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Abstract. Let X be a Q-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-
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stable with respect to the anticanonical polarization. This relies among other things on a very general splitting
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1. Introduction

Let (X ,ω) be a Fano Kähler–Einstein manifold, i.e. X is a projective manifold with −KX ample
and admitting a Kähler metric ω solving Ricω = ω. It follows from the (easy direction of the)
Kobayashi–Hitchin correspondence that the tangent bundle of X splits as a direct sum of parallel
subbundles

TX =⊕
i∈I

Fi (1)

such that Fi is stable with respect to −KX . Since X is simply connected, de Rham’s splitting
theorem asserts that one can integrate the foliations arising in decomposition (1) and obtain an
isometric splitting

(X ,ω) ≃∏
i∈I

(Xi ,ωi )

into Kähler–Einstein Fano manifolds which is compatible with (1).
Over the last few decades, a lot of attention has been drawn to projective varieties with mild

singularities, in relation to the progress of the Minimal Model Program (MMP). In that context,
the notion ofQ-Fano variety (cf. Definition 1) has emerged and played a central role in birational
geometry.

On the analytic side, singular Kähler–Einstein metrics have been introduced and constructed
in various settings (see e.g. [2, 4, 18] and Definition 2). They induce genuine Kähler–Einstein
metrics on the regular part of the variety but are in general incomplete, preventing the use of most
useful results in differential geometry (like the de Rham splitting theorem mentionned above) to
analyze their behavior. However, these objects are well-suited to study (poly)-stability properties
of the tangent sheaf as it was observed by [25], relying on earlier results by [17].

In the Ricci-flat case, the holonomy of the singular metrics was computed in [20]. Moreover,
[15] provided an algebraic integrability result for foliations as well as a splitting result in that
setting. Building upon those results, Höring and Peternell [26] could eventually prove the singular
version of the Beauville–Bogomolov decomposition theorem.

In the positive curvature case, some simplifications appear (for instance, the algebraic integra-
bility of foliations can be related to stability properties by [5]) but new difficulties also arise: the
singularities are klt rather than canonical and Gorenstein, and one cannot regularize the singular
Kähler–Einstein metrics with an equally good control on the Ricci curvature. In this paper, our
main contribution is to single out and overcome those difficulties in order to prove the following
structure theorem forQ-Fano varieties that admit a Kähler–Einstein metric.

Theorem A. Let X be a Q-Fano variety admitting a Kähler–Einstein metric ω. Then TX is
polystable with respect to c1(X ). Moreover, there exists a quasi-étale cover f : Y → X such that
(Y , f ∗ω) decomposes isometrically as a product

(Y , f ∗ω) ≃∏
i∈I

(Yi ,ωi ),

where Yi is a Q-Fano variety with stable tangent sheaf with respect to c1(Yi ) and ωi is a Kähler–
Einstein metric on Yi .

Below are a few remarks about the result above.

• Theorem A shows that for all “practical aspects” the tangent sheaf of a Q-Fano variety
admitting a Kähler–Einstein metric can always be assumed to be stable. Moreover, it can
be expressed in a purely algebraic way using the notion of K -stability, cf. Remark 4 (this
is the case for Theorem B below as well).

• The quasi-étale cover above is needed to split X even when TX is already split, as we see
by taking e.g. X = (P1 ×P1)/〈ι× ι〉 where ι :P1 →P1 is the involution ι([u : v]) = [u : −v].
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• It was proved very recently by Braun [6, Thm. 2] that the fundamental group of the regular
locus of a Q-Fano variety is finite. Relying on that result, one can refine Theorem A and
obtain that the varieties Yi satisfy the additional property: π1(Y reg

i ) = {1}.
• Semistability of TX for a Kähler–Einstein Q-Fano variety X was proved by Chi Li in [35,

Prop. 3.7] in the case where X admits a resolution where all exceptional divisors have
non-positive discrepancy, e.g. a crepant resolution.

Our second main result is the following generalisation of a theorem of Tian [37, Thm. 0.1],
which is a way to express some “strong” polystability of TX .

Theorem B. Let X be a Q-Fano variety admitting a Kähler–Einstein metric. Then the canonical
extension of TX by OX is polystable with respect to c1(X ).

We refer to Section 3.1 for the construction of the canonical extension. As we explain further
below, at the end of the introduction (see paragraph on the strategy of proof of Theorem B), the
generalization from the smooth to the singular case requires some non-trivial new input on top
of the analytic techniques already developed for the proof of the semistability/polystability of the
tangent sheaf TX , i.e. Theorem 6.

In another direction, the semistability of the canonical extension has been proved in [35,
Thm. 1.4] for K -semistable log smooth log Fano pairs. It is very likely that the proof of the above
theorem will carry over mutatis mutandis to the more general setting of log Fano pairs, but we
will not pursue this direction in this paper.

Our last main result is a very general splitting theorem for algebraicallly integrable foliations,
which plays a key role in the proof of Theorem A, but is certainly of independent interest.

Theorem C. Let X be a normal projective variety, and let

TX =⊕
i∈I

Fi

be a decomposition of TX into involutive subsheaves with algebraic leaves. Suppose that there
exists aQ-divisor∆ such that (X ,∆) is klt. Then there exists a quasi-étale cover f : Y → X as well as
a decomposition

Y ≃∏
i∈I

Yi

of Y into a product of normal projective varieties such that the decomposition TX = ⊕
i∈I Fi lifts

to the canonical decomposition
T∏

i∈I Yi =
⊕
i∈I

pr∗i TYi .

Theorem C can be seen as the generalization of the splitting result in [15] where additional
assumptions are made, both on the singularities of X and the positivity of KFi . More precisely,
in [15] X is assumed to have canonical singularities, and the KFi are assumed to be Q-linearly
trivial. We also refer to [16, Thm. 1.5] for a somewhat related result. In comparison to [15,
Prop. 4.10], the range of applications of Theorem C is significantly broader.

Strategy of proof of the main results

Theorem A. The first step is the object of Theorem 6 where one proves that TX is the direct sum
of stable subsheaves that are parallel with respect to the Kähler–Einstein metric ω on Xreg. This
is achieved by computing slopes of subsheaves using the metric induced by the Kähler–Einstein
metric and using Griffiths’ well-known formula for the curvature of a subbundle. However, the
presence of singularities (for X and ω) makes it hard to carry out the analysis directly on X .
One has to work on a resolution using approximate Kähler–Einstein metrics as in [25]. Yet an
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additional error term appears in the Fano case, requiring to introduce some new ideas to deal
with it as explained on page 99, cf “term (I)”.

Once Theorem 6 is at hand, one can appeal to Theorem C where the foliations are induced
by the Kähler–Einstein metric as showed in the first step. Note that the algebraic integrability of
these foliations follows from the deep results of [5]. An easy induction allows one to split X as
a product of Q-Fano varieties with stable tangent sheaf. The isometric splitting follows from a
suitable characterization of singular Kähler–Einstein metrics, cf. Claim 28.

Theorem B. The proof of Theorem B takes up most of Section 3. It relies largely on the compu-
tations carried out in Section 2 to prove the polystability of TX , but on top of those, several new
ideas are needed to overcome the presence of singularities.

First, one needs to reduce the statement to one on a resolution in order to use analytic
methods. Then we use again the technique of working with approximate Kähler–Einstein metrics,
but in the current context this has the effect of modifying the canonical extension as well.
As a result, we cannot evaluate directly the slope of a subsheaf of the canonical extension
corresponding to the initial Kähler–Einstein metric. Dealing with this difficulty is our main
contribution in this framework. The rest of the proof uses a combination of the original idea
of Tian and the computations of Section 2.

Theorem C. The starting point is the observation that since each foliation Fi admits a comple-
ment inside TX , Fi is automatically weakly regular. It turns out that weakly regular foliations
have many nice properties. The important fact which is established here is that an algebraically
integrable, weakly regular foliation on a Q-factorial projective variety with klt singularities is in-
duced by a surjective, equidimensional morphism X → Y , cf. Theorem 17. When combined with
suitable generalisations of other techniques and results in [16], this leads to the proof of Theo-
rem C.

Acknowledgements

It is our pleasure to thank Daniel Greb, Stefan Kebekus and Thomas Peternell for sharing their
results [23] and encouraging us to prove Theorem B. H. G. thanks Sébastien Boucksom for useful
discussions about Remark 4.

Finally, we thank the referee for the helpful and detailed report.

2. Polystability of the tangent sheaf

2.1. Set-up

2.1.1. Notation

Definition 1. Let X be a projective variety of dimension n. We say that X is a Q-Fano variety if X
has klt singularities and −KX is an ampleQ-line bundle.

We also recall the definition of (twisted) singular Kähler–Einstein metric, cf. [2].

Definition 2. Let X be a Q-Fano variety, let ϑ ∈ c1(X ) be a smooth representative and let γ ∈ [0,1).
A twisted Kähler–Einstein metric relatively to the couple (ϑ,γ) is a closed, positive current ωKE,γ ∈
c1(X ) with bounded potentials, which is smooth on Xreg and satisfies

RicωKE,γ = (1−γ)ωKE,γ+γϑ
on that open set. When γ= 0, we write ωKE :=ωKE,0 and we call it a Kähler–Einstein metric.
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Remark 3. By [2, Prop. 3.8], a smooth Kähler metric ω ∈ c1(Xreg) on Xreg satisfying Ricω = ω

extends to a Kähler–Einstein metric in the sense of Definition 2 if and only if
∫

Xreg
ωn = c1(X )n .

In particular, if f : Y → X is a (finite) quasi-étale cover between Q-Fano varieties and ωKE is a
Kähler–Einstein metric on X , then f ∗ωKE is a Kähler–Einstein metric on Y .

Let ωX ∈ c1(X ) be a fixed Kähler metric on X . We will systematically make either one of the
following assumptions:

Assumption A. For any γ ∈ (0,1) small enough, there exists a twisted Kähler–Einstein metricωKE,γ

on X relatively to (ωX ,γ).

Assumption B. There exists a Kähler–Einstein metric ωKE on X .

Remark 4. One can rephrase the Assumptions A-B using the algebraic notion of K -stability. It
follows from [36] (building upon results of [8–10], [38], [34], [3] in the smooth case) that

• X satisfies Assumption A if and only if X is K -semistable.
• X satisfies Assumption B if X is uniformly K -stable, and the converse holds provided

Aut◦(X ) = {1}.

Notation 5. Let π : X̂ → X be a resolution of singularities of X with exceptional divisor E =∑
k∈I Ek and discrepancies ak >−1 given by

K X̂ =π∗KX +∑
ak Ek .

There exist numbers εk ∈ Q+ such that the cohomology class π∗c1(X )−∑
εk c1(Ek ) contains a

Kähler metricωX̂ . We fix them for the rest of the paper. Next, we pick sections sk ∈ H 0(X̂ ,OX̂ (Ek ))
such that Ek = (sk = 0), smooth hermitian metrics hk on OX̂ (Ek ) with Chern curvature ϑk :=
iΘhk

(Ek ) and a volume form dV on X̂ such that RicdV =π∗ωX −∑
k∈I akϑk . We set

hE := ∏
k∈I

hk (2)

which defines a smooth metric on OX̂ (E).

2.1.2. The twisted Kähler–Einstein metric and its regularizations

In this section, we assume that either Assumption A or Assumption B is fulfilled so that there
exists a (twisted) Kähler–Einstein metric ωKE,γ

• either for any γ ∈ [0,1) such that 0 < γ≪ 1
• or for γ= 0.

For the time being, the parameter γ is fixed.
We denote by π∗ωKE,γ =π∗ωX +ddcϕ the singular metric solving

(π∗ωX +ddcϕ)n = e−(1−γ)ϕ f dV

where f = ∏
i∈I |si |2ai ∈ Lp (dV ) for some p > 1. It is known that ϕ is bounded (even continuous)

on X̂ and smooth outside E , cf. [2]. Note thatϕ depends on γ, but as notation will get quite heavy
later, we choose not to highlight that dependence.

Next, we choose a family ψε ∈C∞(X̂ ) of quasi-psh functions on X̂ such that:

• One has ψε→ϕ in L1(X̂ ) and in C∞
loc(X̂ \ E).

• There exists C > 0 such that ∥ψε∥L∞(X̂ ) ≤C .
• There exists a continuous function κ : [0,1] →R+ with κ(0) = 0 such that π∗ωX +ddcψε ≥

−κ(ε)ωX̂ .

This is a standard application of Demailly’s regularization results ([11]). The smooth convergence
outside E claimed in the first item follows from the explicit expression of the function ψε, see
e.g. [13, (3.3)].
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For ε, t ≥ 0, one introduces the unique function ϕt ,ε ∈ L∞(X )∩PSH(X̂ ,π∗ωX + tωX̂ ) solving{
(π∗ωX + tωX̂ +ddcϕt ,ε)n = fεe−(1−γ)ψεe−ct dV

supX̂ ϕt ,ε = 0

where

• fε := eaε
∏

(|si |2 +ε2)ai ,
• aε is a normalizing constant such that

∫
X̂ fεe−(1−γ)ψεdV = c1(X )n ; it converges to 1 when

ε→ 0.
• ct is defined by {π∗ωX + tωX̂ }n = ect · c1(X )n .

The existence and uniqueness ofϕt ,ε follows from Yau’s theorem [39] when t ,ε> 0 (in which case
ϕt ,ε is actually smooth) while the general case is treated in [18]. It follows from ibid. that there
exists a constant C > 0 such that

∥ϕt ,ε∥L∞(X ) ≤C (3)

for any t ,ε ∈ [0,1]. Moreover, any weak limit ϕ̂ of a sequence (ϕtk ,εk ) is bounded and is a smooth
limit outside E . Therefore, it solves the equation

(π∗ωX +ddc ϕ̂)n = e−(1−γ)ϕ f dV

on X̂ . By the uniqueness result [18, Thm. A], we have ϕ̂=ϕ. That is

ϕt ,ε −→
t ,ε→0

ϕ in L1(X̂ ) and in C∞
loc(X̂ \ E). (4)

One sets
ωt ,ε :=π∗ωX + tωX̂ +ddcϕt ,ε (5)

which solves the equation
Ricωt ,ε =π∗ωX + (1−γ)ddcψε−Θε (6)

where
Θε =Θ(E ,hεE ) =∑

aiϑi ,ε (7)

is the curvature of
hεE =∏

i
(|si |2 +ε2)−1hi (8)

and ϑi ,ε =ϑi +ddc log(|si |2 +ε2) converges to the current of integration along Ei when ε→ 0.

2.2. Stability of TX .

Setup and notation as in Section 2.1.
Let F ⊂ TX̂ be a subsheaf of positive rank r . We can assume that F is saturated in TX̂ , i.e.

TX̂ /F is torsion-free. This is because saturating a subsheaf increases its slope.
From now on, we choose small numbers t ,ε > 0 which we will later let go to zero. The

Kähler metric ωt ,ε defined in (5) induces an hermitian metric ht ,ε on TX̂ which in turn induces a
hermitian metric hF on F :=F |W , where W ⊂ X̂ is the maximal locus where F is a subbundle of
TX̂ . Then, it is classical (see e.g. [29, Rem. 8.5]) that one can compute the slope of F by integrating
the trace of the first Chern form of (F,hF ) over W , i.e.∫

W
c1(F,hF )∧ωn−1

t ,ε = c1(F ) · {ωt ,ε}n−1. (9)

On W , we have the following standard identity (cf. e.g. [12, Thm. 14.5])

iΘ(F,hF ) = prF

(
iΘ(TX̂ ,ht ,ε)|F

)+βt ,ε∧β∗
t ,ε,

where β ∈ C ∞
0,1(W,Hom(TX̂ ,F )) (i.e. β is a smooth (0,1)-form on W with values in Hom(TX̂ ,F ))

and β∗ is its adjoint with respect to ht ,ε and hF . Therefore, we get

c1(F,hF )∧ωn−1
t ,ε = trEnd

(
prF

(
iΘ(TX̂ ,ht ,ε)|F

))∧ωn−1
t ,ε + trEnd(βt ,ε∧β∗

t ,ε∧ωn−1
t ,ε ). (10)
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By (9), the integral of the left-hand side over W , yields r times the slope of F with respect to
{π∗ωX + tωX̂ }. As for the right-hand side, one can simplify the first term using the formula

n · iΘ(TX̂ ,ht ,ε)∧ωn−1
t ,ε = (♯Ricωt ,ε)ωn

t ,ε. (11)

Here we denote by ♯Ricωt ,ε the endomorphism of TX̂ induced by the Ricci curvature of ωt ,ε.
The equation (6) is equivalent to

Ricωt ,ε = (1−γ)ωt ,ε+γπ∗ωX − tωX̂ + (1−γ)ddc (ψε−ϕt ,ε)−Θε. (12)

Using the formula above, one gets

µωt ,ε (F ) ≤ (1−γ)µωt ,ε (TX )+ 1−γ
nr

∫
X̂

trEnd prF (♯ddc (ψε−ϕt ,ε))|F ωn
t ,ε︸ ︷︷ ︸

=:(I)

+ γ

nr

∫
X̂

trEnd prF (♯π∗ωX )|F ωn
t ,ε︸ ︷︷ ︸

=:(II)

− 1

nr

∫
X̂

trEnd prF (♯Θε)|F ωn
t ,ε︸ ︷︷ ︸

=:(III)

+ 1

nr

∫
W

trEnd(βt ,ε∧β∗
t ,ε∧ωn−1

t ,ε )︸ ︷︷ ︸
=:(IV)

.

We therefore have four terms to deal with. To deal with (II)–(IV), we will use the same
computations as in [25], cf. explanations below. The main new term is (I), which we treat first.

The term (I). It arises from the fact that, say when γ = 1, we can not necessarily solve the
perturbed equation Ricωt ,ε =ωt ,ε− tωX̂ −Θε unlike in the case where KX is ample or trivial. If all
the discrepancies ai were negative, one could likely still solve that equation using e.g. properness
of Ding functional but we will not expand on that.

In order to deal with (I), one makes the following observations:
• Given δ> 0, there exist η= η(δ) > 0 and an open neighborhood Uδ of E ⊂ X̂ such that

∀ ε, t ≤ η,
∫

Uδ

(ωψε +ωt ,ε)∧ωn−1
t ,ε ≤ δ, (13)

where ωψε = π∗ωX + tωX̂ + ddcψε. This inequality is a consequence of the Chern–Levine–
Nirenberg inequality along with the bound of the potentials below

∃C > 0,∀ ε, t , ∥ϕt ,ε∥L∞(X̂ ) +∥ψε∥L∞(X̂ ) ≤C (14)

that we infer from (3). Indeed, as explained in [25], one proceeds as follows. Let
(
Ξδ

)
δ>0 be a

family of functions defined on R+, such that Ξδ(x) = 0 if x ≤ δ−1 and Ξδ(x) = 1 if x ≥ 1+δ−1.
Moreover we can assume that the derivative of Ξδ is bounded by a constant independent of δ.
Then we evaluate the quantity∫

X̂
Ξδ

(
loglog

1

|sE |2
)
(ωψε +ωt ,ε)∧ωn−1

t ,ε (15)

and the proof of the classical Chern–Levine–Nirenberg (see e.g. [12, III.3 (3.3)]) inequality shows
that the integral in (13) is smaller than ∫

Uδ

ωn
E (16)

up to a constant which is independent of t ,ε. In (16) we denote byωE a metric with Poincaré sin-
gularities along the divisor E , and by Uδ the support of the truncation function Ξδ

(
loglog 1

|sE |2
)
.

Here the main point is that the norm of the Hessian of the truncation function is uniformly
bounded when measured with respect to ωE . The conclusion follows.
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The hermitian endormorphism ♯ddc (ψε−ϕt ,ε) is dominated (in absolute value) by the positive
endomorphism

♯(ωψε +ωt ,ε)

whose endomorphism trace is nothing but trωt ,ε (ωψε +ωt ,ε). By (13), we are done with (I) on Uδ.
• The second observation is that given K ⋐ X̂ \ E , there exists η= η(K ) > 0 such that

∀ ε, t ≤ η, ∥ψε−ϕt ,ε∥C 2(K ) ≤ δ. (17)

This is a consequence of the fact that (ϕt ,ε) and (ψε) converge uniformly (in ε, t ) to ϕ on K by
stability of the Monge–Ampère operator, cf. e.g. [24, Thm. C], and have uniformly bounded C p (K )
norm for any p thanks to (14), Tsuji’s trick and Evans–Krylov plus Schauder estimates.

Therefore, one has ±♯ddc (ψε−ϕt ,ε) ≤ δωX̂ hence (I) is controlled on K by δ
∫

K ωX̂ ∧ωn
t ,ε ≤Cδ.

Conclusion. Let Ft ,ε := trEnd prF (♯ddc (ψε−ϕt ,ε))|F ωn
t ,ε. One fixes δ > 0. We get a neighborhood

Uδ of E and a number η′ = η′(δ) > 0 such that
∫

Uδ
Ft ,ε ≤ δ for any ε, t ≤ η′. Applying the second

observation to K = X̂ \Uδ, we find η′′ = η′′(δ) such that
∫

X \Uδ
Ft ,ε ≤Cδ for any ε, t ≤ η′′. Choosing

η := min{η′,η′′}, we find that

∀ ε, t ≤ η,
∫

X̂
Ft ,ε ≤C ′δ.

In short, the term (I) converges to zero when ε, t → 0.

The term (II). As π∗ωX ≥ 0, one has

trEnd prF (♯π∗ωX )|Fωn
t ,ε ≤ trEnd(♯π∗ωX )ωn

t ,ε

= trωt ,ε (π∗ωX ) = nπ∗ωX ∧ωn−1
t ,ε .

Integrating over X , one finds
(II) ≤ γr−1(π∗c1(X ) · {ωt ,ε}n−1)

and the right-hand side converges to γn
r µ(TX̂ ) when t → 0, where the slope is taken with respect

to π∗c1(X ).

The term (III). As said above, the arguments to treat this term are borrowed from [25]. For the
convenience of the reader, we will recall the important steps. To lighten notation, we will drop

the index i . One can write Θε = ε2|D ′s|2
(|s|2+ε2)2 + ε2

|s|2+ε2 ·ϑ. Let us set gε := ε2

|s|2+ε2 . Up to rescaling ωX̂ ,
one can assume that −ωX̂ ≤ϑ≤ωX̂ so that Θε+ gεωX̂ ≥ 0. Then one sees easily that

trEnd prF (♯Θε)|F ωn
t ,ε ≤ trEnd

(
♯Θε+ ♯(gεωX )

)
ωn

t ,ε

=Θε∧ωn−1
t ,ε + gεωX̂ ∧ωn−1

t ,ε

and one obtains that the term (III) converges to zero when ε, t → 0 since

• ∫
X Θε∧ωn−1

t ,ε = c1(E)· {π∗ωX + tωX̂ }n−1 and E is exceptional,
• ∫

X gεωX̂ ∧ωn−1
t ,ε → 0 when ε, t → 0 thanks to the smooth convergence to 0 outside E and

the Chern–Levine–Nirenberg inequality combined with the bound (3) on the potentials,
cf. first item in Part (I).

The term (IV). Note that the term βt ,ε∧β∗
t ,ε is pointwise negative in the sense of Griffiths on W .

In particular, the term (IV) is non-positive. Since (I) and (III) converge to zero, this shows that

µ(F ) ≤ (
1+γ(n

r
−1

)) ·µ(TX̂ ), (18)

where the slope is taken with respect to π∗c1(X ).
Working under Assumption A, one obtains the inequality (18) above for any γ > 0 small

enough. In particular, this shows that under Assumption A, TX̂ is semistable with respect to
π∗c1(X ).
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From now on, we assume that the stronger Assumption B holds; i.e. one can choose γ = 0.
Assume additionally that there exists a subsheaf F ⊂ TX̂ with the same slope as TX̂ and let F sat

be its saturation in TX̂ ; it is a subbundle in codimension one. As the slope has not increased by
saturation, F = F sat in codimension one on X̂ \ E . Therefore, if we set W ◦ := W ∩ (X̂ \ E), then
W ◦ ⊂ X̂ \ E has codimension at least two and by the above computation, one has

lim
ε,t→0

∫
W ◦

(βt ,ε∧β∗
t ,ε∧ωn−1

t ,ε ) = 0.

We know by (4) that βt ,ε → β∞ locally smoothly on W ◦ when ε, t → 0 where β∞ is the second
fundamental form induced by the hermitian metric hKE induced by π∗ωKE on TX̂ |W ◦ and on
F |W ◦ by restriction. By Fatou lemma, we have β∞ ≡ 0 on W ◦, that is, we have a holomorphic
decomposition TX̂ |W ◦ =F |W ◦ ⊕F |⊥W ◦ where the orthogonal is taken with respect to hKE.

We are now ready to prove

Theorem 6. Let X be aQ-Fano variety.

(i) If Assumption A is satisfied, then TX is semistable with respect to c1(X ).
(ii) If Assumption B is satisfied, then TX is polystable with respect to c1(X ). More precisely, we

have:
• Any saturated subsheaf F ⊂ TX with µ(F ) = µ(TX ) is a direct summand of TX and

F |Xreg ⊂ TXreg is a parallel subbundle with respect to ωKE.
• There exists a decomposition

TX =⊕
i∈I

Fi

such that Fi is stable with respect to c1(X ), Fi |Xreg ⊂ TXreg is a parallel subbundle
with respect to ωKE, and the decomposition TXreg = ⊕i∈I Fi |Xreg is orthogonal with
respect to ωKE.

Proof. Let F ⊂ TX be a subsheaf and letα := c1(X ). The sheaf F induces a subsheaf G ◦ ⊂ TX̂ |X̂ \E
and we denote by G ⊂ TX̂ the saturation of G ◦ in TX̂ . By the arguments above (cf. inequality (18)
and the comments below it), one has µπ∗α(G ) ≤ µπ∗α(TX̂ ) = c1(X )n/n = µα(TX ). Moreover, one
has clearly µπ∗α(G ) =µα(F ). This shows that TX is semistable with respect to c1(X ).

Now, assume that there exists a Kähler–Einstein metric ωKE. If F ⊂ TX satisfies µα(F ) = 0,
then µπ∗α(G ) = 0 and we have shown above that π∗ωKE induces a splitting TX̂ |W =G |W ⊕ (G |W )⊥
over a Zariski open subset W ⊂ X̂ \E whose complement in X̂ \E has codimension at least two. Set
V :=π(W ) ⊂ Xreg so that F |V is a subbundle of TX and we have a splitting TX |V =F |V ⊕ (F |V )⊥

induced by ωKE and codimX (X \V ) ≥ 2.
Let us denote by j : V ,→ X the open immersion. As F ⊂ TX is saturated, it is reflexive, hence

j∗(F |V ) = F . Moreover, (F |V )⊥ extends to a reflexive sheaf F⊥ := j∗((F |V )⊥) on X satisfying
TX = F ⊕F⊥ on the whole X . In particular, F is a direct summand of TX and as such, it is
subbundle of TX over Xreg. By iterating this process and starting with F with minimal rank,
one can decompose TX = ⊕

i∈I Fi into reflexive sheaves which, over Xreg, are parallel (pairwise
orthogonal) subbundles with respect to ωKE. □

3. Polystability of the canonical extension

In this section, we keep using the setup and notation of Section 2.1.

3.1. The canonical extension

Let E be a coherent sheaf on X sitting in the exact sequence below

0 −→Ω[1]
X −→ E −→OX −→ 0. (19)
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The sheaf E is automatically torsion-free and it is locally free on Xreg.

Remark 7. Let U ⊂ X be a non-empty Zariski open subset. As an extension of OX by Ω[1]
X ,

E |U is uniquely determined by the image of 1 ∈ H 0(U ,OX ) in H 1(U ,Ω[1]
X ) under the connecting

morphism in the long exact sequence arising from H 0(U ,−).

From now on, one assumes that the extension class of E is the image of c1(X ) in H 1(X ,Ω1
X )

under the canonical map

Pic(X )⊗Q≃ H 1(X ,O∗
X )⊗Q→ H 1(X ,Ω1

X ) → H 1(X ,Ω[1]
X ).

This is legitimate since KX isQ-Cartier.

Definition 8. The dual E ∗ of the sheaf E sitting in the exact sequence (19) with extension class
c1(X ) is called the canonical extension of TX by OX .

The exact sequence (19) is locally splittable since for any affine U ⊂ X , one has h1(U ,Ω[1]
U ) = 0.

In particular, when one dualizes (19), one see that the canonical extension of TX by OX sits in the
short exact sequence below

0 −→OX −→ E ∗ −→ TX −→ 0. (20)

The goal of this section is to prove the following, cf. Theorem B.

Theorem 9. Let X be aQ-Fano variety. If Assumption A (resp. Assumption B) is satisfied, then the
canonical extension E ∗ of TX by OX is semistable (resp. polystable) with respect to c1(X ).

The proof of Theorem 9 above is divided into three main steps corresponding to the next three
sub-sections. First one can reduce the semistability statement above to a semistability property
on the resolution X̂ thanks to Lemma 10, then we prove the said statement, cf. Theorem 11 and,
finally, we prove polystability assuming the existence of a Kähler–Einstein metric.

3.2. Reduction to a statement on the resolution

Let Ê be the vector bundle on X̂ sitting in the exact sequence below

0 −→Ω1
X̂
−→ Ê −→OX̂ −→ 0 (21)

such that its extension class is π∗c1(X ) ∈ H 1(X̂ ,Ω1
X̂

). Its dual sits in the exact sequence

0 −→OX̂ −→ Ê ∗ −→ TX̂ −→ 0. (22)

Lemma 10. If the vector bundle Ê ∗ is semistable with respect to π∗c1(X ), then the torsion-free
sheaf E ∗ is semistable with respect to c1(X ).

Although slope stability is usually defined with respect to an ample polarization, the same
definition actually makes sense with respect to an arbitrary nef class like π∗c1(X ), cf e.g. [22].

Proof. Set α := c1(X ). Let X ◦ ⊆ Xreg be an open set with complement of codimension at least 2
in X such that the restriction π|X̂ ◦ of π to X̂ ◦ := π−1(X ◦) induces an isomorphism X̂ ◦ ≃ X ◦. By
Remark 7 we have

(π∗E ∗)|X̂ ◦ ≃ Ê ∗
|X̂ ◦ . (23)

Let F ⊆ E ∗ be a subsheaf and let F̂ ⊆ Ê ∗ be the saturated subsheaf of Ê ∗ whose restriction to
X̂ ◦ is (π∗F )|X̂ ◦ . By the projection formula together with the fact that X \ X ◦ has codimension at
least 2 in X , we have

µα(F ) =µπ∗α(F̂ ) and µα(E ∗) =µπ∗α(Ê ∗).

The lemma follows easily. □
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3.3. Statement on the resolution

In this section, we prove that the vector bundle Ê ∗ from Section 3.2 is semistable with respect
to π∗c1(X ), cf. Theorem 11 below. In order to streamline the notation, we set V := Ê ∗ and in
the following we will not distinguish between the locally free sheaf V and the associated vector
bundle. Recall that V fits into the exact sequence of locally free sheaves

0 −→OX̂ −→V → TX̂ −→ 0. (24)

We denote by β ∈ H 1(X̂ ,T⋆
X̂

) the second fundamental form.
Our result in this section is a singular version of Theorem 0.1 in [37].

Theorem 11. Let X be aQ-Fano variety satisfying Assumption A. Let V be the vector bundle on X̂
appearing in (24), whose extension class β coincides with the inverse image of the first Chern class
of X by the resolution π : X̂ → X . Then V is semistable with respect to π⋆c1(X ).

Proof. The strategy of proof is as follows. We would like to compute the slope of F using an
hermitian metric on V induced by the (twisted) Kähler–Einstein metric, using an approximation
process as in Section 2.2. As the natural metric in the extension class of V is singular, we
introduce an algebraic 1-parameter family (Vz )z∈C that can be endowed with natural smooth
hermitian metrics for suitable z ∈ R close to zero and such that we have sheaf injections V ,→
Vt ⊗OX̂ (E). We then proceed to compute slopes following the strategy of Section 2.2.

Step 1. Deformations of V . We pick an arbitrary subsheaf F ⊆V of the vector bundle V sitting
in the exact sequence below

0 →OX̂ →V → TX̂ → 0

and corresponding to the extension class

α= (ai j ) ∈ Ext1(TX̂ ,OX̂ ) ≃ H 1(X̂ ,H om(TX̂ ,OX̂ ))

relatively to a covering by open subsets (Ui ). The bundle V can be obtained as follows: on Ui , it
is the trivial extension, V|Ui =OX̂ |Ui

⊕TX̂ |Ui
and the transition functions are given by(

IdOX̂
|Ui j ai j

0 IdTX̂
|Ui j

)
.

The subsheaf F is given by two morphisms of sheaves pi : F|Ui → OX̂ |Ui
and qi : F|Ui → TX̂ |Ui

satisfying {
pi |Ui j = p j |Ui j +ai j ◦ (q j |Ui j ),

qi |Ui j = q j |Ui j .

Recall that we have a reduced divisor E = E1 + ·· · +Er . Up to refining the covering (Ui ), one
can assume that Ek is given by the equation fki = 0 on Ui . The transition functions of OX̂ (Ek ) are

gk,i j = fk j

fki
.

Now, given complex numbers z1, . . . , zr ∈ C, one considers the extension Vz1,...,zr of TX̂ by OX̂
whose class is

α+ z1

[
dg1,i j

g1,i j

]
+·· ·+ zr

[
dgr,i j

gr,i j

]
=α+∑

k
zk c1(Ek ).

Set Vz1,...,zr (E) :=Vz1,...,zr ⊗OX̂ (E). Then, there is an injection of sheaves

F ⊆Vz1,...,zs (E)

extending F ⊆V ⊆V (E) for (zk ) in a Zariski open neighborhood of 0 ∈Cr .
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Indeed, consider the morphism F|Ui → Vz1,...,zs (E)|Ui given by pi +∑
k zk

d fki
fki

◦ qi on the first
factor and qi on the second. Those morphisms can be glued since one has

d fki

fki
= dgk,i j

gk,i j
+ d fk j

fk j
,

for any index k. The induced map F →Vz1,...,zs (E) is obviously injective for (zk ) in a Zariski open
neighborhood of 0 ∈Cr .

Now, recall that α=π∗c1(X ) and that the Kähler metric ωX̂ lives in the class α−∑
εk c1(Ek ) for

some εk > 0, so that the approximate Kähler–Einstein metric ωt ,ε belongs to (1+ t )αt , where

αt :=α− t

1+ t

∑
k
εk c1(Ek ).

For any t ∈R, we set

Vt :=Vz1,...,zr and Vt (E) :=Vt ⊗OX̂ (E)

where zk := − t
1+t · εk for 1 ≤ k ≤ r . This vector bundle Vt is the extension of TX̂ by OX̂ with

extension class αt and Vt (E) comes equipped with a sheaf injection

F ⊆Vt (E). (25)

Moreover, it is clear from the definition of Vz1,...,zr that we have

c1(Vt (E)) = c1(V )+ c1(E) (26)

for any t ∈R.

Step 2. Metric properties of Vt (E). First of all, we pick one number γ > 0 as in Assumption A. It
will be fixed until the very end of the argument.

We seek to endow Vt (E) with a suitable smooth hermitian metric, at least when t > 0 is small
enough. Given that Vt (E) =Vt ⊗OX̂ (E) and that we have already fixed a smooth hermitian metric
hE on OX̂ (E) in (2), it is enough to construct a hermitian metric on Vt .

Now, we can endow the bundles OX̂ and TX̂ with the trivial metric and the hermitian metric
ht ,ε induced by ωt ,ε, respectively. Now, we set

βt = 1

1+ t
ωt ,ε ∈αt

which we view as an element of C ∞
0,1(X̂ ,T ∗

X̂
). Relatively to a fixed C ∞ splitting of Vt , the direct

sum metric hVt
induced on Vt has a Chern connection DVt

which has the following expression

DVt
=

(
d −βt

β∗
t DTX̂

)
or equivalently

DVt
(s1, s2) =

(
d s1 −βt · s2,β⋆t · s1 +DTX̂

s2

)
(27)

where DTX̂
is the Chern connections induced by ht ,ε on TX̂ . Of course, it depends strongly on

the parameters t ,ε. We denote by β⋆t ∈C ∞
1,0(X̂ ,TX̂ ) the adjoint of βt ∈C ∞

0,1(X̂ ,T ∗
X̂

). Moreover, the
Chern curvature of DVt

is given by

Θ(Vt ,hVt
) =

(−βt ∧β∗
t D ′

T ∗
X̂

βt

∂β∗
t Θ(TX̂ ,ht ,ε)−β∗

t ∧βt

)
,

where D ′
T ∗

X̂

is the (1,0)-part of the Chern connection of (T⋆
X̂

,h∗
t ,ε).

We analyze next several quantities which are playing a role in the evaluation of the curvature
of Vt .
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• The factor βt . The form βt is given by

βt = 1

1+ t

∑
ωpq

(
∂

∂zp

)⋆
⊗dzq , (28)

where ωpq are the coefficients of ωt ,ε with respect to the coordinates (zi )i=1,...,n . Its adjoint is
computed by the formula

〈βt · v, w〉+〈v,β⋆t ·w〉 = 0, (29)

where the first bracket is the standard hermitian product in C and the second one is the one
induced by (TX̂ ,ht ,ε). We have

β⋆t =− 1

1+ t

∑ ∂

∂zi
⊗dzi . (30)

We have the following formulas

D ′
T ∗

X̂
βt = 0, ∂β⋆t = 0. (31)

The first equality holds since ωt ,ε is a Kähler metric while the second one is obvious from (30).
Moreover, we have

(1+ t )2 ·βt ∧β⋆t ∧ωn−1
t ,ε =− 1

n
ωn

t ,ε (32)

as well as

(1+ t )2 ·β⋆t ∧βt =ωt ,ε⊗ IdTX̂
. (33)

• The curvature of Vt . If we replace βt by (1+ t )
p
µβt for some positive number µ, this does not

affect the complex structure of the bundles at stake but only the metrics. Moreover, we see from
the identities (31)-(32)-(33) that the curvature becomes

Θ(Vt ,hVt
)∧ωn−1

t ,ε =
(µ

nω
n
t ,ε 0

0 Θ(TX̂ ,ht ,ε)∧ωn−1
t ,ε −µωn

t ,ε⊗ IdTX̂

)
.

Now we choose µ so that µ
n = 1−µ, i.e. µ := n

n+1 . Recalling (11) and the expression of the Ricci
curvature of ωt ,ε given in (12), we get that

Θ(TX̂ ,ht ,ε)∧ωn−1
t ,ε −µωn

t ,ε⊗ IdTX̂
= 1

n +1
ωn

t ,ε⊗ IdTX̂
+At ,ε,γω

n
t ,ε,

where

At ,ε,γ =−γ IdTX̂
+♯[γπ∗ωX − tωX̂ + (1−γ)ddc (ψε−ϕt ,ε)−Θε

]
(34)

is such that the number

at ,ε,γ := 1

n

∫
X̂

trEnd prF (At ,ε,γ)|F ωn
t ,ε

satisfies

limsup
γ→0

limsup
t→0

limsup
ε→0

at ,ε,γ = 0 (35)

thanks to the computations of Section 2.2.

• The curvature of Vt (E). Finally, we endow Vt (E) with the metric hVt (E) := hVt
⊗hE . It satisfies

Θ(Vt (E),hVt (E))∧ωn−1
t ,ε = 1

n +1
ωn

t ,ε⊗ IdVt
+At ,ε,γω

n
t ,ε+ (ΘE ∧ωn−1

t ,ε )⊗ IdVt (E) . (36)

where At ,ε,γ is defined in (34) and satisfies (35).

Step 3. The slope inequality. Now, one wants to follow the strategy in Section 2.2 and compute
the slope of F using the induced metric hFt from (Vt (E),hVt (E)) under the sheaf injection (25).
The metric hFt is well-defined only on the locus W ⊂ X̂ where Ft := F |W is a subbundle. As F
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may not be saturated in Vt (E), the complement of W may have codimension one. However, we
have the formula

µωt ,ε (F ) = 1

r

∫
W

c1(Ft ,hFt )∧ωn−1
t ,ε − c1(D) · {ωt ,ε}n−1

≤ 1

r

∫
W

c1(Ft ,hFt )∧ωn−1
t ,ε

≤µωt ,ε (Vt (E))+at ,ε,γ+ c1(E) · {ωt ,ε}n−1

where D is an effective divisor such that OX (D) = det((Vt (E)/F )tor). Since E is π-exceptional, the
conclusion follows from the curvature formula (36) along with (35) and the two easy facts below

• µωt ,ε (F ) →µα(F ) when t → 0,
• µωt ,ε (Vt (E)) →µα(V ) when t ,ε→ 0 since E is exceptional, cf. (26).

Theorem 11 is now proved. □

3.4. Polystability

In this paragraph, we work under the Assumption B and we aim to prove the second part of
Theorem 9, i.e. that E ∗ is polystable with respect to c1(X ).

By a standard inductive argument, it is enough to prove that if F ⊂ E ∗ is any saturated
subsheaf with µc1(X )(F ) = µc1(X )(E ∗), then it is holomorphically complemented; i.e. there exists
G ⊂ E ∗ such that E ∗ =F ⊕G .

Let F be such a subsheaf and let F̂ ⊂ V the induced sheaf on X̂ , cf. Lemma 10; it satisfies
µα(F̂ ) = µα(E ∗). The same arguments as in the end of Section 2.2 show the orthogonal
complement Ĝ of F̂ ⊂ V0(E) with respect to the well-defined hermitian metric hV0(E) on X̂ \ E
is holomorphic. Note that V0(E) ≃ Ê ∗ on X̂ \ E , hence π∗(V0(E)|X̂ \E ) ≃ E ∗ by (23).

Now, define G :=π∗Ĝ on Xreg; this is a coherent subsheaf of E ∗|Xreg by the observation above.
We can extend it to a coherent saturated subsheaf G ⊂ E ∗ across Xsing; in particular, G is reflexive.
The injection F ⊕G ,→ E ∗ isomorphic over Xreg, hence everywhere by reflexivity of the sheaves
involved. This concludes the proof of Theorem 9.

4. A splitting theorem

4.1. Foliations

In this section, we recollect some results about foliations that we will use later on for the reader’s
convenience. We refer to [16, §3 and 4] and the references therein for notions around foliations
on normal varieties and their singularities.

Here we only recall the notion of weakly regular foliation. Let F be a foliation of positive rank
r on a normal variety X . The r -th wedge product of the inclusion F ⊆ TX gives a map

OX (−KF ) ,→ (∧r TX )∗∗.

We will refer to the dual map
Ω[r ]

X →OX (KF )

as the Pfaff field associated to F . The foliation F is called weakly regular if the induced map

(Ωr
X ⊗OX (−KF ))∗∗ →OX

is surjective (see [16, §5.1]).

Examples of weakly regular foliations are provided by the following result (see [16, Lem. 5.8]).
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Lemma 12. Let X be a normal variety, and let F be a foliation on X . Suppose that there exists a
distribution G on X such that TX =F ⊕G . Then F is weakly regular.

The following lemma says that a weakly regular foliation has mild singularities if its canonical
divisor is Cartier and the ambient space has klt singularities (see [16, Lem. 5.9]).

Lemma 13. Let X be a normal variety with klt singularities, and let F be a foliation on X . Suppose
that KF is Cartier. If F is weakly regular, then it has canonical singularities.

Next, we recall the behaviour of weakly regular foliations with respect to finite covers (see [16,
Prop. 5.13]).

Lemma 14. Let X be a normal variety, let F be a foliation on X , and let f : X1 → X be a finite cover.
Suppose that each codimension 1 irreducible component of the branch locus of f is F -invariant.
Then F is weakly regular if and only if f −1F is weakly regular.

Finally, we recall the behaviour of foliations with canonical singularities with respect to finite
covers and birational maps (see [16, Lem. 4.3]).

Lemma 15. Let f : X1 → X be a finite cover of normal varieties, and let F be a foliation on X
with KF Q-Cartier. Suppose that each codimension 1 component of the branch locus of f is F -
invariant. If F has canonical singularities, then f −1F has canonical singularities as well.

Recall that Q-divisors D1 and D2 are said to be Q-linearly equivalent if there exists an integer
m > 0 such that mD1 and mD2 are linearly equivalent. We write D1 ∼Q D2.

Lemma 16. Let q : Z → X be a birational quasi-projective morphism of normal varieties, and
let F be a foliation on X . Suppose that KF is Q-Cartier and that Kq−1F ∼Q q∗KF . If F has
canonical singularities, then q−1F has canonical singularities as well.

Proof. By assumption, there exist a normal variety Z ⊇ Z and a projective birational morphism
q : Z → X whose restriction to Z is q . The same argument used in the proof of [16, Lem. 4.2]
shows that

a(E , Z , q −1F ) = a(E , X ,F )

for any exceptional prime divisor E over Z with non-empty center in Z . The lemma follows
easily. □

4.2. Weakly regular foliations with algebraic leaves

This section contains a generalization of Theorem 6.1 in [16]. The following result is proved in [16]
under the additional assumption that F has canonical singularities.

Theorem 17. Let X be a normal projective variety with Q-factorial klt singularities, and let F be
a weakly regular foliation on X with algebraic leaves.

(1) Then F is induced by a surjective equidimensional morphism p : X → Y onto a normal
projective variety Y .

(2) Moreover, there exists an open subset Y ◦ with complement of codimension at least 2 in Y
such that p−1(y) is irreducible for any y ∈ Y ◦.

Before we give the proof of Theorem 17, we need to prove a number of auxiliary statements.
Throughout the present section, we will be working in the following setup.

Setup 18. Let X and Y be normal quasi-projective varieties, and let p ′ : X 99K Y be a dominant
rational map with r := dim X −dimY > 0. Let Z be the normalization of the graph of p ′, and let
p : Z → Y and q : Z → X be the natural morphisms. Let F be the foliation induced by p ′.
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Proposition 19. Let the setting and notation be as in 18, and assume that KF is Cartier.

(1) Then the Pfaff field Ω[r ]
X →OX (KF ) associated to F induces a map

Ω[r ]
Z → q∗OX (KF )

which factors through the Pfaff fieldΩ[r ]
Z →OZ (Kq−1F ) associated to q−1F . In particular,

there exists an effective q-exceptional Weil divisor B on Z such that

Kq−1F +B ∼Z q∗KF .

(2) Moreover, if E is a q-exceptional prime divisor on Z such that p(E) = Y , then E ⊆ SuppB.

Proof. Let Z0 ⊆ Y × X be the graph of p ′, and denote by n : Z → Z0 the normalization map.
Consider the foliation

G := pr∗X F ⊆ pr∗X TX ⊆ pr∗Y TY ⊕pr∗X TX .

Let Ωr
X → OX (KF ) be the map induced by the Pfaff field Ω[r ]

X → OX (KF ). By construction, Z0 is
invariant under G , and hence, there is a factorization:

Ωr
Y ×X |Z0 pr∗X Ω

r
X |Z0 (pr∗X OX (KF ))|Z0

Ωr
Z0

OY ×X (KG )|Z0 .

Notice that the foliation induced by G on Z is q−1F . By [1, Prop. 4.5], the map Ωr
Z0

→
(pr∗X OX (KF ))|Z0 extends to a map

Ωr
Z → n∗((pr∗X OX (KF ))|Z0 ) ≃ q∗OX (KF ),

which gives a morphism

Ω[r ]
Z → q∗OX (KF ).

This map factors through the Pfaff field

νZ : Ω[r ]
Z →OZ (Kq−1F )

associated to q−1F away from the closed set where νZ is not surjective, which has codimension
at least 2 in Z . Hence, there exists an effective Weil divisor B on Z such that

Kq−1F +B ∼Z q∗KF .

Moreover, the morphism Ω[r ]
Z → q∗OX (KF ) identifies with the composition

Ω[r ]
Z →OZ (Kq−1F ) → q∗OX (KF )

since q∗OX (KF ) is torsion-free. Note that B is obviously q-exceptional, proving the first item.
The second item follows from [16, Lem. 4.19] by induction on the rank of F as in the proof of

Proposition 4.17 in [16]. Notice that the assumption that the birational morphism is projective in
the statement of Lemma 4.19 in [16] is not necessary. □
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Corollary 20. Setting and notation as in Setup 18. Suppose that X has klt singularities. Suppose
in addition that KF is Cartier and that F is weakly regular.

(1) Then the foliation q−1F is weakly regular and Kq−1F ∼Z q∗KF .
(2) Moreover, if E is a prime q-exceptional divisor on Z , then p(E)⊊ Y .

Proof. By Proposition 19(1), the Pfaff field

Ω[r ]
X →OX (KF )

associated to F induces a map

Ω[r ]
Z → q∗OX (KF )

which factors through the Pfaff field Ω[r ]
Z →OZ (Kq−1F ) associated to q−1F . On the other hand,

by [28, Thm. 1.3], there exists a morphism of sheaves

q∗Ω[r ]
X →Ω[r ]

Z

that agrees with the usual pull-back morphism of Kähler differentials wherever this makes sense.
One then readily checks that we obtain a commutative diagram as follows:

q∗Ω[r ]
X q∗OX (KF )

Ω[r ]
Z q∗OX (KF ).

This implies that the map Ω[r ]
Z → q∗OX (KF ) is surjective. Consequently, this map identifies with

the Pfaff field associated to q−1F , proving item (2).
Finally, item (2) is an immediate consequence of item 1 together with Proposition 19(2). □

As we will see, Theorem 17 is an easy consequence of Lemma 21 and Lemma 22 below.

Lemma 21. Setting and notation as in 18. Suppose that X has klt singularities and that F is
weakly regular. Then there exists an open subset Y ◦ with complement of codimension at least 2
in Y such that, for any y ∈ Y ◦, either p−1(y) is empty or any connected component of p−1(y) is
irreducible.

Proof. We argue by contradiction and assume that there exists a prime divisor D ⊂ Y such that,
for a general point y ∈ D , p−1(y) is non-empty and some connected component of p−1(y) is
reducible. Let S ⊆ p−1(D) be a subvariety of maximal dimension and dominating D such that for
a general point z ∈ S there is at least two irreducible components of p−1(p(z)) passing through z.
We will show in Step 2 that S has codimension 2 in Z .

Step 1. Construction. Shrinking Y if necessary, we may assume without loss of generality that p
is equidimensional. Replacing X by an open neighborhood of the generic point of q(S), we may
also assume that there exists a positive integer m such that

OX (mKF ) ≃OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [33, Def. 2.52]), and let Z1

be the normalization of the product Z ×X X1. The induced morphism g : Z1 → Z is then a finite
cover.

By [14, Lem. 4.2], there exists a finite cover Y2 → Y with Y2 normal and connected such that
the following holds. If Z2 denotes the normalization of the product Y2 ×Y Z1, then the natural
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morphism p2 : Z2 → Y2 has reduced fibers over codimension 1 points in Y2. We may also assume
that Y2 → Y is a Galois cover. We obtain a commutative diagram as follows:

Z2 Z1 X1

Z X

Y2 Y .

p2

g1

p1

g

q1

f

p

q

Notice that g ◦ g1 : Z2 → Z is a finite Galois cover.

Step 2. Away from a closed subset of codimension at least 3, Z has quotient singularities and
the foliation induced by p on Z is weakly regular. Moreover, S has codimension 2 in Z . Notice
that X1 has klt singularities by [30, Prop. 3.16], and that the foliation FX1 := f −1F is weakly
regular by Lemma 14. Observe now that the foliation FZ1 := q−1

1 FX1 is given by p1 and that Z1

identifies with the normalization of the graph of the rational map p1 ◦ q−1
1 . Therefore, FZ1 is

weakly regular and

KFZ1
∼Z q∗

1 KFX1

by Corollary 20(1). On the other hand, FX1 has canonical singularities (see Lemma 13). Applying
Lemma 16, we conclude that FZ1 has canonical singularities as well. This in turn implies that the
foliation FZ2 := g−1

2 FZ1 has also canonical singularities (see Lemma 15). From [14, Lem. 5.4],
we conclude that Z2 has canonical singularities over a big open set contained in Y2, using the
fact that p2 has reduced fibers over codimension 1 points by construction. In particular, Z2 has
canonical singularities in codimension 2.

Since g ◦g1 : Z2 → Z is a finite Galois cover, there exists an effectiveQ-divisor∆ on Z such that

KZ2 ∼Q (g ◦ g1)∗(KZ +∆).

Moreover, away from a closed subset of codimension at least 3, KZ +∆ is Q-Cartier by [16,
Lem. 2.6]), and the pair (Z ,∆) is klt by [30, Prop. 3.16] so that it has Cohen–Macaulay singularities.
Then Harstshorne’s connectedness theorem implies that S has codimension 2 in Z .

By construction, any irreducible codimension 1 component of the ramification locus of g is
q1-exceptional, and hence invariant under FZ1 by Corollary 20(2). It follows from Lemma 14
that FZ := q−1F is weakly regular in codimension 2.

Step 3. End of proof. Let z ∈ S be a general point. Recall from [21, Prop. 9.3] that z has an analytic
neighborhood U ⊆ Z that is biholomorphic to an analytic neighborhood of the origin in a variety
of the form Cdim Z /G , where G is a finite subgroup of GL(dim Z ,C) that does not contain any
quasi-reflections. In particular, if W denotes the inverse image of U in the affine space Cdim Z ,
then the quotient map

gU : W →W /G ≃U

is étale outside of the singular set.
By Lemma 14 again, FZ induces a regular foliation on W . Let F1 and F2 be irreducible

components of p−1(p(z)) passing through z with F1 ̸= F2. Note that

g−1
U (F1 ∩U )∩ g−1

U (F2 ∩U ) ̸= ;.

By general choice of z, F1 and F2 are not contained in the singular locus of FZ , and hence both
g−1

U (F1 ∩U ) and g−1
U (F2 ∩U ) are a disjoint union of leaves. But then, any leaf passing through

some point of g−1
U (F1 ∩U ) ∩ g−1

U (F2 ∩U ) is a connected component of both g−1
U (F1 ∩U ) and
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g−1
U (F2 ∩U ). This in turn implies that F1 = F2, yielding a contradiction. This finishes the proof of

the lemma. □

Lemma 22. Setting and notation as in 18. Suppose that X has klt singularities and that F is
weakly regular. Let E be a prime q-exceptional divisor on Z such that dim p (E) ≥ dimY −1.

(1) Then dim p (E) = dimY −1. In particular, E is invariant under the foliation on Z induced
by p.

(2) Moreover, if z is a general point in E, then there exists a curve T ⊆ E passing through z with
dim p(T ) = 1 such that q(Ep(t1)(t1)) = q(Ep(t2)(t2)) for general points t1 and t2 in T , where
Ep(t )(t ) denotes the irreducible component of Ep(t ) ⊆ p−1(p(t )) passing through t ∈ T ⊂ E.

Proof. For the reader’s convenience, the proof is subdivided into a number of steps.

Step 1. Reduction to the case where KF is Cartier and proof of (1). Replacing X by an open
neighborhood of the generic point of q(E), we may assume without loss of generality that there
exists a positive integer m such that

OX (mKF ) ≃OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [33, Def. 2.52]), and let Z1

be the normalization of the product Z ×X X1. The induced morphism g : Z1 → Z is then a finite
cover. We obtain a commutative diagram as follows:

Z1 X1

Z X

Y .

p1

g

q1

f

p

q

Notice that X1 has klt singularities by [30, Prop. 3.16], and that the foliation FX1 := f −1F is
weakly regular by Lemma 14. Observe now that the foliation FZ1 := q−1

1 FX1 is given by p1 and
that Z1 identifies with the normalization of the graph of the rational map p1 ◦ q−1

1 . By item 1
in Corollary 20, FZ1 is weakly regular. Let E1 be a prime divisor on Z1 such that g (E1) = E .
Notice that E1 is q1-exceptional and that dim p (E) = dim p1(E1). Thus, replacing X by X1, we
may assume without loss of generality that

KF ∼Z 0.

Then, by Corollary 20(2), we must have p(E) ⊊ Y . It follows that p(E) is a prime divisor on
Y since dim p (E) ≥ dimY − 1 by assumption. In particular, E is invariant under the foliation
FZ := q−1F .
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Step 2. The foliation induced by F on q(E). Set B := q(E), and let E◦ ⊆ E ∩Zreg be a non-empty
open set. We obtain a commutative diagram as follows:

E◦ B

E B

Z X

Y .

a

j

i

p

q

Shrinking X , if necessary, we may assume without loss of generality that B is smooth. By [28,
Thm. 1.3 and Prop. 6.1], there is a factorization

Ωr
X |B Ω[r ]

X |B Ωr
B .

di

drefli

This implies that the map Ω[r ]
X |B →Ωr

B is surjective.

Claim 23. The foliation FE◦ on E◦ induced by FZ is projectable under a.

Proof of Claim 23. Let

νX : Ω[r ]
X ↠OX (KF ) and νZ : Ω[r ]

Z →OZ (KFZ
)

be the Pfaff fields associated to F and FZ respectively. Since E◦ is invariant by FZ , there is a
factorization

Ωr
Z |E◦ Ω[r ]

Z |E◦ OZ (KFZ
)|E◦

Ωr
E◦ Ωr

E◦ OZ (KFZ
)|E◦ .

drefl j

νZ |E◦

Recall from the proof of Corollary 1 that there is a commutative diagram

q∗Ω[r ]
X q∗OX (KF )

Ω[r ]
Z OZ (KFZ

).

q∗νX

dreflq

νZ

∼

Finally, by [28, Prop. 6.1], the diagram

(q∗Ω[r ]
X )|E◦ ≃ a∗(Ω[r ]

X |B ) a∗Ωr
B

Ω[r ]
Z |E◦ Ωr

E◦

a∗drefli

dreflq|E◦

drefl j
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is commutative as well. Therefore, we have a commutative diagramm as follows:

(q∗Ω[r ]
X )|E◦ ≃ a∗(Ω[r ]

X |B ) a∗Ωr
B

Ωr
E◦

(q∗OX (KF ))|E◦ OZ (KFZ
)|E◦ .

a∗drefli

(q∗νX )|E◦

∼

This in turn implies that there is a factorization

Ω[r ]
X |B Ωr

B

OX (KF )|B OX (KF )|B
νX |B

drefli

whose pull-back to E◦ gives the diagram above. It follows that the map

Ωr
B ↠OX (KF )|B

is the Pfaff field associated to a weakly regular foliation FB of rank r on B such that d a(FE◦ ) =
FB . This completes the proof of the claim. □

Then item (2) is an immediate consequence of Claim 23 above. □

We are now ready to prove Theorem 17.

Proof of Theorem 17. Let p : Z → Y be the family of leaves, and let q : Z → X be the natural
morphism. Since p has connected fibers by construction, Lemma 21 applied to p ◦ q−1 implies
that p has irreducible fibers over a big open set contained in Y . Hence, to prove Theorem 17, it
suffices to show that Exc q is empty.

We argue by contradiction and assume that Exc q ̸= ;. Let E be an irreducible component of
Exc q . Then E has codimension 1 since X is Q-factorial by assumption. Recall from Lemma 21
that p−1(y) is irreducible for a general point y in p(E). Therefore, by Lemma 22, we must have
E = p−1(p(E)). Moreover, if y is a general point in p(E), then there exists a curve T ⊆ p (E) passing
through y such that q(p−1(t1)) = q(p−1(t2)) for general points t1 and t2 in T . Now, there exists a
positive integer t such that the cycle theoretic fiber p [−1](y) is t [p−1(y)] for a general point y in
p(E). It follows that the restriction of the map Y → Chow(X ) to p(E) has positive dimensional
fibers, yielding a contradiction. This finishes the proof of the theorem. □

Remark 24. In the setup of Theorem 17, let p : Z → Y be the family of leaves, and let q : Z → X
be the natural morphism. If X is only assumed to have klt singularities, then the same argument
used in the proof of the theorem shows that q is a small birational map. We have

KZ /Y −R(p) ∼Q q∗KF ,

where R(p) denotes the ramification divisor of p. In particular, if F denotes the normalization of
the closure of a general leaf of F , then

KF |F ∼Q KF .
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4.3. A splitting theorem

The following theorem, advertised in the introduction as Theorem C, is the main result of this
section.

Theorem 25. Let X be a normal projective variety, and let

TX =⊕
i∈I

Fi

be a decomposition of TX into involutive subsheaves with algebraic leaves. Suppose that there
exists aQ-divisor∆ such that (X ,∆) is klt. Then there exists a quasi-étale cover f : Y → X as well as
a decomposition

Y ≃∏
i∈I

Yi

of Y into a product of normal projective varieties such that the decomposition TX = ⊕
i∈I Fi lifts

to the canonical decomposition
T∏

i∈I Yi =
⊕
i∈I

pr∗i TYi .

Proof. To prove the theorem, it is obviously enough to consider the case where I = {1,2}. Set
τ(i ) = 3− i for each i ∈ {1,2}.

Step 1. Reduction to the case where X isQ-factorial with klt singularities. Let π : Z → X be a
Q-factorialization, whose existence is established in [31, Cor. 1.37]. Recall that π is a small
birational projective morphism and that Z is Q-factorial with klt singularities. Then we have
the decomposition

TZ =π−1F1 ⊕π−1F2

into involutive subsheaves with algebraic leaves.
Suppose that there exist normal projective varieties W1 and W2 and a quasi-étale cover

g : W1 ×W2 → Z

such that the decomposition TZ =π−1F1 ⊕π−1F2 lifts to the canonical decomposition

TW1×W2 = pr∗1 TW1 ⊕pr∗2 TW2 .

The Stein factorization
f : Y → X

of π◦ g is then a quasi-étale cover, and the natural map

W1 ×W2 → Y

is a small birational morphism. Moreover, by [30, Prop. 3.16], Y has klt singularities. In particular,
it has rational singularities. Lemma 26 below applied to Y 99K W1 ×W2 then implies that X
satisfies the conclusion of Theorem 25.

Therefore, replacing X by Z , if necessary, we may assume without loss of generality that X is
Q-factorial with klt singularities.

Step 2. Covering construction. By Lemma 12, Fi is a weakly regular foliation. Therefore, by
Theorem 17, Fi is induced by a surjective equidimensional morphism pi : X → Ti onto a normal
projective variety Ti . Moreover, pi has irreducible fibers over a big open set contained in Ti . Let
Fi be a general fiber of pτ(i ).

Let Mi denote the normalization of the product Fi ×Ti X , and let Mi → Ni → X denote the
Stein factorization of the natural morphism Mi → X . We will show that Ni → X is a quasi-étale
cover. Notice that for any prime P on Ti , p∗

i P is well-defined (see [16, §2.7]) and has irreducible
support.
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Write p∗
i P = mQ for some prime divisor Q on X and some integer m ≥ 1. Set n := dim X , and

s := dimTi . By general choice of Fi , we may assume that Fi \ Xreg has codimension at least 2 in
Fi . In particular, Fi ∩Q ∩ Xreg ̸= ;. Let x ∈ Fi ∩Q ∩ Xreg be a general point. Since F1 and F2 are
regular foliations at x and TX =F1 ⊕F2, there exist local analytic coordinates centered at x and
pi (x) respectively such that pi is given by

(x1, x2, . . . , xn) 7→ (xm
1 , x2 . . . , xs ),

and such that Fi is given by the equations

xs+1 = ·· · = xn = 0.

A straightforward local computation then shows that Ni → X is a quasi-étale cover over the
generic point of p−1

i (P ). This immediately implies that Ni → X is a quasi-étale cover.
Let Y be the normalization of X in the compositum of the function fields C(Ni ), and let

f : Y → X be the natural morphism. Set Gi := f −1Fi . By construction, f is a quasi-étale cover,
and Gi is induced by a surjective equidimensional morphism qi : Y → Ri with reduced fibers
over a big open set contained in Ri . Moreover, there exists a subvariety Gi ⊆ f −1(Fi ) such that the
restriction Gi → Ri of qi to Gi is a birational morphism.

Step 3. End of proof. Let R◦
i denote the smooth locus of Ri , and set Y ◦

i := q−1
i (R◦

i ). Let Z ◦
i ⊆ Y ◦

i
be the open set where qi |Y ◦

i
is smooth. Notice that Z ◦

i has complement of codimension at least 2
in Y ◦

i since qi has reduced fibers over a big open set contained in Ri .
The restriction of the tangent map

T qi |Y ◦
i

: TY ◦
i
→ (

qi |Y ◦
i

)∗TR◦
i

to Gτ(i )|Z ◦
i
⊆ TZ ◦

i
then induces an isomorphism Gτ(i )|Z ◦

i
≃ (

qi |Z ◦
i

)∗TR◦
i
. Since Gτ(i )|Y ◦

i
and(

qi |Y ◦
i

)∗TR◦
i

are both reflexive sheaves, we finally obtain an isomorphism

Gτ(i )|Y ◦
i
≃ (

qi |Y ◦
i

)∗TR◦
i
.

A classical result of complex analysis says that complex flows of vector fields on analytic spaces
exist (see [27]). It follows that qi |Y ◦

i
is a locally trivial analytic fibration for the analytic topology.

The morphism q1 ×q2 : Y → R1 ×R2 then induces an isomorphism

q−1
1 (R◦

1)∩q−1
2 (R◦

2) ≃ R◦
1 ×R◦

2

since G1 ·G2 = 1 and qi is locally trivial over R◦
i . In particular, q1 × q2 is a small birational

morphism. By [30, Prop. 3.16] again, Y has klt singularities. Hence, it has rational singularities.
Lemma 26 below applied to q1 × q1 then implies that X satisfies the conclusion of Theorem 25,
completing the proof of the theorem. □

Lemma 26 ([32, Prop. 18]). Let X , Y1 and Y2 be normal projective varieties, and let π : X 99K
Y1 ×Y2 be a birational map that does not contract any divisor. Suppose in addition that X has
rational singularities. Then X decomposes as a product X ≃ X1 × X2 and there exist birational
maps πi : Xi 99K Yi such that π=π1 ×π2.

5. Proof of Theorem A

The present section is devoted to the proof of Theorem A.

Proof of Theorem A. We have seen in Theorem 6 that the tangent sheaf of X is polystable. By
definition it means that we have a decomposition

TX =⊕
i∈I

Fi
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where the Fi are stable with respect to c1(X ) and have the same slope. Moreover, each subsheaf
Fi defines on Xreg a parallel subbundle of TXreg with respect to the Kähler–Einstein metric
ωKE|Xreg . This immediately implies that Fi |Xreg is involutive.

Claim 27. Each foliation Fi has algebraic leaves.

Proof. Let m be a positive integer such that −mKX is very ample, and let C ⊂ X be a general
complete intersection curve of elements in |−mKX |. By general choice of C , we may assume that
C ⊂ Xreg and that Fi is locally free in a neighborhood of C . If m is large enough, then the vector
bundle Fi |C is semistable by [19, Thm. 1.2]). We conclude that it is ample since it has positive
slope. Then [5, Fact 2.1.1] says that Fi has algebraic leaves. Alternatively, one can apply [7,
Thm. 1.1] to the foliation F̂i on the resolution X̂ (cf. Notation 5) induced by Fi by pullback over
Xreg and saturation inside TX̂ . □

Let f : Y → X be the quasi-étale cover and Y = ∏
i∈I Yi be the splitting that are both provided

by Theorem 25. The decomposition
TY =⊕

i∈I
pr∗i TYi (37)

is a decomposition of TY into summands of maximal slope. If there exists i ∈ I such that
TYi is not stable with respect to c1(Yi ), then it means that the polystable decomposition of TY

provided by Theorem 6 via f ∗ωKE refines strictly the decomposition (37). By applying Theorem 25
again, we can find another quasi-étale cover Y ′ → Y which splits according to the polystable
decomposition of TY and one can then compare again the polystable decomposition of TY ′ to the
one coming from TY . After finitely many such steps, one can find a quasi-étale cover g : Z → X
such that

(i) There exists a splitting Z =∏
k∈K Zk into a product ofQ-Fano varieties.

(ii) For any k ∈ K , the tangent sheaf TZk is stable with respect to c1(Zk ).
(iii) The variety Z admits a Kähler–Einstein metric given by g∗ωKE.

Theorem A is a consequence of the Claim below.

Claim 28. There exists a Kähler–Einstein metric ωk on each variety Zk such that g∗ω =∑
k∈K pr∗k ωk .

Proof of Claim 28. We set nk := dim Zk . As the saturated subsheaf Fk := pr∗k TZk ⊂ TZ is stable
with maximal slope with respect to c1(Z ), it has to coincide with one of the factors in the
decomposition of TZ provided by Theorem 6 (one can see that by looking at the projections on
each factor and use stability). In particular, the Fk |Zreg are mutually orthogonal with respect
to g∗ωKE, which enables one to define a smooth hermitian metric ωk on Z reg

k such that g∗ωKE =∑
k∈K pr∗k ωk on Zreg. Since g∗ωKE is closed and d commutes with pr∗k , it follows thatωk is a Kähler

metric on Zreg.
Clearly, one has Ricωk =ωk on Z reg

k . In order to check thatωk defines a Kähler–Einstein metric
on Zk in the sense of Definition 2, it is sufficient to check that

∫
Z

reg
k
ω

nk
k = c1(Zk )nk by Remark 3.

By [2, Prop. 3.8] we always have the inequality
∫

Z
reg
k
ω

nk
k ≤ c1(Zk )nk and therefore

c1(Z )n =
∫

Zreg

g∗ωn
KE = ∏

k∈K

∫
Z

reg
k

ω
nk
k ≤ ∏

k∈K
c1(Zk )nk .

Since c1(Z )n =∏
k∈K c1(Zk )nk , one must have

∫
Z

reg
k
ω

nk
k = c1(Zk )nk for all k ∈ K . □

Theorem A is now proved. □
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[7] F. Campana and M. Păun, “Foliations with positive slopes and birational stability of orbifold
cotangent bundles”, Publ. Math., Inst. Hautes Étud. Sci. 129 (2019), pp. 1–49.

[8] X. Chen, S. Donaldson and S. Sun, “Kähler-Einstein metrics on Fano manifolds. I: Approxi-
mation of metrics with cone singularities”, J. Am. Math. Soc. 28 (2015), no. 1, pp. 183–197.

[9] X. Chen, S. Donaldson and S. Sun, “Kähler-Einstein metrics on Fano manifolds. II: Limits
with cone angle less than 2π”, J. Am. Math. Soc. 28 (2015), no. 1, pp. 199–234.

[10] X. Chen, S. Donaldson and S. Sun, “Kähler-Einstein metrics on Fano manifolds. III: Limits
as cone angle approaches 2π and completion of the main proof”, J. Am. Math. Soc. 28
(2015), no. 1, pp. 235–278.

[11] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebr.
Geom. 1 (1992), no. 3, pp. 361–409.

[12] J.-P. Demailly, “Complex Analytic and Differential Geometry”, 2012. OpenContent Book,
freely available from the author’s web site http://www-fourier.ujf-grenoble.fr/~demailly/
books.html.

[13] E. Di Nezza and C. H. Lu, “Complex Monge–Ampère equations on quasi-projective vari-
eties”, J. Reine Angew. Math. 727 (2017), pp. 145–167.

[14] S. Druel, “On foliations with nef anti-canonical bundle”, Trans. Am. Math. Soc. 369 (2017),
no. 11, pp. 7765–7787.

[15] S. Druel, “A decomposition theorem for singular spaces with trivial canonical class of
dimension at most five”, Invent. Math. 211 (2018), no. 1, pp. 245–296.

[16] S. Druel, “Codimension one foliations with numerically trivial canonical class on singular
spaces”, Duke Math. J. 170 (2021), no. 1, pp. 95–203.

[17] I. Enoki, “Stability and negativity for tangent sheaves of minimal Kähler spaces”, in Geom-
etry and analysis on manifolds (Katata/Kyoto, 1987), Springer, 1988, pp. 118–126.

[18] P. Eyssidieux, V. Guedj and A. Zeriahi, “Singular Kähler–Einstein metrics”, J. Am. Math. Soc.
22 (2009), pp. 607–639.

[19] H. Flenner, “Restrictions of semistable bundles on projective varieties”, 59 (1984), no. 4,
pp. 635–650.

[20] D. Greb, H. Guenancia and S. Kebekus, “Klt varieties with trivial canonical class: holonomy,
differential forms, and fundamental groups”, Geom. Topol. 23 (2019), pp. 2051–2124.

[21] D. Greb, S. Kebekus, S. J. Kovács and T. Peternell, “Differential forms on log canonical
spaces”, Publ. Math., Inst. Hautes Étud. Sci. (2011), no. 114, pp. 87–169.

[22] D. Greb, S. Kebekus and T. Peternell, “Movable curves and semistable sheaves”, Int. Math.
Res. Not. (2016), no. 2, pp. 536–570.

http://www-fourier.ujf-grenoble.fr/~demailly/books.html
http://www-fourier.ujf-grenoble.fr/~demailly/books.html


118 Stéphane Druel, Henri Guenancia and Mihai Păun
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