
Comptes Rendus

Mathématique

Faouzi Triki and Mirza Karamehmedović
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Abstract. We study the validity of the Neumann or Born series approach in solving the Helmholtz equation
and coefficient identification in related inverse scattering problems. Precisely, we derive a sufficient and nec-
essary condition under which the series is strongly convergent. We also investigate the rate of convergence
of the series. The obtained condition is optimal and it can be much weaker than the traditional require-
ment for the convergence of the series. Our approach makes use of reduction space techniques proposed by
Suzuki [21]. Furthermore we propose an interpolation method that allows the use of the Neumann series in
all cases. Finally, we provide several numerical tests with different medium functions and frequency values
to validate our theoretical results.

Résumé. Nous étudions la validité de l’approche série de Neumann ou de Born pour résoudre l’équation de
Helmholtz, et pour l’identification de coefficients dans des problèmes inverses de diffusion. Plus précisé-
ment, nous obtenons une condition nécessaire et suffisante sous laquelle la série converge fortement. Cette
condition est beaucoup plus faible que celle utilisée traditionnellement. Nous examinons également le taux
de convergence de la série. Notre approche utilise des techniques d’espace de réduction proposées par Su-
zuki [21]. De plus, nous proposons une méthode d’interpolation qui permet l’utilisation de la série de Neu-
mann dans tous les cas. Enfin, nous fournissons plusieurs tests numériques avec différentes fonctions de
milieu et valeurs de fréquence pour valider nos résultats théoriques.
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1. Introduction and main results

Let d = 1,2, . . . , fix a positive k0 and k̂ ∈ Sd−1, let q ∈ L∞(Rd ) be compactly supported with
q(x) >−1, and consider the following Helmholtz equation in Rd with the Sommerfeld radiation
condition: {

(∆+k2
0(1+q(x)))u =−k2

0 q(x)eik0k̂.x in Rd ,

lim|x|→∞ |x|(d−1)/2
(
∂|x|− ik0

)
u = 0 uniformly in x/|x| ∈ Sd−1.

(1)

The system (1) is satisfied by the scattered field arising from the interaction of the incident
uniform plane wave eik0k̂.x with the medium q(x). Convolving the PDE in (1) with the outgoing
fundamental solution1 of the Helmholtz operator ∆+k2

0 in Rd ,

Φd (x) =
{

(−2π|x|)(1−d)/2(i/2k0)∂(d−1)/2
|x| eik0|x|, x ∈ Rd \ {0}, d odd,

(−2π|x|)(2−d)/2(i/4)∂(d−2)/2
|x| H (1)

0 (k0|x|), x ∈ Rd \ {0}, d even,

and integrating by parts, we get the Lippmann–Schwinger equation

(I −Vq (k0))u =Vq (k0)eik0k̂( · ) in Rd , (2)

where
Vq (k0)u(x) = k2

0

∫
y∈supp q

Φd (x − y)q(y)u(y)dy

exists as an improper integral for each x ∈ Rd . It is well-known that the integral equation (2)
is equivalent with (1), and that it suffices to solve (2) in, say, a bounded open ball B ⊂ Rd that
includes supp q , followed by the continuous extension u(x) = Vq (k0)[u( · )+ exp(ik0k̂( · ))](x) for
x ∈ Rd \B . The mapping Vq (k0) : L2(B) → L2(B) is compact, and we shall in the following consider
only the restriction of the Lippmann–Schwinger equation in (2) to B . The objective of the paper
is to study the successive approximations for solving the integral equation (2):

u0 =Vq (k0)eik0k̂( · ); un+1 = u0 +Vq (k0)un , n ∈ N . (3)

The computational advantage of this iterative method is that it does not need to solve the partial
differential equation (1) in the whole space and deal with the radiation conditions. Instead,
one can obtain a good approximation un of the solution u by applying successively the integral
operator Vq (k0) if the sequence converges.

On the other hand the strong convergence of the sequence (un)n∈N to the solution u of the
integral equation (2) is equivalent to the convergence of the Neumann series:

lim
n→∞un =

∞∑
j=0

Vq (k0) j+1 e( · )k0k̂( · ) = (I −Vq (k0))−1Vq (k0)e( · )k0k̂( · ) . (4)

In inverse scattering problems the Neumann series approach known more under the name of
Born approximation was initially employed to study the quantum mechanical inverse backscat-
tering problem in one dimension (see for instance [18] and references therein). The principal
advantage of using this technique in inverse medium problem is that it requires solving a linear
equation instead of an oscillatory nonlinear one [4, 5]. It has also been applied to various other
inverse problems, including optical and electrical impedance tomographies, acoustic and elec-
tromagnetic parameters identification [1–3, 6, 10, 11, 13, 15–17, 20]. However, it is important to
note, that the strategies considered in these works are based on purely formal analysis or assume
strong conditions on the targeted physical parameters.

It is well known that a sufficient condition for the convergence of the Neumann series (4) is
that the spectral radius Spr(Vq (k0)) of the compact operator Vq (k0) is strictly less than one, that
is Spr(Vq (k0)) < 1. But this latter condition while it is optimal for the expansion of the operator
(I −Vq (k0))−1 in L2(B), it is obviously too restrictive for the convergence of (4). Then is it possible

1Here H (1)
0 the Hankel function of the first kind and order zero.
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to derive a necessary and sufficient condition for the convergence of only (4)? On the other hand
the strong convergence

Vq (k0) j eik0k̂( · ) −→ 0, j −→∞, (5)

in L2(B), is evidently a necessary condition for the convergence of the series (4). Suzuki in his
seminal work [21] wondered if this condition is also sufficient. Surprisingly, it turns out that this
condition also guarantees the convergence of the series. The main idea of the proof is to derive a
minimal invariant space where the expansion of the restriction of (I −Vq (k0))−1 to that space is
equivalent to the convergence of the series (4).

Let

L2
k0,k̂

(B) = Span
(
Vq (k0)eik0k̂( · ),Vq (k0)2 eik0k̂( · ), . . . ,Vq (k0) j+1 eik0k̂( · ), . . .

)
. (6)

By construction L2
k0,k̂

(B) is invariant by Vq (k0). Denote Ṽ q (k0) the restriction of Vq (k0) to

L2
k0,k̂

(B). Suzuki showed that condition (5) indeed implies Spr(Ṽ q (k0)) < 1, and hence ensures

the convergence of the Neumann series to the unique solution.

Proposition 1. The convergence of the Neumann series (4) is equivalent to the condition (5).

Remark 2. Since Vq (k0) is a compact operator the strong convergence (5) can be replaced by a
weak convergence of a subsequence. Notice that L2

k0,k̂
(B) can also be generated by finite sums of

the sequence

L2
k0,k̂

(B) = Span

(
J∑

j=0
Vq (k0) j+1 eik0k̂( · ); J ∈ N

)
.

Recall that the traditional condition to ensure the convergence of the Neumann series is [4]

∥Vq (k0)∥ ≤Ck0,q =
(∫

B

∫
B
|k2

0Φd (x − y)q(x)|2 dx dy

)1/2

< 1. (7)

This condition occurs in the situation for weak scattering, and is not valid for high wave num-
ber k0, or large magnitude of the medium function q . But since eik0k̂( · ) is sparse we expect that
L2

k0,k̂
(B) has a lower dimensionality than the whole space L2(B), and consequently the conver-

gence of the Neumann series (4) may happen beyond the conventional limitation (7). In other
words Spr(Ṽ q (k0)) < 1 can be satisfied by a larger class of wave numbers and medium functions
not necessary within the weak scattering regime. This was also observed in many numerical ex-
periments in the past, has fueled many discussions and was the origin of several investigations [2,
10, 11, 15–17, 20]. This pattern is clearly confirmed by many numerical examples in Section 4.

Theorem 3. Assume that the condition (5) is satisfied, that is

lim
n→∞

∥∥∥Vq (k0)n eik0k̂( · )
∥∥∥= 0.

Then there exists a constant C > 0 independent of n such that the following error estimate

∥u −un∥ ≤C
∥∥∥Vq (k0)n eik0k̂( · )

∥∥∥ , (8)

holds for all n ∈ N .

The rest of the paper is organized as follows. In Section 2, we provide the proofs for Proposi-
tion 1, and Theorem 3. Section 3 is devoted to the construction of a preconditioner for the integral
equation (2). Precisely, we propose an interpolation method that allows the use of the Neumann
series independently of the fact that the condition (5) is fulfilled or not. We present then several
numerical experiments to show the effectiveness of the derived theoretical results in Section 4.
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2. Proof of the main results

In this section we shall prove the main results of the paper. To ease the notation we set

A =Vq (k0); ψ=Vq (k0)eik0k̂( · ); H= L2(B); H0 = L2
k0,k̂

(B).

Proof of Proposition 1. If the series
∞∑

j=0
A jΨ= (I − A)−1Ψ, (9)

is convergent then obviously we will have A jΨ → 0 strongly in H. Now assume that A jΨ

converges strongly to zero in H, and focus on the nontrivial opposite direction.
The main observation of Suzuki is that the convergence of the series (9) depends more on

the specific local behavior of the operator A relative to the given vector ψ rather than its global
properties on the whole space H which requires that Spr(A) < 1. Indeed consider the Hilbert
subspace H0 ⊂H space generated by the vectors A jΨ, j ∈ N , that is

H0 = Span
(
Ψ, AΨ, . . . , A jΨ, . . .

)
. (10)

Clearly H0 is invariant by A, and since Ψ lies in H0 to prove that the series (9) strongly in H0 it is
sufficient to show that A0 the restriction of A to H0 verifies Spr(A0) < 1. Remark that since H0 ⊂H
we have Spr(A0) ≤ Spr(A).

Let M be the linear manifold formed by the vectors v ∈ H0 satisfying A j v tends strongly to
zero as j →∞. We first remark that the fact j → A jΨ tends strongly to zero, M contains all the
vectors A jΨ, j ∈ N , and consequently is dense in H0.

Let σ(A0) denotes the spectrum of A0, and set σ−(A0) = {λ ∈ Σ(A0); |λ| < 1} and σ+(A0) =
{λ ∈ Σ(A0); |λ| ≥ 1}. Since A0 is compact σ+(A0) is finite, in addition there exists a rectifiable
Jordan curve C+ in the resolvent set surrounding σ+(A0) and does not contain other eigenvalues
of σ(A0). Similarly there exists a rectifiable Jordan curve C− in the resolvent set surrounding only
σ−(A0). Then following [9], the spectral projections

P± = 1

2iπ

∫
C±

(λI − A0)−1dλ, (11)

verify the following identities

P−+P+ = I ; P−P+ = P+P− = 0; P±A = AP±. (12)

Recalling that Spr(A0) = supλ∈σ(A0) |λ|. Since σ(A0) is a sequence of complex values that may
converge to zero, proving that Spr(A0) < 1 is equivalent to show that σ+(A0) is an empty set. Let
now v ∈ P+H0. By the density of the set M in H0, there exists a sequence (vn)n∈N 0 ∈ M that
converges strongly to v . N 0 here is the set N \{0}. Denote vn,± = P±vn . Therefore vn = vn,++vn,−.
Remarking that Avn,− = AP−vn = P−Avn converges strongly to P−v = 0 leads to vn,− ∈M. Hence
vn,+ = vn −vn,− lies in fact in M∩P+H0. This shows that M∩P+H0 is indeed dense in P+H0. But
since σ+(A0) is finite P+H0 is finite dimensional space and consequently M∩P+H0 = P+H0. This
is clear not correct if P+H0 is not trivial (take any eigenvector of A0 associated to λ ∈ σ+(A0), it
obviously does not belong to M). Then σ+(A0) is an empty set, and finally Spr(A0) < 1, which
achieves the proof.

□

Proof of Theorem 3. Since ψ ∈M we deduce from Proposition 1 that the Neumann series (9) is
convergent. On the other hand we deduce from (12) A jψ= A j P−ψ= A j

0ψ. Therefore∥∥∥∥∥ ∞∑
j=0

A jΨ

∥∥∥∥∥=
∥∥∥∥∥ ∞∑

j=0
A j

0Ψ

∥∥∥∥∥= ∥∥(I − A0)−1Ψ
∥∥≤ ∥∥(I − A0)−1∥∥∥Ψ∥. (13)
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Let n ∈ N be fixed. The fact that ψ ∈M implies that An+1ψ ∈M. Applying inequality (13) to the
vector An+1ψ leads to∥∥∥∥∥ ∞∑

j=n+1
A jΨ

∥∥∥∥∥=
∥∥∥∥∥ ∞∑

j=0
A j An+1Ψ

∥∥∥∥∥≤ ∥∥(I − A0)−1∥∥∥∥An+1Ψ
∥∥≤C

∥∥AnΨ
∥∥ , (14)

with C = ∥(I − A0)−1∥∥A0∥, which finishes the proof of the Theorem. □

Remark 4. The proofs stay valid for any general compact operator A and even if H is a Banach
space. In the particular case where A is in addition normal, that is A A∗ = A∗A, the obtained
results are straightforward. Indeed if σ(A) = {λk ;k ∈ N 0} the eigenvalues of A, and Pk is the
orthogonal spectral projection associated to λk , we have

A =
∞∑

k=1
λk Pk ,

and it is clear that the condition ψ ∈M is equivalent to

ψ= ∑
|λk |<1

Pkψ.

Therefore∥∥∥∥∥ ∞∑
j=n+1

A jΨ

∥∥∥∥∥
2

=
∥∥∥∥∥ ∑
|λk |<1

λn+1
k

1−λk
PkΨ

∥∥∥∥∥
2

= ∑
|λk |<1

λ2(n+1)
k

(1−λk )2 ∥PkΨ∥2 ≤ r 2
0

(1− r0)2 ∥AnΨ∥2,

where r0 = max|λk |<1 |λk | = ∥A0∥ = Spr(A0). One can verify that C = ∥(I − A0)−1∥∥A0∥ = r0
1−r0

.
Finally it is easy to find examples of A such that the inequalities

Spr(A0) ≪ 1 ≪ Spr(A) = ∥A∥,

hold, and where the benefit of considering the reduced space H0 is indeed remarkable.

3. Preconditioning

By “preconditioning” we here mean the transformation of the original Lippmann–Schwinger
equation (I −Vq (k0))u =ψ to an integral equation solvable by a convergent Neumann series re-
gardless of the value of ∥Vq (k0)∥L2(B)→L2(B) and of whether or not the sequence (∥Vq (k0) jψ∥L2 ) j∈N

converges to zero. See [8, 12–14, 19] for related approaches. Throughout this section we assume
the problem dimension d ∈ {1,2,3}.

Lemma 5. If q(x) ≥ 0, q ̸≡ 0, then there is a complex constant γ such that the solution of the
equation (I −Vq (k0))u =ψ in L2(B) is expressible in terms of the convergent Neumann series

u =
∞∑

j=0
M jγψ,

where M = (1−γ)I +γVq (k0).

Proof. Let Vq (k0)ϕ=λϕ in B with nonzero λ. Then
ϕ′′+k2

0(1+q(x)/λ)ϕ= 0, x ∈ ]−R,R[,

−ϕ′(−R) = ik0ϕ(−R),

ϕ′(R) = ik0ϕ(R)

(15)

for d = 1, and {
(∆+k2

0(1+q(x)/λ))ϕ= 0 in Rd ,

lim|x|→∞ |x|(d−1)/2
(
∂|x|− ik0

)
ϕ= 0 uniformly in x/|x| ∈ Sd−1,
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for d ∈ {2,3}. Thus, for sufficiently large R > 0 we have

0 =
∫
|x|<R

(ϕ∆ϕ+k2
0 |ϕ|2 +k2

0λ
−1q(x)|ϕ|2)

=
∫
|x|<R

(k2
0 |ϕ|2 −|∇ϕ|2)+

∫
|x|=R

ϕ∂rϕ+k2
0λ

−1
∫

x∈supp q
q(x)|ϕ|2, (16)

as well as (∆+k2
0)ϕ= 0 in {|x| > R}. In the case d = 1 we readily find that

ℑ
∫
|x|=R

ϕ∂rϕ= k0(|ϕ(−R)|2 +|ϕ(R)|2) > 0,

while in the case d ∈ {2,3} we can follow the argument in, e.g., [7, Theorem 2.13, p. 38] to find

ℑ
∫
|x|=R

ϕ∂rϕ> 0.

Hence ∫
x∈supp q

q(x)|ϕ|2 dx > 0,

and this in conjunction with (16) gives

ℑ(λ−1) =−
ℑ∫

|x|=R ϕ∂rϕ

k2
0

∫
x∈supp q q(x)|ϕ|2 < 0,

so ℑλ> 0 and finally ℜ(eiα(1−λ)) > 0 if α ∈ ]−π/2,π/2[ satisfies

tanα> max
λ′∈σ(Vq (k0))

ℜλ′−1

ℑλ′ , (17)

where σ(Vq (k0)) is the spectrum of Vq (k0). The existence of the maximum in (17) follows from
the fact that the eigenvalues of the compact operator Vq (k0) : L2(B) → L2(B) reside in the closed
ball {λ′ ∈ C , |λ′| ≤ ∥Vq (k0)∥L2(B)→L2(B)} and can accumulate only at zero. These facts also imply
that there exists ε > 0 such that |γ(1 − λ′) − 1| < 1 for all λ′ ∈ σ(Vq (k0)), where γ = εeiα. It
remains to notice that each eigenvalue µ of M is of the form µ = 1−γ+γλ′, where λ′ is some
eigenvalue of Vq (k0), and finally that the equation (I −M)u = γψ is equivalent with the equation
(I −Vq (k0))u =ψ. □

We can in fact be more specific in a special case in dimension one. Let L be a positive constant,
set B = ]0,L[, and let q(x) ≡ q0 = const. > 0 for x ∈ B .

Lemma 6. If ε′ > k0Lq0/2,

α= arctan
1+ k0Lq0

2 ε′

ε′− k0Lq0
2

, 0 < ε< 1

1+k0Lq0/2

|tan(2max{α,arctanε′})|
tan(max{α,arctanε′})

,

and γ= εeiα, then each eigenvalue µ of M = (1−γ)I +γVq (k0) satisfies |µ| < 1.

Proof. Assume λ ∈C \ {0} and ϕ ∈ L2(]0,L[), ϕ ̸≡ 0, satisfy

Vq (k0)ϕ(x) =λϕ(x), x ∈ (0,L). (18)

Integration by parts readily shows the equivalence of the Lippmann–Schwinger equation (18)
with the Helmholtz system 

ϕ′′(x)+k2
0 s2ϕ(x) = 0, x ∈ ]0,L[,

−ϕ′(0) = ik0ϕ(0),

ϕ′(L) = ik0ϕ(L),

(19)

where s = (
1+q0/λ

)1/2. The eigenvectors of the Laplacian on ]0,L[ are generally of the form

ϕ(x) = A exp(ik0sx)+B exp(−ik0sx), (20)
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and we then readily find that (19) is equivalent with (20) together with

s ̸= 1, B = A(s +1)/(s −1), e2ik0Ls = (s +1)2/(s −1)2. (21)

Next define the constant T (k0L) > 0 by T (k0L)sinh(k0LT (k0L)) = 1. Using the last condition
in (21), we find that, necessarily,

s ∈ S±(k0L) =

−coshk0Lt ±
√

1− t 2 sinh2 k0Lt

sinhk0Lt
+ i t , t ∈ (0,T (k0L)]

 ,

which in turn implies

λ ∈Λ(q0,k0L) =
{ q0

s2 −1
, s ∈ S−(k0L)∪S+(k0L)

}
.

As an example, Figure 1 shows the setΛ(q0,k0L), as well as the numerically computed spectrum,
for two sets of parameter values for k0, L, and q0.

Figure 1. The theoretically predicted setΛ(q0,k0L) that includes the eigenvalues of Vq (k0),
plotted against the numerically computed eigenvalues. The parameter values are: top,
k0 = 1, L = 1, and q0 = 5; bottom, k0 = 50, L = 1, and q0 = 1. The reference circle is centered
at the origin and has radius one.

Since ℑλ> 0 and since the eigenvalues of Vq (k0) accumulate precisely at zero, we have

lim
t→0

ℜω(t )−1

ℑω(t )
=−∞

for

ω(t ) = q0

s(t )2 −1
, t ∈ (0,T (k0L)];

here s(t ) is given by the above definition of S±(k0L). Furthermore, if ℜω(t ) < 1 then (ℜω(t )−
1)/ℑω(t ) < 0, while ℜω(t ) ≥ 1 implies

1− t 2 sinh2 k0Lt +cosh(k0Lt )
√

1− t 2 sinh2 k0Lt

sinh2 k0Lt
≤ q0

2
;

the latter can be seen by rewriting ℜω−1 ≥ 0 as

((ℜs)2 − (ℑs)2 −1)((ℜs)2 − (ℑs)2 −1−q0)+4(ℜs)2(ℑs)2 ≤ 0,



1030 Faouzi Triki and Mirza Karamehmedović

and noting that (ℜs)2 − (ℑs)2 −1 > 0 and (ℜs)2(ℑs)2 > 0. Now since also

1− t 2 sinh(k0Lt )2 −cosh(k0Lt )
√

1− t 2 sinh(k0Lt )2

t sinh(k0Lt )(cosh(k0Lt )−
√

1− t 2 sinh(k0Lt )2)

≤ 1− t 2 sinh(k0Lt )2 +cosh(k0Lt )
√

1− t 2 sinh(k0Lt )2

t sinh(k0Lt )(cosh(k0Lt )+
√

1− t 2 sinh(k0Lt )2)
,

we have

ℜω(t )−1

ℑω(t )
< ℜω(t )

ℑω(t )
<

1− t 2 sinh2 k0Lt +cosh(k0Lt )
√

1− t 2 sinh2 k0Lt

t sinh(k0Lt )(coshk0Lt +
√

1− t 2 sinh2 k0Lt )
,

so ℜω(t ) ≥ 1 implies

ℜω(t )−1

ℑω(t )
< q0

2

sinhk0Lt

t (coshk0Lt +
√

1− t 2 sinh2 k0Lt )
≤ q0

2

tanhk0Lt

t

≤ q0

2
lim
τ↘0

tanhk0Lτ

τ
= q0k0L

2
,

that is, we get a similar estimate on (ℜω(t )−1)/ℑω(t ) as we do on ∥Vq (k0)∥. Next, define

ξ+ = arctan sup
ω∈Λ(q0,k0L)

ℑ(
eiα(1−ω)

)
ℜ(

eiα(1−ω)
) (22)

and

ξ− = arctan inf
ω∈Λ(q0,k0L)

ℑ(
eiα(1−ω)

)
ℜ(

eiα(1−ω)
) . (23)

With α ∈ (0,π/2), ε> 0, and γ= εeiα, we have arg(γ(1−ω)) ∈ [ξ−,ξ+] for all ω ∈Λ(q0,k0L), and if

ε< 1

1+k0Lq0/2

|tan(2max{|ξ+|, |ξ−|})|
tan(max{|ξ+|, |ξ−|})

(24)

then |γ(1−ω)−1| < 1 for all ω ∈Λ(q0,k0L), and specifically |γ(1−λ′)−1| < 1 for all eigenvalues λ′

of Vq (k0); the condition (24) can be deduced by requiring ℑ(γ(1−ω)) < | tan(π−2arg(γ(1−ω)))|
and using |1−ω| ≤ 1+∥Vq (k0)∥. Note that we must choose α<π/2 rather than α=π/2 since

ℑ(eiα(1−ω(t )))

ℜ(eiα(1−ω(t )))
−→
t→0

tanα,

which for α= π/2 forces ξ+ = π/2 and thus ε< 0. Note furthermore that we can bound (22)–(23)
analytically for

α= arctan
1+ k0Lq0

2 ε′

ε′− k0Lq0
2

,

with ε′ > k0Lq0/2, since

−cotα≤ ℑ(
eiα(1−ω)

)
ℜ(

eiα(1−ω)
) ≤ tanα, ω ∈Λ(q0,k0L), ℜω≤ 1,

since furthermore (recall that (ℜω−1)/ℑω< k0Lq0/2 < tanα)

−
k0Lq0

2 tanα+1

tanα− k0Lq0
2

≤ ℑ(
eiα(1−ω)

)
ℜ(

eiα(1−ω)
) < 0, ω ∈Λ(q0,k0L), ℜω> 1,

and finally since

−cotα>−
k0Lq0

2 tanα+1

tanα− k0Lq0
2

=−ε′. □



Faouzi Triki and Mirza Karamehmedović 1031

Remark 7. A drawback of preconditioning is that, with increasing k0Lq0, the acceptable values
of α and of arctanε′ tend to π/2, and ε therefore tends to zero. Thus, while the Neumann series
remains convergent, the equation

(I −M)u = γψ
may be said, especially in a numerical context, to lose information about the operator Vq (k0) and
about the original inhomogeneity ψ, as both are multiplied with γ= εeiα there.

Remark 8. Instead of using the bound on ε stated in Lemma 6, we can estimate ξ+ and ξ−
from (22)–(23) numerically and arrive at a larger sufficiently small ε using (24).

We show numerical examples of the use of preconditioning in Section 4.

4. Numerical examples

We here present several numerical examples in dimension one. Fix a positive wavenumber k0,
obstacle size L > 0, medium function q ∈ L2(]0,L[), q(x) >−1, and consider the following system
for the scattered wave u(x) corresponding to the left excitation exp(ik0x) in dimension one:

ψ′′(x)+k2
0(1+q(x))ψ(x) =−k2

0 q(x)exp(ik0x), x ∈ ]0,L[,

−ψ′(0) = ik0ψ(0),

ψ′(L) = ik0ψ(L).

(25)

The function G(x, y) = (i /2k0)exp(ik0|x − y |), x, y ∈ [0,L], is the free-space Green’s function
associated with the boundary problem (25), since

(∂2
y +k2

0)G(x, y) =−δ(x − y), x, y ∈ ]0,L[,

−∂yG(x,0) = ik0G(x,0), x ∈ ]0,L[,

∂yG(x,L) = ik0G(x,L), x ∈ [0,L].

Multiplying the differential equation in (25) with G(x, y) and integrating by parts, we get the
Lippmann–Schwinger equation

(I −Vq (k0))ψ(x) =Vq (k0)exp(ik0( · ))(x), x ∈ ]0,L[ , (26)

where

Vq (k0)u(x) = ik0

2

∫ L

y=0
eik0|x−y | q(y)u(y)dy, x ∈ ]0,L[ .

The operator Vq (k0) : L2(]0,L[) → L2(]0,L[) is compact, with norm satisfying

∥Vq (k0)∥2 ≤
∫ L

x=0

∫ L

y=0

∣∣∣∣ ik0

2
eik0|x−y | q(y)

∣∣∣∣2

dy dx = k2
0L∥q∥2

2

4
.

Now let q0 ∈ ]−1,+∞[, and assume that q |]0,L[ ≡ q0. One can easily prove

H0 = Span
(
Vq (k0) j eik0( · ); j ∈N

)
= Span

(
V1(k0) j eik0( · ); j ∈N

)
.

On the other hand, since Vq (k0) = q0V1(k0), we have

Spr
(
(Vq )0(k0)

)= |q0|Spr((V1)0(k0)) ,

where (Vq )0(k0) and (V1)0(k0) are the restrictions of Vq (k0) and V1(k0), respectively, to the space
H0. Following the proof of Proposition 1, the Born series

∞∑
j=1

(
Vq (k0)

) j eik0( · )
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is convergent if and only if Spr
(
(Vq )0(k0)

)< 1, that is, if and only if

|q0| < 1

Spr((V1)0(k0))
.

To illustrate this, we show in Figure 2 two cases of repeated application of Vq (k0) on the original
right-hand side Vq (k0)eik0( · ).

Figure 2. Top: k0 = 1, L = 1, q0 = 1. Bottom: k0 = 50, L = 1, q0 = 1.

In the case where Spr((Vq )0(k0)) < 1, the series (Vq (k0)J eik0( · )) converges strongly to zero,
while (I −Vq (k0))

∑J
j=1 Vq (k0) j eik0( · ) converges strongly to Vq (k0)eik0( · ), The second of the two

convergence processes plateaus for large values of J due to the effect of numerical errors. In
contrast, neither sequence converges in the case where Spr((Vq )0(k0)) ≥ 1.

Finally, we illustrate Lemma 6 numerically in Figures 3 and 4, picking parameter values that
violate the strong (norm) condition (7): the computed values of Spr(Vq (k0)) in the examples
in Figures 3 and 4 are 2.42 and 7.21. In spite of this, we indeed do produce the operator
M = (1−γ)I +γVq (k0) with ∥M∥ < 1, and we specifically show in Figure 4 that we get a convergent
Neumann series solution for the case k0 = 50, L = 1, q0 = 1, Spr(Vq (k0)) = 7.21, albeit the
convergence is rather slow.
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a) k0=1, L = 1, q0 = 5, Spr(Vq (k0)) = 2.42, ε′ = 5.2, α= 1.3803, ε= 0.02, T = 0.9320.

b) k0 = 50, L = 1, q0 = 1, Spr(Vq (k0)) = 7.21, ε′ = 50, α= 1.5508, ε= 3 ·10−5, T = 0.0677.

Figure 3. The original theoretically predicted and numerically computed spectra of Vq (k0);
the transformed curve {z = 1−γ(1−ω), ω ∈Λ(q0,k0L)} ⊂C is included in the unit open disk
centered at 1.
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Figure 4. Preconditioning of the equation (I −Vq (k0))u = Vq (k0)eik0( · ) results in a conver-
gent Neumann series solution. The parameters here are as in Figure 2 (bottom) and Fig-
ure 3 b), and specifically Spr(Vq (k0)) = 7.21.
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