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Abstract. We study two models of random multiplicative functions: Rademacher random multiplicative
functions supported on the squarefree integers f , and Rademacher random completely multiplicative func-

tions f ∗. We prove that the partial sums
∑

n≤x f ∗(n) and
∑

n≤x
f (n)p

n
change sign infinitely often as x →∞,

almost surely. The case
∑

n≤x
f ∗(n)p

n
is left as an open question and we stress the possibility of only a finite

number of sign changes, with positive probability.

Résumé. Nous étudions deux modèles de fonctions multiplicatives aléatoires : les fonctions multiplicatives
aléatoires de Rademacher supportées sur les entiers sans carrés f , et les fonctions multiplicatives aléatoires
complètement multiplicatives de Rademacher f ∗. Nous prouvons que les sommes partielles

∑
n≤x f ∗(n) et∑

n≤x
f (n)p

n
changent de signe infiniment souvent comme x →∞, presque sûrement. Le cas

∑
n≤x

f ∗(n)p
n

reste

une question ouverte et nous soulignons la possibilité de seulement un nombre fini de changements de signe,
avec probabilité positive.
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1. Introduction

1.1. Main results and motivation

A Rademacher random multiplicative function f is defined as follows: Over the primes, the
values f (p) are i.i.d. random variables taking ±1 values with probability 1/2 in each instance
(Rademacher random variables), and at the other values of n,

f (n) :=µ2(n)
∏
p|n

f (p),
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where µ is the Möbius function.
By a Rademacher random completely multiplicative function f ∗, we mean that

f ∗(n) = ∏
pa∥n

f (p)a .

In a previous paper, Aymone, Heap and Zhao [4] proved that the partial sums
∑

n≤x f (n) of
a Rademacher random multiplicative function change sign infinitely often1 as x → ∞, almost
surely. The key idea was to show that, almost surely

lim
σ→1/2+

∫ ∞

1

( ∑
n≤x

f (n)

)
dx

x1+σ = 0,

lim
σ→1/2+

∫ ∞

1

∣∣∣∣ ∑
n≤x

f (n)

∣∣∣∣ dx

x1+σ =∞,

and these visibly capture an infinite number of sign changes.
Our task here is to study sign changes for weighted sums of f and f ∗:∑

n≤x

f (n)

nα
,

∑
n≤x

f ∗(n)

nα
, α≥ 0.

In both cases, we have that for α > 1/2, the partial sums converge to a non-vanishing Euler
product, and hence, it can be shown that these partial sums become positive for all x sufficiently
large, almost surely. Therefore, we restrict ourselves to the cases 0 ≤α≤ 1/2.

Our motivation comes from the study of the sign changes of the partial sums of the determin-
istic counterparts to f and f ∗: the Möbius µ and the Liouville λ. For 0 ≤α< 1/2, the partial sums∑

n≤x µ(n)n−α change sign infinitely often as x →∞, due to the analytic properties of 1/ζ(s) and
to the Landau’s oscillation theorem. Answering a question of Pólya, Haselgrove [19] proved that∑

n≤x λ(n) changes sign infinitely often as x → ∞. In the range 0 < α < 1/2, the case of an infi-
nite number of sign changes of

∑
n≤x λ(n)n−α recasts questions about the non-trivial Riemann

zeros, and at the present moment, unconditional results are unknown, see [28] by Mossinghoff
and Trudgian. In a paper by Humphries [22], it can be deduced from his results that under RH
and other hypothesis on Riemann zeros, the partial sums

∑
n≤x λ(n)n−α change sign infinitely

often as x →∞.
In both cases

∑
n≤x µ(n)n−1/2 and

∑
n≤x λ(n)n−1/2 the problem of an infinitude of sign changes

seems to be intricate and even assuming standard hypothesis, conditional results are unknown.
In [28] is left as an open problem to prove or disprove that

∑
n≤x λ(n)n−1/2 is negative for all x ≥ 17.

A remarkable consequence of this fact is that this implies that all non-trivial zeros of the Riemann
zeta function have multiplicity at most 2, see [28, Theorem 2.4]. In [22] it is showed that under
standard assumptions on the non-trivial zeros of the Riemann zeta function, the set of x for which∑

n≤x
λ(n)p

n
is negative has total logarithmic asymptotic density.

Taking all of these facts into account, for the random counterparts f and f ∗ we were able to
proof the following results.

Theorem 1. Let f be a Rademacher random multiplicative function. Then for each 0 ≤ α ≤ 1/2,∑
n≤x

f (n)
nα changes sign infinitely often as x →∞, almost surely.

Theorem 2. Let f ∗ be a Rademacher random completely multiplicative function. Then for each
0 ≤α< 1/2 we have that

∑
n≤x

f ∗(n)
nα changes sign infinitely often as x →∞, almost surely.

The case
∑

n≤x
f ∗(n)p

n
is left as an open question, and it is possible that these sums change sign

only a finite number of times with positive probability, here we give an heuristic reason. In a
recent paper, Angelo and Xu [1] (and later improvements by Kerr and Klurman [24]) studied the

1Here we say that a function M(x) changes sign infinitely often as x →∞ if at a certain point x0, M(x) is not always
non-negative or non-positive for all x ≥ x0.
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weighted sums
∑

n≤x
f ∗(n)

n in the context of a “random Turán conjecture”. They proved that the

probability of
∑

n≤x
f ∗(n)

n being positive for all x ≥ 1 is at least 1− 10−45. This implies a certain
positivity for harmonic sums of f ∗ and it may be possible that such result may be extended for∑

n≤x
f ∗(n)

nσ , where σ> 1/2. Further, after a convolution argument, f ∗ = f ∗1PS , where 1PS (n) is
the indicator that n is a perfect square. Therefore,∑

n≤x

f ∗(n)p
n

≈ ∑
n≤x

f (n)p
n

log(x/n).

The later is known as a Riesz mean, and at some instances these averages stabilizes oscillatory
properties of an oscillating arithmetic function providing a finite number of sign changes for
these averages.

1.2. Proof method

Our proof follows closely the lines of [4]. The difference here is that, in contrast with unweighted
sums of a Rademacher random multiplicative function, we have the almost sure limits

lim
σ→1/2+

∫ ∞

1

( ∑
n≤x

f (n)p
n

)
dx

x1/2+σ =∞,

lim
σ→1/2+

∫ ∞

1

∣∣∣∣ ∑
n≤x

f (n)p
n

∣∣∣∣ dx

x1/2+σ =∞,

and this alone does not capture an infinite number of sign changes, unless we make the two
divergences above quantitative, and that these divergences differ in size. This can, indeed, be
achieved by using the following quantitative statement by Harper:

Theorem 3 (Harper [13, p. 25]). Let p run over the primes and
(

f (p)
)

p be a sequence of inde-
pendent Rademacher random variables. For fixed A > 3, almost surely, there exists a sequence
σk → 1/2+ such that

sup

1≤t≤2
(
log

(
1

σk−1/2

))2

(∑
p

f (p)cos(t log p)

pσk
−2loglog

(
1

σk−1/2

))
≥ log

(
1

σk−1/2

)
− A loglog

(
1

σk−1/2

)
.

1.3. Background

Here we are intended to give a list of results in the literature (perhaps non-complete) on random
multiplicative functions. The first result on partial sums of random multiplicative functions is
due to Wintner [31], where he considered a question by Levy [27] and showed that

∑
n≤x f (n) is

almost surelyΩ(x1/2−ϵ) and ≪ x1/2+ϵ, for any ϵ> 0.
Later, these results have been improved by Erdős [10] and subsequently by Halász [11]. Later

Basquin [5] and Lau, Tenenbaum and Wu [26] made a significant improvement by proving that,
almost surely, ∑

n≤x
f (n) ≪p

x(loglog x)2+ϵ,

for any ϵ> 0.
In this year of 2023, Caich [8] proved that we can replace (loglog x)2+ϵ above by (loglog x)1/4+ϵ.

This combined with Harper’s Omega bound [17] gives a sharp description of the size of the
fluctuations of the partial sums of f :∑

n≤x
f (n) =Ω(

p
x(loglog x)1/4−ϵ),

for any ϵ> 0, almost surely.
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Central limit Theorems also have been studied in various settings: [9, 14, 21, 25, 30].
The problem of moments also have been extensively studied, with the remarkable result of

Harper that shows that the first moment exhibits better than squareroot cancellation [16]. Other
related works (including related models): [3, 6, 7, 12, 15, 18, 20, 32]. And another viewpoints of
investigation [1, 2, 4, 23, 24, 29].

2. Preliminaries

2.1. Notation

Here p stands for a generic prime number. We use the standard Vinogradov notation f (x) ≪ g (x)
or Landau’s f (x) =O(g (x)) whenever there exists a constant c > 0 such that | f (x)| ≤ c|g (x)|, for all
x in a set of parameters. When not specified, this set of parameters is an infinite interval (a,∞)
for sufficiently large a > 0. The standard f (x) = o(g (x)) means that f (x)/g (x) → 0 when x → a,
where a could be a complex number or ±∞. For g (x) > 0 for all x, we say that f (x) =Ω(g (x)) if
limsupx→∞

| f (x)|
g (x) > 0.

2.2. Some Lemmas

By the pioneering work of Wintner [31], we have that F (s) := ∑∞
n=1

f (n)
ns converges for all Re(s) >

1/2, almost surely. His proof can be modified to show that the same is true for F∗(s) =∑∞
n=1

f ∗(n)
ns .

Moreover we have:

Lemma 4. For all Re(s) > 1/2, almost surely we have

F (s) =∏
p

(
1+ f (p)

p s

)
,

F∗(s) =∏
p

(
1− f (p)

p s

)−1

.

This leads to the almost sure identities

F (s) = exp

(∑
p

f (p)

p s − 1

2
logζ(2s)+O(1)

)
, (1)

F∗(s) = exp

(∑
p

f (p)

p s + 1

2
logζ(2s)+O(1)

)
, (2)

where the O(1) term above is actually an analytic function that is uniformly bounded in Re(s) ≥
1/3+ϵ, for small fixed ϵ> 0. For a proof of these results we refer reader to [4, Lemma 2.4] and the
references therein. To conclude this section, we have

Lemma 5. Let ( f (p))p be independent Rademacher random variables. Then, for all ϵ> 0, we have
almost surely as σ→ 1/2+ ∑

p

f (p)

pσ
≪

(
log

(
1

σ−1/2

))1/2+ϵ
.

For a proof we refer reader to [4, Lemma 2.1 and Remark 2.1].
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3. Proof of the main results

3.1. The case
∑

n≤x
f (n)p

n

By the upper bound for the partial sums of a Rademacher random multiplicative function [5]
and [26], ∑

n≤x
f (n) ≪p

x(loglog x)2+ϵ,

we have that by partial summation ∑
n≤x

f (n)p
n

≪ (log x)2, a.s.

Further refinements of this last upper bound could, perhaps, be achieved, by following the lines
of [3] and more recently of [12].

Now, for Re(s) =σ> 1/2,

F (s) :=
∞∑

n=1

f (n)

ns =
∞∑

n=1

f (n)p
n

1

ns−1/2
= (s −1/2)

∫ ∞

1

( ∑
n≤x

f (n)p
n

)
dx

xs+1/2
.

By equation (1) and Lemma 5 combined with the estimate logζ(2σ) = log(1/(2σ− 1))+O(1)
valid for σ → 1/2+, we obtain that as σ → 1/2+, almost surely we have F (σ) = (2σ− 1)1/2+o(1).
Hence, we almost surely have as σ→ 1/2+∫ ∞

1

( ∑
n≤x

f (n)p
n

)
dx

xσ+1/2
= 1

(2σ−1)1/2+o(1)
. (3)

On the other hand, for t ≥ 1∣∣∣∣F (σ+ i t )

t

∣∣∣∣≪ ∫ ∞

1

∣∣∣∣ ∑
n≤x

f (n)p
n

∣∣∣∣ dx

xσ+1/2
.

Now, by equation (1),

|F (s)| = exp

(∑
p

f (p)cos(t log p)

pσ
− 1

2
Re(logζ(2s))+O(1)

)
.

We recall that | logζ(σ+ i t )| ≤ loglog |t |+O(1), for σ≥ 1 and t ≥ 2. By Theorem 3, almost surely
we have an infinite sequence of points σk → 1/2+ and tk ≥ 1 such that∣∣∣∣F (σk + i tk )

tk

∣∣∣∣≥ exp

(
(1+o(1)) log

(
1

σk −1/2

))
≫ 1

(σk −1/2)0.9 .

Therefore, almost surely, there exists a sequence σk → 1/2+ such that∫ ∞

1

∣∣∣∣ ∑
n≤x

f (n)p
n

∣∣∣∣ dx

xσk+1/2
≫ 1

(σk −1/2)0.9 . (4)

To complete the argument, we see that the quantities at the left of (3) and (4) have different
size, and so the partial sums

∑
n≤x

f (n)p
n

cannot be always non-negative or non-positive, there
always must be infinite sign changes, almost surely.

3.2. The case
∑

n≤x
f ∗(n)

nα

Let then 0 ≤ α< 1/2. Let F∗(s) be the Dirichlet series of f ∗. Similarly as in the previous case, by
equation (2) and Lemma 5, we have that

F∗(σ) = 1

(2σ−1)1/2+o(1)
,

almost surely as σ→ 1/2+.
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By partial summation and integration,

F∗(s) = (s −α)
∫ ∞

1

( ∑
n≤x

f ∗(n)

nα

)
dx

xs+1−α .

Therefore, almost surely as σ→ 1/2+∫ ∞

1

( ∑
n≤x

f ∗(n)

nα

)
dx

xσ+1−α = 1+o(1)

(1/2−α)

1

(2σ−1)1/2+o(1)
. (5)

And similarly to (4), almost surely there exists a sequence σk → 1/2+ such that∫ ∞

1

∣∣∣∣ ∑
n≤x

f ∗(n)

nα

∣∣∣∣ dx

xσ+1−α ≫ 1

(2σk −1)0.99 . (6)

Just as before, (5) and (6) captures infinite sign changes, almost surely.

3.3. The case
∑

n≤x
f (n)
nα

This case can be treated similarly as the previous one, although we can proceed in a more
elementary way as in [4], that is, Theorem 3 is not needed here.

The proof of Theorems 1 and 2 are now complete.
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