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Abstract. We are interested in the limitation process for the reconstruction of quantities related to Euler’s
equations of compressible gas dynamics for a general pressure law of type P (ρ,ϵ) (density, specific internal
energy). For example, for perfect gas laws, we recall the constraints ρ > 0 and ϵ > 0, and that the velocity U
is a priori not bounded in the continuous problem. Nevertheless it is in L2(Ω,ρ) as a consequence of the
relation on the energies E = ϵ+ 1

2 |U|2 in L1(Ω,ρ) (due to global conservation of total energy ρE). We show
a similar result for conservative reconstruction in any space dimension and for an arbitrary reconstruction
order. The use of the Leibniz formula on the specific variables ϵ, U and 1

2 |U|2 allows to obtain also such a
discrete induced control of reconstructed velocity thanks to control of reconstructed density and energies. We
build a direct limitation on the weight variable ρ and also especially on the specific variable ϵ. In particular,
the latter makes it possible to limit, in an induced way, the velocity U. The limited reconstruction of the
conservative variables is deduced from the assembly of these different limitation processes. We illustrate in
dimension d = 1 and d = 2 on some test cases, our reconstructions of orders 2 and 3.

Résumé. On s’intéresse au processus de limitation pour la reconstruction des quantitées liées aux équations
d’Euler de la dynamique des gaz compressibles pour une loi de pression générale de type P (ρ,ϵ) (densité,
énergie interne massique). Par exemple, pour la loi des gaz parfait, les contraintes sont ρ > 0 et ϵ > 0, et
la vitesse U n’est a priori pas bornée dans le problème continu. Elle est néanmoins dans L2(Ω,ρ) comme
conséquence de la relation sur les énergies E = ϵ+ 1

2 |U|2 dans L1(Ω,ρ) (par conservation globale de l’énergie
totale ρE). On montre un principe similaire dans le cadre d’une reconstruction conservative en dimension
d’espace quelconque et pour un ordre de reconstruction lui aussi arbitraire. L’utilisation de la formule de
Leibniz sur les variables massiques ϵ, U et 1

2 |U|2 permet en effet d’obtenir en discret un contrôle induit de la
vitesse reconstruite grâce au contrôle des reconstructions de la densité et des énergies. Nous construisons
une limitation directe sur la variable poids ρ et aussi surtout sur la variable massique ϵ. En particulier,
cette dernière permet de limiter, de manière induite, la vitesse U. La reconstruction limitée des variables
conservatives se déduit de l’assemblage de ces différents processus de limitation. Nous illustrons sur des cas
tests, en dimension d = 1 et d = 2, les reconstructions d’ordres 2 et 3 ainsi obtenues.
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1. Introduction/Framework

We are interested in a novel limitation process for finite volume schemes. We propose to limit
some variable in order to fulfill some principles (physical or invariant domain validity) in such
a way that it induce the limitation of some other variables. Here, we apply this strategy in the
case of compressible Euler system of gas dynamics. In this case, we focus on the construction of
the velocity limitation induced by the limitation of specific internal energy (and density). These
equations model the conservation of mass, momentum and total energy, and write:

∂t U (t ,x)+∇· (F (U (t ,x))) = 0 (1)

where x = (x1, . . . , xd ) and:

U = (ρ,ρU ,ρE), F (U ) = (ρU ,ρU ⊗U +PId ,U (ρE +P ))

U the velocity, E the specific total energy with

E = ϵ+ 1

2
|U |2, and ϵ the specific internal energy.

(2)

In the following, vectors are noted in bold. Let a and b be two vectors in Rd , their dot product is
denoted by (a,b) and tensorial product by a⊗b. For our purpose the pressure P is considered as
P (ρ,ϵ), where ρ ∈ Idensity and ϵ ∈ Ienergy (IQ is an open interval of R, for exemple for perfect gas
EOS (3): Idensity = Ienergy =]0,+∞[):

P = (γ−1)ρϵ, (γ> 1 : adiabatic constant). (3)

Note however that this work is valid for general pressure laws P = P (ρ,ϵ) (as far as (1) is
hyperbolic). Consider a two point finite volume discretization of (1), let’s define some notations.

• Ω j is a cell, |Ω j | his volume. ∂Ω j denote the cell boundary, and f is a d −1 dimensional
hypersurface ( f is an edge for d = 2, a face for d = 3, etc, f ⊂ ∂Ω j ), | f | the associated d −1
measure, and the cell index k will denote the neighboring cell sharing f with j .

• r is a node, ki (r ) design the set of cells containing the node r.
• in dimension d = 2, r +1/2 will also denotes an edge (see also Figuree 1).

The so called finite volume unknown is the cell average U j (t ) := 1
|Ω j |

∫
Ω j

U (t ,x)dx, we refer
e.g. to [7, 23]:

d

dt
U j (t )+ 1

|Ω j |
∑

f ∈∂Ω j

∫
f
F (U (t ,x)).Nds = 0, let V j an approximation ofU j , (4)

d

dt
V j (t )+ 1

|Ω j |
∑

f ∈∂Ω j

| f |G(V j ,V k ,Ñ f ) = 0. (5)

Ñ f is an exact or averaged unit normal to f . The function G in (5) is a numerical flux that is locally
conservative (G(a,b,N)+G(b, a,−N) = 0) and consistent (G(a, a,N) =F (a).N), for example: Roe,
Rusanov, HLL, Relaxation, VFFC...
We consider a high-order spatial reconstruction, represented by a (high degree polynomial)
function R j (x,V ). We also need to deal with a high-order quadrature flux formula (ω f

l ,x f
l )s

l=1
(e.g. Gauss Legendre), so that we consider:

d

dt
V j (t )+ 1

|Ω j |
∑

f ∈∂Ω j

∑
l
ω

f
l | f |G

(
R j

(
x f

l ,V
)

,Rk

(
x f

l ,V
)

,Ñ f

(
x f

l

))
= 0. (6)

In case of dimension d = 2 (then from (7) to (10)), let us also consider the extension of numerical
fluxes to nodes then to composite finite volume schemes (see [13]). In the latter, the numerical
fluxes are defined at all co-dimension object (from 1 to d) on quadrature points of ∂Ω j .These are
either localised at nodes Gr

j , or at some interior edge points Gr+1/2
j . We recall that these nodal
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and composite numerical fluxes Gr
j ,Gr+1/2

j are locally conservative and consistent (and that the
edge part r + 1/2 may be any of the classical numerical edge flux of (6)). The associated local
normals at these points are defined by vectors Cr

j = 1
2 (xr+1−xr−1)⊥, Cr+1/2

j = (xr+1−xr )⊥ and for
edge invariant quadrature formula:

d

dt
V j (t )+ 1

|Ω j |

(
(1−θ)

∑
r∈∂Ω j

Gr
j (V k1(r ), . . . ,V km (r )) Cr

j +θ
∑

r+1/2∈∂Ω j

Gr+1/2
j (V j ,V k ) Cr+1/2

j

)
= 0. (7)

Here again, we consider extension to higher order in both quadrature and polynomial recon-
struction of (7)

Hypothesis 1. We assume that there exists {qi ,θi }s
i=1 some interior quadrature parameters and

weights (θi ≥ 0) such that:

1−
s∑

i=1
θi ≥ 0. (8)

Let q0 = 0 and qs+1 = 1 be the extremity parameters, and the associated extremity weights:

θ0 = θs+1 = 1

2

(
1−

s∑
i=1

θi

)
. (9)

Let us now consider, the arbitrary order composite (in terms of geometric objects of non-
unique co-dimension fluxes type) scheme [13] (here, in dimension d = 2):

d

dt
V j (t )+ 1

|Ω j |

(
(1−

s∑
i=1

θi )
∑

r∈∂Ω j

Gr
j (Rk1(r )(xr ,V ), . . . ,Rkm (r )(xr ,V )) Cr

j+

s∑
i=1

θi
∑

e∈∂Ω j

Gr+1/2
j (R j (xe (qi ),V ),Rk (xe (qi ),V )) Cr+1/2

j

)
= 0. (10)

• Taking s = 1 in (8) (9) gives q1 = 1
2 , θ1 = θ ∈ [0,1] so recovering (7) (we may reach the

third/fourth order with θ = 2
3 ).

• Taking (θi , qi ) = (ωi , qi ),∀i = 1, . . . , s (Gauss Legendre) in (8) (9) so that
∑s

i=1ωi = 1 and
then by (9) θ0 = θs+1 = 0 so recovering arbitrary high-order pure edges schemes (6) (see
e.g. [6]).

A major numerical problem is the preservation of the set of admissible states. We recall that for
usual equations of state, these are nothing but the positivity of density and temperature which,
in many cases, corresponds to positivity of specific internal energy ϵ.

One of the main difficulty is due to the fact that such invariant domain are expressed using
the definition of the specific internal energy (or temperature), which is a nonlinear function
of conservative variables (density, momentum, and total energy). Nevertheless, these latter
are of prime importance to approximate correct weak (and entropic) solutions. Therefore, a
limitation process of the specific energy leads to complex modifications of the conservative
variables. In the literature, the question of the “good” variables to limit is not really addressed
and this is the purpose of our contribution. Up to our knowledge, for d-dimensional Euler gas-
dynamic equations, no previous works propose a direct algebraic procedure based on non-linear
reconstructions (non polynomial) of specific quantities (using Leibniz formula) of arbitrary order.

The litterature on limitation processes for hyperbolic conservation laws is very rich and is
still an active research domain. For finite volume methods it may be either included in the
reconstruction (of averages unknowns V j ) process or directly applied to the reconstructed flux
G (with blending technics). Here, we adopt the philosophy of the former strategy: limitation
of high-order reconstruction. It can be divided into two classes: the a-priori and a-posteriori
processes.
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The latter includes APITALI [12, 14], MOOD [4] processes. These methods act by systematicaly
testing the numerical solution under some criteria with an a-posteriori limitation. The process
first selects “bad” cells, then the main action is to decrease for this set some high-order parts
(in compact or in a hierarchical way). Due to the existence of a low order (generaly first
order) scheme fullfiling by construction the given criteria, the iterative loop always converge by
choosing appropriate decreasing sequences of degree’s reconstruction (see [3]).

The first class includes all the developpment based on the seminal constructive work of Harten
based on a priori TVD limitation criteria in dimension d = 1. Unfortunately, due to a rather
negative result of [8] implying that a TVD scheme is at most first order in dimension d ≥ 2,
many efforts and contributions have been done on relaxed stability constraints. Among all the
works, one may cite UNO/ENO/WENO methods [1, 10, 11, 17], maximum principle when the
continuous PDE satisfies such a property [5, 20, 24], and invariant domain preservation [9, 25,
27].

The paper is organised as follow, we present an arbitrary high-order reconstruction for volu-
mic (density), but also and more important of the specific (primary) quantities (U and E). The
latter is based on arbitrary order multi-variate Leibniz formula. The second section is devoted to
a non-linear reconstruction of internal energy, we show that this reconstruction depends on both
high-order velocity terms and high-order internal energy terms. The high-order terms is a made
of three contributions, each of them possessing different properties of homogeneity. By imposing
equality between the different contributions, we obtain, as a by-product, a natural dependence
between limiters, thus inducing those of velocity reconstruction. The third section is devoted
to the construction of the so called induced limitation process: a scalar limiter for internal en-
ergy is proposed, for which a limiter is automaticaly deduced (and not specifically designed!) for
the velocity. In the last section, we asses this induced limitation strategy on some discontinuous
solution in dimension d = 1 and d = 2.

1.1. Obtaining arbitrary order for volumic and specific variables

We deal with arbitrary order reconstruction for a pure volumic field Q (e.g. density). If n+1 is the
order (e.g. same order as the quadrature formula in (6) or in hypothesis 1 for (10)), we write:

P (x,Q) =Q j + (∇Q) j (x−x j )+ 1

2
((∇2Q) j (x−x j ), (x−x j ))+·· ·+ 1

n!
(∇nQ) j

n times︷ ︸︸ ︷
(x−x j , . . . ,x−x j ) . (11)

Here ∇ =t (∂x1 , . . . ,∂xd ) denotes the gradient operator, (∇nQ) j is a n-multilinear form acting on
Rn×d , and x j = 1

|Ω j |
∫
Ω j

xdx is the centroïd of cellΩ j (or a point insideΩ j ).

Each (∇l Q) j must be an approximation of (∇l Q)(x j ), and Q j is given by

Q j =
{

Q j −∑n
l=1 c l

j (Q), if conservation is mandatory,

Q j , otherwise,
(12)

with Q j = 1
|Ω j |

∫
Ω j

Qdx and

∀l = 1, . . . ,n c l
j (Q) := 1

l !

1

|Ω j |
∫
Ω j

(∇l Q) j (x−x j , . . . ,x−x j )dx. (13)

We recall that high-order derivatives in (11) may be represented by the tensorial form using
canonical basis ei ∈Rd = (0, . . .0, 1︸︷︷︸

i th

,0 . . . ,0) and with the Einstein sum convention reads as:

(∇nQ) = (∂xi1
. . .∂xin

Q) (ei1 ⊗·· ·⊗ein ) (14)
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or

(∇nQ)(a, . . . ,a) =
d∑

i1=1
. . .

d∑
in=1

(∂xi1
· · ·∂xin

Q) ai1 . . . ain with a = x−x j . (15)

Notice that (∂xi1
. . .∂xin

Q)
∏n

j=1 ai j can be written as
∏d

i=1(∂mi
xi

Q)
∏d

i=1 ami
i with mi = #{ j ; i j = i }.

Using the multi-index notation, let m be a list of d natural numbers m = (m1,m2, . . . ,md ),
|m| =∑d

i=1 mi . Using

∂m corresponds to

m1︷ ︸︸ ︷
∂x1 . . .∂x1

m2︷ ︸︸ ︷
∂x2 . . .∂x2 · · ·

md︷ ︸︸ ︷
∂xd . . .∂xd , (16)

we can rewrite (15)

(∇nQ)(a, . . . ,a) = ∑
|m|=n

(
n

m

)
(∂mQ)

d∏
i=1

ami
i , with

(
n

m

)
= n!

m1! . . .md !
= n!∏d

i=1 mi !
. (17)

Remark 2. We also may use other multivariate calculus by using the following notation:

∀n ≥ 1 (∇nQ)(a, . . . ,a) = [a,∇]nQ =
(

d∑
i=1

(ai∂xi )

)n

Q, where ∂xk al = δkl (Kronecker symbol). (18)

Here the right hand side of (18) represents a non symetric linear application ([A,B ] ̸= [B , A]) of the
vector direction a with the vector gradient ∇ to the power n, the resulting differential operator
being applied to Q (see the two examples below). Using the multinomial Newton formula, the
operator [a,∇]n (18) writes (

d∑
i=1

(ai∂xi )

)n

= ∑
|m|=n

(
n

m

)
d∏

i=1
(ai∂xi )mi , (19)

and we finally get for n ≥ 1 (see also (17)):

(∇nQ)(a, . . . ,a) = ∑
|m|=n

(
n

m

)
d∏

i=1
ami

i ∂mQ. (20)

Example 3. For example, if n = 2, and d = 2, the right hand side of (17) (or (20)) applied to Q gives

(∇2Q)(a,a) = a2
1∂

2
x1

Q +2a1a2∂x1∂x2Q +a2
2∂

2
x2

Q.

which is nothing but the tensorial form (with Hessian) in (11) (with a = x−x j ).

Example 4. Taking n = 3, and d = 2, the right hand side of (17) (or (20)) applied to Q gives:

(∇3Q)(a,a,a) = a3
1∂

3
x1

Q +3a2
1 a2∂

2
x1
∂x2Q +3a1a2

2∂x1∂
2
x2

Q +a3
2∂

3
x2

Q.

We now focus on nonlinear strategies for the reconstruction of specific variables using Leibniz
formula.

1.1.1. Using Leibniz rule for specific quantities

For any specific quantity S, whenever P (x,ρ) > 0, we define its nonlinear reconstruction by the
rational function:

R(x,S) := P (x,ρS)

P (x,ρ)
. (21)

Where the reconstruction of P (x,ρS) is given by (11) with Q = ρS. Instead of considering the vo-
lumic variable ρS, the idea is to deal with the variations of each variable ρ and S independently
(Leibniz formula) and then gather all the information (see the Subsections 1.1.2 and Remark 6 be-
low). Assume that the fields ρ and S are regular, we can use the Leibniz rule at any differentiation
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order of the product ρS so that: Leibniz multi-variate approach using the identity (18)(19)(20),
replacing Q by the product ρS:

(∇)n(ρS)(a, ..,a) = ∑
|m|=n

(
n
m

) d∏
i=1

ami
i ∂m(ρS). (22)

Noting 0d = (0, . . . ,0), we can use the multi-index Leibniz formula:

∂m(ρS) = ∑
0d≤k≤m

(
m

k

)
∂kρ ∂m−kS with

(
m

k

)
=

d∏
i=1

(
mi

ki

)
. (23)

In (23), we recall some conventions for multi-indices comparison operators:

Definition 5. Let k and m be two multi-indices, we have the classical component-wise definition:

k ≤ m means that ∀i ki ≤ mi .

We define the < operator

k < m means that ∀i ki ≤ mi and ∃i ki < mi . (24)

Now, for (23), we finally end up with

∀a ∈Rd , ∇n(ρS)(a, . . . ,a) = ∑
|m|=n

(
n
m

) d∏
i=1

ami
i

∑
0d≤k≤m

(
m
k

)
∂kρ ∂m−kS. (25)

For example if n = 2 and d = 2, then (25) writes:

(1) m1 = 2 m2 = 0

(
2

(2 0)

)
a2

1

(
2

0

) k1=0︷ ︸︸ ︷
∂0

x1
ρ ∂2−0

x1
S+

(
2

1

) k1=1︷ ︸︸ ︷
∂1

x1
ρ ∂2−1

x1
S+

(
2

2

) k1=2︷ ︸︸ ︷
∂2

x1
ρ ∂2−2

x1
S


(2) m1 = 1 m2 = 1

(
2

(1 1)

)
a1a2

(
1

0

)(
1

0

)
)

k1=0,k2=0︷ ︸︸ ︷
∂0

x1
∂0

x2
ρ ∂1−0

x1
∂1−0

x2
S+

(
1

0

)(
1

1

) k1=0,k2=1︷ ︸︸ ︷
∂0

x1
∂1

x2
ρ ∂1−0

x1
∂1−1

x2
S

+
(

1

1

)(
1

0

) k1=1,k2=0︷ ︸︸ ︷
∂1

x1
∂0

x2
ρ ∂1−1

x1
∂1−0

x2
S+

(
1

1

)(
1

1

) k1=1,k2=1︷ ︸︸ ︷
∂1

x1
∂1

x2
ρ ∂1−1

x1
∂1−1

x2
S


(3) m1 = 0 m2 = 2

(
2

(0 2)

)
a2

2

(
2

0

)
)

k2=0︷ ︸︸ ︷
∂0

x2
ρ ∂2−0

x2
S+

(
2

1

) k2=1︷ ︸︸ ︷
∂1

x2
ρ ∂2−1

x2
S+

(
2

2

) k2=2︷ ︸︸ ︷
∂2

x2
ρ ∂2−2

x2
S


after summation, this gives the more common tensorial form:

(∇2(ρS)a,a) = (
(ρ∇2S + (∇ρ⊗∇S)+ (∇S ⊗∇ρ)+S∇2ρ)a,a

)
. (26)
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1.1.2. Computing arbitrary high-order specific quantities

In view of formula (25) (with ki = 0 terms), we need to compute at least
d∏

i=1
∂

mi
xi

S, ∀l = 1, . . . ,n ∀m; |m| = l (27)

which is nothing but all ∇l S, l ≤ n. Hence, we choose a numerical method to compute high-order
terms in each cell Ω j : (∇S) j , . . . , (∇nS) j (each must be an approximation of (∇i S)(x j )). Note also
that by symmetry ki = mi we need to compute all the high-order term for ρ: ∇lρ, l ≤ n using (20).

Remark 6. We use formula (20) for the volumic quantity ρ to obtain ∇nρ (n ≥ 1) (replacing S by
ρ in (27)). For the specific quantity S, the high-order derivatives (27) are gathered with those of ρ
in (25) to deduce P (x,ρS) in (11).

2. Obtaining homogeneity properties for non-linear reconstruction on U and ϵ

2.1. Arbitrary order (limitation-free)

In case of arbitrary order reconstruction of conservative quantities, we have defined in all cell j

P (x,ρ) = ρ j +
n∑

l=1

1

l !
(∇lρ) j (x−x j , . . . ,x−x j ), (28)

P (x,ρU) = ρU j +
n∑

l=1

1

l !
(∇l (ρU)) j (x−x j , . . . ,x−x j ), (29)

P (x,ρE) = ρE j +
n∑

l=1

1

l !
(∇l (ρE)) j (x−x j , . . . ,x−x j ). (30)

Using (25), (29) and (30) may be written as

P (x,ρU) = ρU j +
n∑

l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k≤m

(
m

k

)
(∂kρ) j (∂m−kU) j (31)

P (x,ρE) = ρE j +
n∑

l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k≤m

(
m

k

)
(∂kρ) j (∂m−kE) j (32)

Notation 7. The Leibniz rule in (31) or (32) for the volumic variable ρS (S = U or E) shows a
separate dependancy on both ρ and the specific variable S. Hence, we will use the following
notation

P (x,ρS) = P (x, [ρ]n
0 , [S]n

0 ) where [ . ]k
i denotes partial derivatives of global

order between i and k.
(33)

We may write now the primary specific variables U and E as rational functions. As usual,
isolating the constant value in cell from variable function, we have

Definition 8. Let the reconstructed density be given by (28) and assume that it does not vanish in
Ω j . Then the rational reconstruction of U and E given by (21) rewrites as{

R(x,U) := P (x,ρU)
P (x,ρ) ,

R(x,U) = U j +HR(x,U),
(

HR(x,U) = P (x,ρU)−U j P (x,ρ)
P (x,ρ) = HP (x,ρU)

P (x,ρ)

)
,

(34)

and {
R(x,E) := P (x,ρE)

P (x,ρ) ,

R(x,E) = E j +HR(x,E),
(
HR(x,E) = P (x,ρE)−E j P (x,ρ)

P (x,ρ) = HP (x,ρE)
P (x,ρ)

)
,

(35)

where each of the HR(x,S) terms in (34) and (35) (S = E or S = U) may be considered as a rational
high-order correction with respect to the constant term.
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Definition 9. Specific internal energy reconstruction
The specific internal energy reconstruction is defined as:

R(x,ϵ) := R(x,E)− 1

2
|R(x,U)|2. (36)

It is then obtained by using the reconstruction of the -primary- specific variables U (34) and E (35),
and it may be therefore considered as a -secondary- specific variable.

Lemma 10. The high-order part HR(x, · ) in (34) and (35) has the following properties:

(1) it reads as a rational function (see notation in (33)):

HR(x,S) := HP (x, [ρ]n−1
0 , [S]n

1 )

P (x,ρ)
(37)

(2) the numerator in (37) is linear with respect to all S derivatives:

∀λ ∈R HP (x, [ρ]n−1
0 , [λS]n

1 ) =λHP (x, [ρ]n−1
0 , [S]n

1 ). (38)

Proof. First, using (13),

c l
j (ρS) = 1

l !

1

|Ω j |
∫
Ω j

(∇l (ρS)) j (x−x j , . . . ,x−x j )dx,

= 1

l !

1

|Ω j |
∫
Ω j

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k≤m

(
m

k

)
(∂kρ) j (∂m−kS) j dx

We recall that:∑
0d≤k≤m

(
m

k

)
(∂kρ) (∂m−kS) = ∑

0≤k1≤m1

· · · ∑
0≤kd≤md

∏
i

(
mi

ki

)(∏
i
∂

ki
xi

)
ρ

(∏
i
∂

mi−ki
xi

)
S. (39)

In order to clarify manipulation of multi-index sums, we use Definition 5 (24). Now, isolating the
constant term for S (ki = mi , ∀i ) in (39), we have:∑

0d≤k≤m

(
m

k

)
∂kρ ∂m−kS = S∂mρ+ ∑

0d≤k<m

(
m

k

)
∂kρ ∂m−kS, (40)

hence
c l

j (ρS) = S j c l
j (ρ)+δl

j (ρS),

where we have noted

δl
j (ρS) := 1

l !

1

|Ω j |
∫
Ω j

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−kS) j dx. (41)

We thus have

ρS j = S jρ j −
n∑

l=1
δl

j (ρS). (42)

Since

P (x,ρS) = ρS j +
n∑

l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−kS) j ,

we can isolate the constant term for S (see (40)). Thus, using (42), we have

P (x,ρS) = S j

(
ρ j +

n∑
l=1

1

l !
(∇lρ) j (x−x j , ..,x−x j )

)
−

n∑
l=1

δl
j (ρS)

+
n∑

l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−kS) j

P (x,ρS) := S j P (x,ρ)+HP (x, [ρ]n−1
0 , [S]n

1 ), (43)
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where (see also (41)):

HP (x, [ρ]n−1
0 , [S]n

1 ) :=−
n∑

l=1
δl

j (ρS)+
n∑

l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi−xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−kS) j (44)

□

Notice that by keeping explicit dependency of different energies ϵ and 1
2 |U|2 in total specific

energy E , with E j = ϵ j + 1
2 |U j |2, we have:

HR(x,E) = P (x,ρϵ)+P (x,ρ 1
2 |U|2)− (ϵ j + 1

2 |U j |2)P (x,ρ)

P (x,ρ)

=
(
P (x,ρϵ)−ϵ j P (x,ρ)

)+ (
P (x,ρ 1

2 |U|2)− 1
2 |U j |2P (x,ρ)

)
P (x,ρ)

HR(x,E) := HR(E)(x,ϵ)+HR(E)
(

x,
1

2
|U|2

)
. (45)

this may define another way of computing the reconstructed specific total energy:

Rsum(x,E) := R(E)(x,ϵ)+R(E)
(

x,
1

2
|U|2

)
, (46)

= ϵ j +HR(E)(x,ϵ)+ 1

2
|U j |2 +HR(E)

(
x,

1

2
|U|2

)
= E j +HR(E)(x,ϵ)+HR(E)

(
x,

1

2
|U|2

)
As we will see thereafter, the core of the approach is to express the high-order part of the kinetic
energy in relation (45) as a function of high order terms of velocity already computed in R(x,U).
Indeed, the variable ϵ needs a specific attention: its definition makes use of the kinetic energy, so
that the interplay between ϵ and U is not trivial.

2.2. Computing high-order kinetic energy terms with multi-variate Leibniz formula

We recall the two specific total energy reconstruction (36) and (46):{
Rdef(x,E) = R(x,ϵ)+ 1

2 |R(x,U)|2,

Rsum(x,E) = R(E)(x,ϵ)+R(E)(x, 1
2 |U|2).

(47)

Note that imposing Rdef(x,E) = Rsum(x,E) in (47) gives an equation for R(x,ϵ). Hence, owing
to (35), (34), the relation (36) read

R(x,ϵ) = E j +HR(x,E)− 1

2
|U j +HR(x,U)|2,

= E j +HR(x,E)− 1

2

(|U j |2 +2(HR(x,U),U j )+|HR(x,U)|2) ,

= E j − 1

2
|U j |2 +HR(x,E)− (HR(x,U),U j )− 1

2
|HR(x,U)|2.

Using (45), we obtain:

R(x,ϵ) = ϵ j +HR(E)(x,ϵ)+
(

HR(E)
(

x,
1

2
|U|2

)
− (HR(x,U),U j )

)
︸ ︷︷ ︸

:=D(x,U)

−1

2
|HR(x,U)|2. (48)

Proposition 11. The scalar valued rational function D(x,U) in (48) has the following properties:

(1) it writes (see notation in (33))

D(x,U) := D(x, [ρ]n−1
0 , [U]n−1

1 )

P (x,ρ)
(49)

(2) the numerator of (49) is a second-order homogeneous polynomial w.r.t the last variable:

order 2 homogeneous: ∀λ ∈R D(x, [ρ]n−1
0 , [λU]n−1

1 ) =λ2D(x, [ρ]n−1
0 , [U]n−1

1 ) (50)
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Proof. By (45) and (37), (34) (same denominator), D(x,U) reads as a rational function

D(x,U) = HP (x,ρ 1
2 |U|2)− (HP (x,ρU),U j )

P (x,ρ)
(51)

= HP (x, [ρ]n−1
0 , [ 1

2 |U|2]n
1 )− (

HP (x, [ρ]n−1
0 , [U]n

1 ),U j
)

P (x,ρ)
(52)

Using (44) for the kinetic energy (S = 1
2 |U|2), the first term of the numerator in (52) reads as

HP

(
x, [ρ]n−1

0 ,

[
1

2
|U|2

]n

1

)
=

(
−

n∑
l=1

δl
j

(
ρ

1

2
|U|2

)
+

n∑
l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−k

(
1

2
|U|2

)
j

)
, (53)

and the second term reads as:

(HP (x, [ρ]n−1
0 , [U]n

1 ),U j )

=
(
−

n∑
l=1

δl
j (ρU)+

n∑
l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j (∂m−kU) j ,U j

)
. (54)

Now, subtracting (54) to (53), we must give an expression of(
∂m−k

(
1

2
|U|2

))
j
− ((∂m−kU) j ,U j ) (55)

The second term in (55) writes (omitting cell index j ):

(∂m−kU,U) =
d∑

s=1
us∂

m−kus . (56)

and the first reads as:

∂m−k(
1

2
|U|2) = 1

2

d∑
s=1

∂m−k(us us ),

= 1

2

d∑
s=1

∑
0d≤t≤m−k

(
m−k

t

)
∂tus ∂

m−k−tus . (57)

Isolating the constant term with respect to us , ie considering the two extremal terms in the sum
over t, that is:

∀i ti = 0 and ∀i ti = mi −ki ,

and using the previous Definition 5 (see (24)) also for the two bounds t = 0d and t = m−k, we
have:∑

0d≤t≤m−k

(
m−k

t

)
∂tus ∂

m−k−tus = (us )∂m−kus+∂m−kus (us )+ ∑
0d<t<m−k

(
m−k

t

)
∂tus ∂

m−k−tus (58)

so that using (58), (57) and (56) in (55), we finally end up with (49):

D(x, [ρ]n−1
0 , [U]n−1

1 ) = HP

(
x, [ρ]n−1

0 ,

[
1

2

∣∣U∣∣2
]n−1

1

)
, (59)

with

HP

(
x, [ρ]n−1

0 ,

[
1

2

∣∣U∣∣2
]n−1

1

)
=−

n∑
l=1

(
δl

j

(
ρ

(
1

2
|U|2

))
− (δl

j (ρU),U j )

)
+

n∑
l=1

1

l !

∑
|m|=l

(
l

m

)
d∏

i=1
(xi −xi , j )mi

∑
0d≤k<m

(
m

k

)
(∂kρ) j

(
1

2

d∑
s=1

∑
0d<t<m−k

(
m−k

t

)
(∂tus ) j (∂m−k−tus ) j

)
. (60)
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In the last internal sum in (60), due to the strict inequality bounds 0d < t < m−k (see (24)), we
have:

• Lower bound: ∃i− such that ti− > 0 and
• Upper bound: ∃i+ such that (mi+ −ki+ − ti+ ) > 0,

considering now us → λus , is nothing but multiplying ∂tus and ∂m−k−tus by λ, which gives the
expected 2-homogeneity property. □

Hence, we have obtain in (59) and (60) high-order terms for kinetic energy as a result of those
of velocity (already computed!), note however that the highest order is n −1 (and not n).

2.3. A limited reconstruction of internal energy

With the previous results (48) (59), we can establish the following unlimited reconstruction of
specific internal energy (here, let just suppose that P (x,ρ) ̸= 0):

R(x,ϵ) = ϵ j +
HP (x, [ρ]n−1

0 , [ϵ]n
1 )

P (x,ρ)
+

HP
(
x, [ρ]n−1

0 ,
[ 1

2 |U|2]n−1
1

)
P (x,ρ)

− 1

2

∣∣∣∣ HP (x, [ρ]n−1
0 , [U]n

1 )

P (x,ρ)

∣∣∣∣2

(61)

The high-order part of specific internal energy reconstruction is build with three high-order con-
tributions. The first comes from ϵ data itself, the second term is made from kinetic energy data
all derivatives are obtain by those coming from velocity thanks to Leibniz formula (see (59) (60)).
Finally, the third term comes from the high-order velocity reconstruction and the algebraic rela-
tion (36).
Let λρ , λϵ, λU be function parameters (called limiters) for ρ, ϵ and U. We begin by introducing
the limited version of the reconstructed volumic density (at least verifying positivity at quadra-
ture points, cf (68) or (71)):

Pλ(x,ρ) and noting [ρλ]k
i the resulting limited version of [ρ]k

i (62)

Now, collecting all the properties linked to high-order part of all the specific variable of the
previous subsections, we can rewrite a function parameterized version of specific internal energy
ϵ of (48) (see also (34)(35)(36)(37)):

Rλ(x,ϵ) = ϵ j +λϵ
HP (x, [ρλ]n−1

0 , [ϵ]n
1 )

Pλ(x,ρ)
(63a)

+ (λU)2
HP

(
x, [ρλ]n−1

0 ,
[ 1

2 |U|2]n−1
1

)
Pλ(x,ρ)

(63b)

− (λU)2

2

∣∣∣∣ HP (x, [ρλ]n−1
0 , [U]n

1 )

Pλ(x,ρ)

∣∣∣∣2

(63c)

The high-order part in (63a) and (63c) use linear dependancy (37) (38) and the one in (63b) is
derived from the 2-homogeneous property (49) (50) (59).

3. Construction of induced limitation for velocity reconstruction

In view of physical constraints for the continuous system ρ ∈ Idensity, ϵ ∈ Ienergy, we may decide to
apply a direct limitation only for ρ, ϵ for arbitrary order reconstruction (not only second or third
order like in [13]). We could limit independently λϵ and λU (both beeing non-negative scalars),
but it is interesting to notice that choosing in (63a)–(63c),

λU =
√
λϵ (64)
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we obtain an induced limiter for the velocity (built from that of internal specific energy). Us-
ing (63a)–(63c) and (64), we obtain a direct limited reconstruction for the internal energy ϵ:

Rλ(x,ϵ)

=ϵ j +λϵ
(

HP (x, [ρλ]n−1
0 , [ϵ]n

1 )

Pλ(x,ρ)
+ HP (x, [ρλ]n−1

0 ,
[ 1

2 |U|2]n−1
1 )

Pλ(x,ρ)
−1

2

∣∣∣∣∣ HP (x, [ρλ]n−1
0 , [U]n

1 )

Pλ(x,ρ)

∣∣∣∣∣
2)

(65)

and an induced limited velocity reconstruction for U using (34) (38) and (64):

Rλ(x,U) = U j +λU
HP (x, [ρλ]n−1

0 , [U]n
1 )

Pλ(x,ρ)
, with λU =

√
λϵ. (66)

Now, we have obtained what we claimed at the begining: the velocity reconstruction (66) is
limited thanks to the limitation of density and the specific internal energy reconstruction (65)
which are here, the variables of interest. Note also, that in view of (65) and (64), the reconstructed
total specific energy E have a same limitation factor from his specific internal and kinetic
energies. This result seems to be optimal in terms of limiter for E which balances the limitation
of the two sub energies ϵ and 1

2 |U|2.

Consequences.

• Each of (65) and (66) may be written as Rλ(x,Q) = Q j +λ j ĤR(x,Q), where ĤR(x,Q) is
the “high-order” extension (polynomial for volumic variables and rational fraction for
specific quantities). Taking λ j ≡ 1 gives the unlimited version (and for conservative
variables (31) (32)) while λ j ≡ 0 reduces to first order Rλ(x,Q) =Q j (and then P (x,ρU) =
ρ j U j and P (x,ρE) = ρ j E j ).

• Classical scalar limiters can be used, Dukowicz, Barth–Jespersen [2], MLP [19] or min-
mod. They all give Rλ(xl ,Q) ≥ 0 for all quadrature points xl of ∂Ω j . Some of them also
impose that

min
j ′∈V ( j )

Q j ′ ≤ Rλ(xl ,Q) ≤ max
j ′∈V ( j )

Q j ′ (67)

where V ( j ) is the set of all neighbooring cells around j (those having at least a common
node with j ), see Figure 1.

xr+1 xr

xr−1/2

xr−1

xr+1/2

xj
Ωj

xk
Ωk

xl
Ωl

xm
Ωm

xi
Ωi

Figure 1. Neighborood of generic cell j : V j a cell sharing a node or an edge with cell j ,
quadrature boundary points {xr }r∈∂Ω j ,{xr+1/2}r+1/2∈∂Ω j .
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• If λϵ = 0 then λU = 0 (first order taking also λρ = 0). If λϵ = 1 then λU = 1 (unlimited
scheme taking also λρ = 1). Now, in case of λϵ ∈]0,1[ then λU >λϵ (see Figure 2).

• we emphasize that in our limitation process, we need to define only one limiter for both
the internal energy ϵ in a direct way and all the component of the velocity U through (64).

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

sqrt(lambda_eps)
lambda_eps

Figure 2. Behavior of the induced limiter of velocity λU with respect to limiter of internal
specific energy λϵ on [0,1]

Note that the reconstruction of density appearing at the denominator of the velocity (66) and
of the specific internal energy (65) is itself limited by any of the two different cases:

• a hierarchical strategy λl
ρ for l th order term ∇lρ:

Pλ(x,ρ) = ρλj +
n∑

l=1

1

l !
λl
ρ(∇lρ) j (x−x j , . . . ,x−x j ), (68)

with

ρλj = ρ j −
n∑

k=1
ck,λ

j (ρ) (69)

and:

ck,λ
j (Q) := 1

k !

1

|Ω j |
∫
Ω j

λk
Q (∇kQ) j (x−x j , . . . ,x−x j )dx. (70)

• or the same function λρ is used for all high-order terms (in the same way as (65) (66)):

Pλ(x,ρ) = ρλj +λρ
n∑

l=1

1

l !
(∇lρ) j (x−x j , . . . ,x−x j ), (71)

with (see (13)):

ρλj = ρ j −λρ
n∑

k=1
ck

j (ρ) (72)

Here, λρ in (71) or each λi
ρ in (68) are designed to obtain at least the positivity criterion

Pλ(xl ,ρ) > 0 for all xl quadrature points of ∂Ω j but also (67) (with Q = ρ).
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Remark 12. We recover exactly the second and third-order cases of [13]. In (65) (66), we have the
following expression for HP

(
x, [ρ]n−1

0 , [ 1
2

∣∣U∣∣2]n−1
1

)
• For n=1: HP

(
x
)≡ 0

• For n=2:

HP
(
x,ρ j , (∇U) j

)
= 1

2
t (x−x j )(ρ j (t∇U) j (∇U) j )(x−x j )− 1

2

1

|Ω j |
∫
Ω j

t (x−x j )(ρ j (t∇U) j (∇U) j )(x−x j )dx

which are indeed 2-homogeneous polynomials w.r.t high-order velocity terms.

3.1. Choices of cell by cell limiter λρ ,λϵ

In view of (10), we need to evaluate high-order fluxes wherever we consider Riemann prob-
lems. Many limiter for the density (71) and for the internal energy (63) (that induce velocity lim-
iters (64)) can be investigated. Here we use a minmod/Barth–Jespersen like limiter constructed
in the spirit of (71). For each cell we define a scalar cell limiter λρj :

• Pλ(x,ρ), the high-order limited reconstruction of the density:

Pλ(x,ρ) = ρ j +λρj (P (x,ρ)−ρ j ). (73)

Now, we explain the definition of λρj :
(1) Evaluation of (unlimited) P (x,ρ) at xl coordinates of quadrature points (on bound-

ary cellΩ j nodes and edges) where theRiemann problem is posed, see (6), (10): the
associated values P (xl ,ρ) are denoted by P j ,l . We also define:M

ρ,∂Ω j

j := maxxl∈∂Ω j P j ,l

m
ρ,∂Ω j

j := minxl∈∂Ω j P j ,l

(74)

(2) Evaluation of (unlimited) P (x,ρ) at x j ′ centroïd of neighboring cell Ω j ′ , j ′ belongs
to the neighborhood V j of j ( j ̸∈ V j ) see Figure 1, the associated values P (x j ′ ,ρ) are
denoted P j , j ′ , we also define:M

ρ,V j

j := max j ′∈V j P j , j ′ ,

m
ρ,V j

j := min j ′∈V j P j , j ′ .
(75)

(3) Computation of extremal values of previous reconstructed values:Mρ j := max
(
M

ρ,∂Ω j

j , M
ρ,V j

j

)
,

mρ j := min
(
m
ρ,∂Ω j

j ,m
ρ,V j

j

)
.

(76)

(4) Computation of extremal bounds of solution in neighborhood V j :{
ρmax

j := max(ρ j ,max j ′∈V j ρ j ′ ),

ρmin
j := min(ρ j ,min j ′∈V j ρ j ′ ).

(77)

(5) Evaluation of min and max gap to obtain spatial local bound preservation:
sρ,max

j :=
1, if |Mρ j −ρ j | ≤ δ, (δ≪ 1)
ρmax

j −ρ j

Mρ j −ρ j
, else.

sρ,min
j :=

1, if |mρ j −ρ j | ≤ δ,
ρmin

j −ρ j

mρ j −ρ j
, else.

(78)
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Finally, we take:

λ
ρ

j = max(0,min(1,min(sρ,min
j , sρ,max

j ))). (79)

• Rλ(x,ϵ), the high-order limited reconstruction for internal energy (see (65)), we adopt the
same approach replacing Pλ(x,ρ) (resp. ρ j ) by Rλ(x,ϵ) (resp. ϵ j ). We obtain

λϵj = max(0,min(1,min(sϵ,min
j , sϵ,max

j ))), (80)

and deduce from (65)

Rλ(x,ϵ) = ϵ j +λϵj R̂(x,ϵ)

• Rλ(x,U), the high-order induced limited reconstruction for velocity (66):

Rλ(x,U) = U j +λU
j R̂(x,U)

(64)︷︸︸︷= U j +
√
λϵj R̂(x,U)

Remark 13.

• We emphasize here that other a priori limitation strategies are possible, and will be
investigated in future works.

• In case of the weaker positivity condition on a target quantity f = ρ (density) or f = ϵ

(specific internal energy), we just set s f ,max
j = 1 and f min

j = 0 (or f min
j = η meaning that

ρ ≥ η (or ϵ≥ η) for example η= 10−15) in (78). Nevertheless, we have noticed that in some
strong shock test cases, imposing only positivity may lead to oscillations.

• Step (2) has been added to (76) and gives better results in some test cases.
• In order to obtain both Rλ(x,ρ) > ρmin and Rλ(x,ϵ) > ϵmin at each quadrature point

in (79) (65), we need of course that the constant term (giving by finite volume unknowns
at each time step) satisfies:

ρ j > ρmin and ϵ j > ϵmin (81)

This is essentially linked to qualitative property of the underlying numerical flux of
having enough numerical viscosity and also that the underlying first order scheme (with
first order reconstruction) fullfills constraints (81).

4. Numerical results

This section is devoted to numerical test cases involving high-order (second and third-order here)
reconstruction with the limitation (71) (65) (66). The high-order time integration is obtained
with RK3-TVD [21]. For the tests we present here, we take δ= 10−15 in (78). We use a composite
extension (node and edges) of Roe (with entropy correction) and Rusanov numerical fluxes [7, 23]
(see [13] and (10) with θ = 2

3 or θ = π
4 ). For sanity check, we test the overall reconstruction limiter-

free λρ ≡ 1 in (68) (or (71)), and λϵ ≡ 1 in (65) (and then (66)) on a regular solution then on a series
of classical non regular problems. As highlighted by the last point of remark (13), in order to
obtain physical valid constraints (81) (if not fullfill by an high-order scheme), we apply an APITALI
process (see [13, Section 4.4] and [12, 14]). For the approximation of discontinuous solutions, the
a-posteriori control permits to obtain such constraints. Especially, in the next sub-section 4.2.4,
in order to make comparisons, some computations are done without a priori limiters (λρ ≡ 1 (71)
and λϵ ≡ 1 (65) and then (66)). In this case, we observe the following qualitative behavior:

(1) If we use a posteriori strategy by just imposing positivity (81), the numerical solution at
final time exhibits some oscillations (see Figure 8 and Figure 9).

(2) If we do not use a posteriori strategy, the code may crash in very few time steps by non
physical states.
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4.1. Third-order checking on regular Taylor–Green Vortex solution

This standard test case is used to assess the expected (high-) order of a numerical method. The
domain is [−5,5]× [−5,5], and the analytic regular solution is given by:

ρ(t ,x) = (T∞+δT )1/(γ−1), U(t ,x) = U∞+δU, p(t ,x) = ργ, (82)

with

δU(t ,x) = β

2π
exp(1− r 2)(−x2, x1)

δT (t ,x) =− (γ−1)β2

8γπ2 exp(1− r 2)
(83)

and T∞ = 1, U∞ = 0 (stationnary), β= 5, γ= 1.4, x = (x1, x2) and r 2 = |x|2, t f = 1.
We note (see Figure 3) that the strategy based on gathering the high-order terms in recon-

structed fields: velocity U and internal energy ϵ (by the way of Leibniz formula) gives indeed a
third order convergence (without limitation). We also compare results with the value θ = 2/3
(Simpson formula) to the value θ =π/4 (the conical degenerate case, see [13]). Although only the
former gives a third/fourth order quadrature formula for the fluxes, we observe for both cases
approximately the same error and order convergence rate.
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Figure 3. Convergence of third order composite Rusanov limiter-free with θ = 2/3 and
θ =π/4.

4.2. 1D test cases with non-smooth solution

4.2.1. Sod Shock Tube

The standard Riemann problem of Sod shock tube is solved to asses the good behavior of
limitation process, conservation property (discontinuity location and level of intermediate states
for weak solutions) of the schemes. It initialy consists of a perfect gas (γ = 1.4) at rest with left
state (ρ,u,P )Le f t = (1,0,1) and a right state (ρ,u,P )Ri g ht = (.125,0,0.1).
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For the Sod shock tube (cf Figure 4), we observe a good behavior of the induced limitation for
the third order reconstruction, especially for the velocity field for which the limitation is linked
with those of internal energy (cf (66)). In Figure 5, for two different numerical composite fluxes,
we observe the benefits made by increasing the order (one, two and three) of the reconstruction
along with the induced limitation.
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Figure 4. Mesh convergence of third-order reconstruction and induced limitation on Sod
shock tube (Rusanov (Left) / Roe (Right)): density (Top), internal energy (Center), velocity
(Below).
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Figure 5. Comparison on 100 cells (for density) of order’s 1, 2 and 3 with reconstruction and
induced limitation (71) (79) (65) (80) (66) on Sod shock tube (Rusanov (Left) / Roe (Right)).

4.2.2. Osher–Shu test case

This test case [22] requires the scheme to be both high-order to reproduce the smooth physical
high frequencies but also to have good limitation process to resolve a discontinuity. The initial
conditions contains a moving Mach 3 shock wave that interacts with periodic perturbations in
density:

(ρ,u,P ) =
{

(3.857143,2.629369,10.333333), −5 ≤ x1 ≤−4,

(1+0.2sin(5x1),0,1), −4 < x1 ≤ 5.
(84)

For the Osher–Shu test case (Figure 6), we note that the convergence rate of the Rusanov
scheme is slower than the convergence rate of Roe scheme. Indeed for a coarse mesh (100 cells),
even for third order reconstruction, the composite Rusanov scheme damps all high frequencies of
the solution (x1 ∈ [0,2]). They are almost flattened (compared to composite Roe flux). Obviously,
for finer mesh (800 cells), this difference between both schemes is less significant.
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Figure 6. Mesh convergence of third-order schemes with induced limitation (71) (65) (66)
on Osher–Shu test case (Rusanov (Left) / Roe (Right))
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4.2.3. Blast waves test case

The blast waves test case proposed by Colella/Woodward [26] assesses the robustness of the
overall numerical machinery. The solution results from the interaction of two reflecting shocks.
A robust limitation strategy is mandatory (if not then negative internal energy occurs quasi
immediately).

(ρ,u,P ) =


(1,0,1000), 0 ≤ x1 ≤ 0.1,

(1,0,10−2), 0.1 < x1 < 0.9,

(1,0,100), 0.9 ≤ x1 ≤ 1.

(85)

For the blast waves test case (Figure 7), we observe less smeared convergence of Roe scheme
with respect to the Rusanov but the numerical results do not exhibit Gibbs phenomenum.
However, the resolution of contact discontinuity at x1 ≃ 0.6 could be enhanced by using an HLLC
composite flux or by other ad-hoc technics.
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Figure 7. Mesh convergence of third-order schemes with induced limita-
tion (71) (79) (65) (80) (66) for the Colella/Woodward’s blast waves problem (Rusanov
(Above) / Roe (Below)).

4.2.4. Effect of a priori induced limitation of section 3

In this paragraph, we test the behavior with and without a priori induced limitation strategy
in (71) (79) (65) (80) (66) (see Figure 8).

Sod.
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Figure 8. Sod shock tube: From Top to Bottom: Density, Velocity, Internal Energy.
Comparison (third order Rusanov composite scheme) with and without a-priori induced
limitation (71) (79) (65) (80) (66) on 100 cells (left) and 200 cells (right).

Noh. The Noh test case need of using special care for high-order methods. This is mainly because
of the internal energy is nearly zero. More precisely, for this shock tube problem, the data are
γ= 5

3 , t f = 0.6 and the initial condition is uniform:

(ρ,u,P ) = (1,−1,10−13) (86)

On the left side, a symmetry is imposed, and an inflow on the right side (see Figure 9).
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Figure 9. Noh test: From Top to Bottom: Density, Velocity, Internal Energy, Pressure.
Comparison (third order Rusanov composite scheme) with and without a-priori induced
limitation (71)(79) (65) (80) (66) on 100 cells (left) and 200 cells (right).



932 Philippe Hoch

Results show the good capability of the induced limitation described in previous section 3 do
deal with discontinuities (see e.g. velocity or pressure in Noh test case Figure 9). We recall that
no direct limitation of the velocity reconstruction is used, it is only deduce from the limitation of
an ad-hoc internal energy reconstruction and (64). An a posteriori limitation is mandatory (resp.
useless) in order to reach final time in case of the induce a priori limitation strategy is not used
(resp. used).

4.3. 2D test cases with non-smooth solution

4.3.1. Lax–Liu (case 12)

In two dimensional case, Lax–Liu proposed some 2D-Riemann problems with initial data
resulting in different Shock/Contact/Rarefaction configurations (see also [16] for some schemes
comparison). For the case 12 of [15], the data on each quadrants are (see Figure 10 Top Left):

(ρ,U,P )2 = (1, (0.7276,0),1), (ρ,U,P )1 = (.5313,(0,0),0.4),

(ρ,U,P )3 = (.8, (0,0),1), (ρ,U,P )4 = (1, (0,0.7276),1).
(87)

Figure 10. Density for third-order schemes with induced limitation (71) (79) (65) (80) (66)
for two dimensional Riemann problem (configuration 12 of [15] Top Left and (87) with a
reference solution on Top Right see in [16]) (Rusanov (Left) / Roe (Right)) with 400x400 cells.
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We observe in Figure 10 a good agreement with respect to manufactured reference solution.
Here, we emphasize that for the velocity treatment, we do not need to use an ad-hoc procedure
for vectorial limitation such as VIP [14, 18].

4.3.2. Double Mach Reflection

For the test case proposed in [26], we compare results (see Figure 11) of our proposed
limitation strategy with two numerical composite fluxes Rusanov and Roe.

Figure 11. Density for third-order schemes with induced limitation (71) (79) (65) (80) (66)
for the double Mach reflection problem with composite schemes (Rusanov (Left) / Roe
(Right)) on 40201 unstructured triangles.

At final time t f = 2, we note that upper shock at x1 = 2 is well resolved (without oscillation and
at the right position). Here, we do not observe the “jet” near the oblic reflection axis that may
occur with standard edge flux schemes (carbuncle phenomenum).

5. Conclusion

In this paper, we propose an a priori limitation process in the reconstruction step for the d-
dimensional compressible Euler equations of gas dynamics. Taking an arbitrary order polyno-
mial reconstruction of conservative quantities of this system, we have obtained sufficient stabil-
ity condition on density ρ > 0 and on the internal specific energy ϵ> 0. The main idea is to use the
multi-variate (arbitrary order) Leibniz formula for primal specific quantities: the velocity U, the
specific total energy E . The high-order kinetic energy part is deduced (again by Leibniz formula)
from high-order terms coming from those of velocity. Finally, using an explicit form of the non
linear rational reconstruction R(x,ϵ), it is possible to obtain a direct limitation (for ϵ) that induces
a limitation for the velocity reconstruction R(x,U).
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