]]
).

The t-motive M(E) and the t-module E are called pure if there exists a K
[[ 1

t

]]
-lattice Λ in

K
(( 1

t

))⊗K [t ] M as well as positive integers u, v ∈N such that

t uΛ= τvΛ.

We will use the following result, proved by A. Maurischat in [3, Theorem 6.6, Theorem 7.2],
characterizing the fact of being abelian and being pure using Newton polygons.

Theorem 1 (Maurischat). The t-module E is abelian if and only if the Newton polygon Nλd
of the

last invariant factor λd of the matrix D has only positive slopes. In this case, E is pure if and only
if Nλd

has exactly one edge. Then we have that the weight of M equals the reciprocal of the slope of
the edge.

Here we recall that the invariant factors of a matrix D ∈ Md (K {τ}) are obtained by diagonalizing
the matrix t Id−D ∈ Md (K ({σ})[t ]) by performing elementary operations on the rows and columns
in K ({σ})[t ] that are the following (denote by Li (resp Ci ) the i -th row (resp the i -th column)):
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• add to the i -th row Li the j -th row L j multiplied on the left by a ∈ K ({σ})[t ] denote by
Li → Li +a.L j (resp add to i -th column Ci the j -th column C j multiplied on the right by
a ∈ K ({σ})[t ] denote by Ci →Ci +C j ·a),

• multiply on the left i -th the row Li by an element u of K ({σ})∗ denoted by Li → uLi (resp
multiply on the right the i -th column Ci by u denoted by Ci →Ci u),

• exchanging two lines Li and L j (resp two columns Ci and C j ) denote by Li ↔ Li (resp
Ci ↔C j ).

Contrary to the commutative case the invariant factors are only unique up to similarity.

Example. In [3], Maurischat defined the t-module given by the matrix

M :=
(
θ 0
1 θ

)
+

(
0 0
1 0

)
·τ+

(
1 0
0 1

)
·τ2 +

(
0 1
0 0

)
·τ3 ∈ M2(K {τ}).

By diagonalizing the matrix t I2 −M we get the matrix(
1 0
0 λ2

)
where

λ2 =
(
−σ−3 + (θ+θq2

)σ−2 +θq3+1
)
−

(
2σ−2 +θq−3 +θ

)
· t + t 2 ∈ K ({σ}).

If char(K ) = 2 then we represent the Newton polygon of λ2 in Figure 1. It has only one edge of
slope 3

2 hence by Theorem 1 the t-module is abelian and pure of weight 2
3 .

The authors of [4] showed in the same paper the next result.

Theorem 2 (Namoijam, Papanikolas). With the previous notation, an almost strictly pure t-
module is pure of weight s

r .

We now turn our interest to the reciprocal of the above result, and we answer negatively.

Theorem 3. For any integer d ≥ 2 there exists a pure but not almost strictly pure t-module of
dimension d.

Proof. We first consider the case d = 2. Let us note θ = ℓ(t ). Consider the t-module given by the
matrix

D2 =
(
θ 0
1 θ

)
+

(
1 1
θ θ

)
·τ ∈ Md (K {τ}).

Let us diagonalize the matrix t I2 −D2 (the diagonalization is being taken over K ({σ})):(
t −θ−τ −τ
−1−θτ t −θ−θτ

)
L1↔L2−−−−−→

(−1−θτ t −θ−θτ
t −θ−τ −τ

)
C1→C1γ−−−−−−→

(
1 t −θ−θτ

(t −θ−τ)γ −τ
)

(
1 t −θ−θτ

(t −θ−τ)γ −τ
)

L2→L2−(t−θ−τ)γL1−−−−−−−−−−−−−−→
(
1 t −θ−θτ
0 −τ− (t −θ−τ)γ(t −θ−θτ)

)
(
1 t −θ−θτ
0 −τ− (t −θ−τ)γ(t −θ−θτ)

)
C2→C2+C1(−t+θ+θτ)−−−−−−−−−−−−−−−→

(
1 0
0 λ′

)
L2→−γ−1L2−−−−−−−−→

(
1 0
0 λ2

)
where

λ2 =−γ−1λ′

=−γ−1 (−τ− (t −θ−τ)γ(t −θ−θτ)
)

= t 2 + t · (−θ−θτ−γ−1θγ−γ−1τγ)+γ−1τ+γ−1θγθ+γ−1θγθτ+γ−1τγθ+γ−1τγθτ

and γ= (−1−θτ)−1.
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We represent the Newton polygon ofλ2 in Figure 2. It has only one edge of positive slope equal
to 1, hence according to Theorem 1 this t-module is pure of weight 1.

An immediate induction shows that for n ≥ 2, the leading coefficient of Dn
2 is given by the

matrix
n−1∏
k=1

(1+θqk
) · A

where

A =
(

1 1
θ θ

)
whose determinant is zero, so this t-module is not almost strictly pure. □

Now we consider the general case d > 2. We put m := d − 2 > 0 and consider the t-module
given by the matrix

D2+m =


D2

θ+τ
. . .

θ+τ

 ∈ M2+m(K {τ}).

This t-module is the direct sum of pure t-modules of weight 1 (the t-module associated to D2

and d−2 copies of the Carlitz module), so we can prove it is a pure t-module of weight 1, but here
we give a proof using Maurischat’s algorithm.

For n ≥ 1, the leading coefficient of the matrix Dn
2+m is the matrix(

Dn
2

Im

)
whose determinant is zero, so this t-module is not almost strictly pure.

Consider (J0) the algorithm that diagonalize as previously the matrix t I2 −D2. Applying (J0)
and exchanging row and columns, we get the matrix:

t I2+m −D2+m −→ S =


1

t −θ−τ
. . .

t −θ−τ
λ2

 ∈ M2+m(K {τ}[t ]).

Consider the euclidean division of λ2 by t −θ−τ:

λ2 = q(t −θ−τ)+ r, r ̸= 0 and degt (r ) = 0.

Let

S′ =
(

t −θ−τ
λ2

)
∈ M2(K {τ}[t ]).

We apply the following operations to the matrix S′ (and denote by (J1) this algorithm):

L2 −→ L2 −qL1

C2 −→C2 +C1

L2 −→ r−1L2

L1 −→ L1 − (t −θ−τ)L2

C2 −→C2 −C1r−1λ2

L1 ←→ L2

L2 −→−L2.
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We get the matrix: (
λ2

(t −θ−τ)r−1λ2

)
.

By successively applying the algorithm (J1) to the matrices S′ which appear from the matrix S, we
obtain the matrix

S −→


1
λ2

(t −θ−τ)r−1λ2

. . .

(t −θ−τ)r−1λ2

 .

As λ2 and t −θ−τ have Newton polygons consisting of only one edge of slope 1, the Newton
polygon of the last coefficient of the last matrix has only one edge of slope 1. It follows that the
Newton polygon of the last invariant factor of Dm+2 has only one edge of slope 1. Hence Dm+2 is
also a t-module which is pure of weight 1 but not almost strictly pure for all m ≥ 0.
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−2

−1

Figure 1: Newton polygon of the Anderson
module M constructed by Maurischat when

char(K ) = 2 .
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Figure 2: Newton polygon of the Anderson
module D2 in Theorem 3.
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