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Abstract. We give a short proof of the recurrence of the two-dimensional elephant random walk in the diffu-
sive regime. This was recently established by Qin (2023), but our proof mainly uses very rough comparison
with the standard plane random walk. We hope that the method can be useful for other applications.

Résumé. Nous donnons une preuve courte de la récurrence de la marche aléatoire de l’éléphant dans le plan
dans le régime diffusif. Cela a récemment été établi par Shuo Qin, mais notre preuve ne repose que sur une
comparaison avec la marche aléatoire simple dans le plan. Nous espérons que cette méthode puisse être utile
pour d’autres applications.
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1. Introduction

The elephant random walk on Zd has been introduced in dimension 1 by Schütz and Trimper [6]
and is a well-studied discrete process with reinforcement, see [3] for background and references.
Its definition (see (2.1)) depends on a memory parameter1 α ∈ (− 1

2d−1 ,1
)

and it exhibits a phase
transition going from a diffusive when α< αc = 1

2 to a superdiffusive behavior when α> αc . We
focus here on the two-dimensional case and establish recurrence of the process in the diffusive
regime.

Theorem 1. In the diffusive regime α<αc = 1
2 , the plane elephant random walk is recurrent.

∗Corresponding author
1The usual definition uses a memory parameter p ∈ [0,1] which is the probability to reproduce a (uniform) former

step of the walk, or to move in one of the 3 remaining directions with the same probability (1−p)/3 so that α= (4p−1)/3,
see [3, Equation (1.4)].
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This has been recently proved by Qin [5] but our approach is different and much shorter,
however it gives less quantitive information and does not directly apply in the critical regime
α = αc . We use a comparaison to the simple random walk which could apply in dimension 1 as
well since the simple random walk is also recurrent in that case.

It is worth pointing out that [5] established that the elephant random walk is always transient
when d ≥ 3, similar to the simple random walk.

Notation. We write ei the four directions of Z2 for 1 ≤ i ≤ 4. We shall write (Xk : k ≥ 0) for
the canonical underlying process starting from 0 := (0,0) ∈ Z2, we denote its steps by ∆Xk =
Xk+1−Xk ∈ {e1,e2,e3,e4} and we introduce for 1 ≤ i ≤ 4 the centered counting direction processes
D [X ]

k (ei ) defined by

D [X ]
k (ei ) =

k−1∑
j=0

1{X j+1−X j =ei } − k

4
, in particular notice that

4∑
i=1

D [X ]
n (ei ) = 0. (1.1)

For any stopping time θ, we denote by X (θ) the shifted process X (θ)
k = Xθ+k −Xθ for k ≥ 0. Finally

Fn is the canonical filtration generated by the first n steps of the walk and we use X[0,n] as a
shorthand for (Xk : 0 ≤ k ≤ n).

2. Comparison between elephant and simple random walk

Under the law P the underlying process (X ) evolves as the standard simple random walk on Z2,
whereas under P , it evolves as the α-elephant random walk i.e. satisfying for n ≥ 0,

P (∆Xn = ei |Fn) = 1

4
+αD [X ]

n (ei )

n
, (2.1)

(where we interpret 0/0 = 0 for n = 0). In particular, under P , the process (D [X ]
k (ei ) : 1 ≤ i ≤ 4,

k ≥ 0) is Markov and evolves as an urn process with four colors, which was crucially used in [1]
to establish the phase transition diffusive/superdiffusive. The local evolution of the elephant
random walk (for large times) ressembles that of the simple random walk and this is quantified
in the following proposition:

Proposition 2 (Markov contiguity). For any ε > 0 and any A > 0, there exist cε,A > 0 and a
sequence of events En satisfying liminfn→∞P (X[0,n] ∈ En) ≥ 1− ε such that for any measurable
function f ,

E

[
f
(
X (n)

[0,n]

)
1X (n)

[0,n]∈En

∣∣∣∣∣ Fn and
|D [X ]

n (ei )|p
n

≤ A for all 1 ≤ i ≤ 4

]
≥ cε,A ·E [

f
(
X[0,n])1X[0,n]∈En

]
.

Proof. In the event considered in the conditioning, we have |D [X ]
n (ei )| ≤ A

p
n for all 1 ≤ i ≤ 4.

By (2.1), the Radon–Nikodym derivative of (Xn+k −Xn : 0 ≤ k ≤ n) under P with respect to P is
given by

RNDn :=
2n−1∏
k=n

(
1+α

D [X ]
k (∆Xk )

k

)
=

n−1∏
k=0

1+α
D [X ]

n (∆X (n)
k )+D [X (n)]

k (∆X (n)
k )

n +k

 . (2.2)

By Donsker’s invariance principle, we can find a constant Aε such that the event

Gn =
{

max
i

sup
0≤k≤n

∣∣∣D [X (n)]
k (ei )

∣∣∣≤ Aε
p

n

}
has probability at least 1 − ε under P . On this event (and conditionally on the event of the
statement of the proposition), the counting directions processes D [X ]

[n,2n](ei ) are in absolute value
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bounded by (A+Aε)
p

n. In particular, using log(1+αx) ≥αx−(αx)2 for small |x|, we deduce that
on this event, for n large enough, the Radon–Nikodym derivative in (2.2) is lower bounded by

RNDn 1Gn ≥ exp
(
αMn −α2(A+ Aε)2) where M j =

j−1∑
k=0

D [X ]
n+k (∆Xn+k )

n +k
.

Using (1.1), it is trivial to check that (M j : 0 ≤ j ≤ n) is a (Fn+·)- martingale with quadratic
variation

E
[

M 2
j+1 −M 2

j

∣∣∣ Fn+ j

]
= E[

(M j+1 −M j )2∣∣Fn+ j
]= 1

4

∑4
i=1

(
D [X ]

n+ j (ei )
)2

(n + j )2 ≤
on Gn

(A+ Aε)2

4n
.

It follows that E[M 2
n 1Gn ] ≤ (A+Aε)2

4 . In particular, thanks to Markov inequality, for any ε > 0, the
event Hn = {|Mn |1Gn < (A+Aε)

2
p
ε

}
is of probability at least 1− ε. Gathering up the pieces, on the

event En =Gn ∩Hn which is of P measure at least 1−2ε, the Radon–Nikodym derivative of the

elephant w.r.t. the simple random walk is at least e
−α (A+Aε)

2
p
ε

−α2(A+Aε)2

=: cε,A . □

Xn

0

X2n

X
(n)
[0,n]

X
(2n)
[0,n]

Figure 1. Illustration of the proof of Proposition 3. Conditionally on Fn and on the fact
that the counting directions processes are controlled at time n, the blue and red parts are
independent on events of large probability. This is sufficient to imply a lower bound on the
probability of return to 0.

It is classical that in the plane, the simple random walk started from x ∈ Z2 with ∥x∥ ≈ p
n

has a probability of order log−1 n to visit (0,0) within n steps. Our weak bound (Proposition 2) is
sufficient to imply the same kind of estimate for the elephant random walk:

Proposition 3. For any A > 0 there exists cA > 0 such that

E

[
∃ 5

2
n ≤ k ≤ 3n : Xk = 0

∣∣∣∣∣ Fn and
|D [X ]

n (ei )|p
n

≤ A for all 1 ≤ i ≤ 4

]
≥ cA

logn
.
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Proof. Let us denote xn = Xn which is fixed conditionally on Fn . Using Proposition 2 twice, for
any positive functions f and g and any A, A′ > 0 and any ε > 0, we can find two sequences of
events En and E ′

n and constants cε,A and cε,A′ such that

E
[

f (X (2n)
[0,n])g (X (n)

[0,n])
∣∣∣Fn

]
≥ E

[
f (X (2n)

[0,n])g (X (n)
[0,n])1 ∥D[X ]

2n (ei )∥p
n

≤A′, ∀1≤i≤4

∣∣∣∣∣ Fn

]

≥ cε,A′ ·E
[

f (X[0,n])1X[0,n]∈E ′
n

]
·E

[
1 ∥D[X ]

2n (ei )∥p
n

≤A′, ∀1≤i≤4
g (X (n)

[0,n])

∣∣∣∣∣ Fn

]
≥ cε,A′ ·E

[
f (X[0,n])1X[0,n]∈E ′

n

]
· cε,A ·E

[
g (X[0,n])1X[0,n]∈En 1 ∥D[X ]

n (ei )∥p
n

≤A′−A, ∀1≤i≤4

]
1 ∥D[X ]

n (ei )∥p
n

≤A, ∀1≤i≤4
.

Up to increasing A′ we may suppose that the event Hn = En ∩E ′
n ∩

{ ∥D [X ]
n (ei )∥p

n
≤ A′−A, ∀ 1 ≤ i ≤ 4

}
has probability at least 1−3ε and particularizing the inequality above, we deduce that for some
constant c̃ε,A > 0 the probability in the proposition is lower bounded by

c̃ε,A ·P
(
∃ 3

2
n ≤ k ≤ 2n : Xk =−xn and

X (0)
[0,n] ∈ Hn

X (n)
[0,n] ∈ Hn

)
,

so that we can apply the following lemma to conclude.

Lemma 4. For any A > 0, there exists ε > 0 and δA > 0 so that if xn ∈ Z2 is such that ∥xn∥ ≤ A
p

n
and if En is a sequence of events such that P (X[0,n] ∈ En) ≥ 1−ε then we have

P

(
∃ 3

2
n ≤ k ≤ 2n : Xk =−xn and

X (0)
[0,n] ∈ En

X (n)
[0,n] ∈ En

)
≥ δA

logn
.

Proof. We use a second-moment method on the random variable

N
En

xn
:= #

{
3

2
n ≤ k ≤ 2n : Xk =−xn

}
1X (0)

[0,n]∈En
1X (n)

[0,n]∈En
.

We denote by pEn
k (y) = E [1Xk=y 1X[0,n]∈En ] and pk (y) = P (Xk = y) for the heat kernels. By the

standard local limit theorem (or just Stirling approximation on the binomial coefficients) there
exists C > 0 such that pk (y) ≤ C

k for all k ≥ 1 and y ∈Z2. First, by lifting the restrictions on En we
have

E

[(
N

En
xn

)2
]
≤ E

[(
2n∑

k=3/2n
1Xk=−xn

)2]
≤ 2

∑
3
2 n≤k≤k ′≤2n

pk (−xn)pk ′−k (0)

≤ 2
∑

3
2 n≤k≤k ′≤2n

C

n

C

k ′−k
≤C ′ log(n),

for some C ′ > 0 (independent of n). To evaluate the first moment, introduce the (truncated)
Green functions g En (y) = ∑n

k=n/2 pEn
k (y) and similarly g (y) = ∑n

k=n/2 pk (y). In particular, since
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P (En) ≥ 1 − ε we have ∥p − pEn∥1 := ∑
y p(y) − pEn (y) ≤ ε and similarly and ∥g − g En∥1 =∑

y g (y)− g En (y) ≤ εn. Recalling that C
n ≥ pEn

n (y) ≥ pn(y) and 2C ≥ g En (y) ≥ g (y), we have

E
[
N

En
xn

]
= ∑

y∈Z2

pEn
n (y)g En (−y −xn) = ∑

y∈Z2

 pEn
n (y)g En (−y −xn)−pEn

n (y)g (−y −xn)

−pn(y)g (−y −xn)+pEn
n (y)g (−y −xn)

+pn(y)g (−y −xn)


≥∑

y
pn(y)g (−y −xn)−

∥∥∥pEn
n

∥∥∥∞∥∥g − g En
∥∥

1 −∥g∥∞
∥∥∥pn −pEn

n

∥∥∥
≥∑

y
pn(y)g (−y −xn)−3C 2ε.

However, since ∥xn∥ ≤ A
p

n, the local limit theorem implies that
∑

y p(y)g (−y−xn) > cA for some
cA > 0 independently of n and so one can choose ε> 0 small enough so that if P (En) ≥ 1−ε then
we have E

[
N

En
xn

]> cA/2. We conclude by the second moment method that

P (N En
xn

> 0) ≥ E
[
N

En
xn

]
/E

[(
N

En
xn

)2
]
≥ cA

2C ′ logn
. □

3. Proof of Theorem 1

Proof of Theorem 1. Let us denote P3 j =P (∃ 3 j ≤ k ≤ 3 j+1, Xk = 0 |F3 j ). When α<αc , i.e. the
diffusive regime, Bertenghi [1, Theorem 4.2] showed that under P we have(

D X
n (ei )p

n

)
1≤i≤4

(d)−−−−→
n→∞ (Xi )1≤i≤4,

for some random variable X (whose distribution is irrelevant for our purposes). Together with
our Proposition 3, this shows that in the diffusive regime, for any ε> 0 there exists δ> 0 such that
for large j ’s we have

P ( j ·P3 j > δ) ≥ 1−ε. (3.1)

Notice that the variables P3 j are not independent, but Jeulin’s lemma [4, Proposition 3.2] gives
∞∑

k=1
P3k =∞, P −a.s. (3.2)

To be honest we rather use the proof than the lemma itself, and since the argument is short
let us reproduce it here: Suppose by contradiction that there exists ε, M > 0 so that the event
A = {∑∞

k=1 P3k < M
}

has probability at least ε> 0. Using (3.1) we take δ> 0 so that P ( j ·P3 j >
δ) ≥ 1− ε

2 and write

M ≥ E
[

1A
∑
j≥1

P3k

]
= ∑

j≥1

δ

j
·P

(
A∩

{
P3 j > δ

j

})
︸ ︷︷ ︸

≥ε−(1−(1− ε
2 ))=ε/2

=∞,

which is a contradiction. Given (3.2), the conditional Borel–Cantelli lemma ([2, Theorem 4.3.4])
then implies that the events {∃ 3 j ≤ k ≤ 3 j+1 : Xk = 0} happen for infinitely many j ’s with
probability one, implying recurrence of the process. □
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