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Abstract. In this short notes, we consider multiplicities of representations in general algebraic families, es-
pecially the upper semi-continuity of homological multiplicities and the locally constancy of Euler–Poincaré
numbers. This generalizes the main result of Aizenbud–Sayag for unramified twisting families.

Résumé. Dans cette courte note, nous considérons les multiplicités de représentations dans des familles
algébriques générales,en particulier la semi-continuité supérieure des multiplicités homologiques et la
constance locale des nombres d’Euler–Poincaré. Ceci généralise le résultat principal d’Aizenbud–Sayag pour
les familles obtenues en induisant une représentation fixée que l’on tord par des caractères non ramifiés.
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1. Introduction

Let G be a reductive group over a p-adic field F and H ⊂ G be a closed spherical reductive
subgroup, i.e. H admits an open orbits the flag variety of G . Let Rep(G ,C) be the category of
complex smooth G(F )-representations. In the relative Langlands program (see [18] etc.), it is
central to study the multiplicity m(σ) := dimHomH(F )(σ,C) for smooth admissible σ ∈ Rep(G ,C).

As suggested in [16], to study m(σ), it is more convenient to consider the homological multi-
plicities mi (σ) := dimExti

H(F )(σ,C) and the Euler-Poincare number EP(σ) := ∑
i≥0(−1)i mi (σ) si-

multaneously. Usually, the Euler Poincare number EP(σ) is easier to control and in many cir-
cumstances, one may expect to deduce results on m(σ) from those of EP(σ). For example, it is
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conjectured in [16] (see also [20, Conjectures 6.4, 6.5]) that when the pair (G , H) is strongly tem-
pered, i.e. the matrix coefficients of tempered G(F )-representations are absolutely integrable on
H(F ), then m(σ) = EP(σ) for any irreducible tempered σ ∈ Rep(G ,C). Actually the stronger result
mi (σ) = 0 for i > 0 is known for the (GLn+1×GLn ,GLn)-case (see [7]), Bessel model for classical
groups (see [8]), the triple product case (see [5]) and when H(F ) is compact (see [2, Thorem 2.14]
etc.) or σ is supercuspidal (see [20, Remark 6.6]).

In this paper, we shall consider variations of mi (σ) and EP(σ) in families. Throughout this
paper, we assume the following working hypothesis:

the multiplicity m(σ) is finite for all irreducible σ ∈ Rep(G ,C).

This implies that mi (σ) and EP(σ) are all well-defined and finite for arbitrary finite length σ ∈
Rep(G ,C) (see the discussion at the beginning of Section 3). Note that this hypothesis is already
known in many cases [18, Theorem 5.1.5] and conjectured to hold for all spherical pairs.

To explain the flavor of the main result, let us start with the unramified twisting family.

Unramified twisting family. Let P ⊂ G be a parabolic subgroup with Levi factor M and take
σ ∈ Rep(M ,C) of finite length. Attached to the data (P, M ,σ), one has the unramfied twisting
family

{
I G

P (σχ)
∣∣∣χ ∈ M̂

}
where M̂ is the complex torus parameterizing unramified characters of

M(F ). Then as functions on the complex torus M̂,

• m(I G
P (σχ)) is upper semi-continuous, i.e. for each n ∈N, the set {χ ∈ M̂ | m(I G

P σχ) ≤ n} is
open (see [12, Appendix D]);

• EP(I G
P (σχ)) is constant (see [3, Theorem E]).

For arithmetic applications such as p-adic special value formulae on eigenvarieties (see [10]
etc.), we are motivated to consider the following setting (following [9, 11]): Fix a subfield E ⊂ C
and let R be a finitely generated reduced E-algebra. Let π be a finitely generated smooth
admissible torsion-free R[G(F )]-module, namely a finitely generated R[G(F )]-moduleπ such that

• any v ∈π is fixed by an open compact subgroup of G(F );
• the submodule πK ⊂ π of K -fixed elements is finitely generated over R for any compact

open subgroup K ⊂G(F );
• π is torsion-free as a R-module.

For any point x ∈ Spec(R), let k(x) be the residue field and denote the category of smooth G(F )-
representations over k(x) by Rep(G ,k(x)). For π|x :=π⊗R k(x) ∈ Rep(G ,k(x)), set

mi (π|x ) := dimk(x) Exti
H(F ) (π|x ,k(x)) , EP(π|x ) := ∑

i≥0
(−1)i mi (π|x )

where the Ext-groups are computed in Rep(G ,k(x)). Note that by Proposition 15 below, all the
numbers mi (π|x ) and EP(π|x ) are well-defined and finite under our running hypothesis.

Supported by the results for unramified twisting families, we propose the following conjecture:

Conjecture 1. With respect to the Zariski topology on Spec(R), mi (π|x ) is upper semi-continuous
for each i ∈N and EP(π|x ) is locally constant.

Remark 2. The following example in [5] shows that the upper-semicontinuity is optimal to
expect in general. Let K /F be a quadratic field extension and θ ∈ Gal(K /F ) be the non-trivial
element. The spherical pair (G := Gm\ResK /F GL2, H := Gm\GL2) is not strongly tempered.
Consider the G(F )-representation I G

P (χ) where P is the parabolic subgroup consisting of upper
triangular matrices and χ = (χ1,χ2) is a character of the Levi quotient M(F ) ∼= (K ×)2/F×. Then
mi (I G

P χ) = 0, i ≥ 2 and

• m(I G
P χ) ≤ 1 with the equality holds iff χ1|F× =χ2|F× = 1 or µ(χ) :=χ1 · (χ2 ◦θ) = 1;

• m1(I G
P χ) ≤ 1 with the equality holds iff χ1|F× =χ2|F× = 1 and µ(χ) ̸= 1;

• EP(I G
P χ) ≤ 1 with the equality holds iff µ(χ) = 1.
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In particular, consider the family I G
P (σχλ) where σ = (ξ,1) with ξ : F×\K × → C× is a non-trivial

character and χλ = (| · |λ, | · |−λ), λ ∈ C. Then as functions of λ, m0(I G
P (σχλ)) and m1(I G

P (σχλ))
both jump at λ= 0 while EP(I G

P (σχλ)) is constant.

To state the main result, we need to introduce more notations. As the local analogue of
classical points in eigen-varieties, we fix a Zariski dense subset Σ⊂ Spec(R) of closed points. We
say the fiber rank of π is locally constant on Σ if for any open compact subgroup K ⊂ G(F ), the
function dimk(x)π

K |x is locally constant on Σ. For any x ∈ Spec(R), denote by (π|x )∨ the smooth
dual of π|x .

Theorem 3. Let π be a finitely generated torsion-free smooth admissible R[G(F )]-module whose
fiber rank is locally constant on Σ. Assume moreover there exists a finitely generated torsion-free
admissible R[G(F)]-module π̃ such that for any x ∈Σ, π̃|x ∼= (π|x )∨. Then Conjecture 1 holds for π.

Before explaining the proof, we make several remarks.

Remark 4. For the unramified twisting family π,

• the fiber rank is locally constant by construction;
• the underlying space M̂ is connected and smooth;
• the family π̃ can be taken as

{
I G

P (σ∨χ−1)
∣∣χ ∈ M̂

}
.

Thus Theorem 3 covers unramified twisting families.

Remark 5. The existence of the “dual” module π̃ and the locally constancy of fiber rank are
necessary for our approach (see the paragraphs after the remark). But these conditions do not
impose very serious restrictions:

• the locally constancy of fiber rank may holds for general finitely generated torsion-free
smooth admissible R[G(F )]-modules. If π|x is absolutely irreducible for all x ∈ Σ and
G = GLn , one can deduce the localy constancy of fiber rank from the theory of co-
Whittaker modules in [11];

• if π|x is absolutely irreducible for all x ∈ Σ and G is classical, one can construct the
R[G(F )]-module π̃ from π by the MVW involution (see [17]).

Now we explain our approach to Theorem 3. We shall use the language of derived categories
(see Section 2 for the basics). Let iG

H E be the compact induction of the trivial representation E of
H(F ) and H (K ,E) be the level-K Hecke algebra over E . Then by the Frobenius reciprocity law
and Bernstein’s decomposition theorem (see [3, Theorem 2.5(1)] etc.), for properly chosen open
compact subgroup K ⊂G(F ) (see Proposition 15 below)

mi (π|x ) = dimk(x) Exti
H (K ,E)

((
iG

H E
)K

, π̃K
∣∣∣

x

)
= dimk(x) H i

(
RHomH (K ,E)

((
iG

H E
)K

, π̃K
∣∣∣

x

))
.

By the following upper semi-continuous theorem, this simple observation reduces Theorem 3 to

• the perfectness of (iG
H E)K ∈ D(H (K ,E)), which we show in Proposition 16 using the

projective resolutions of G(F )-representations in [13, Appendix];
• the projectiveness of the R-module π̃K by our assumption on the locally constancy of

fiber rank (up to shrinking R, see Lemma 13 below).

Here D(H (K ,E)) is the derived category of H (K ,E)-modules.

Proposition 6 (Upper semi-continuous theorem). For any complex M ∈ D(R),

(i) the function dimk(x) H i (M ⊗L
R k(x)) is upper semicontinuous for each i if M is pseudo-

coherent, i.e. quasi-isomorphic to a bounded above complex of finite free R-modules;
(ii) the Euler Poincare number

∑
i (−1)i dimk(x) H i (M ⊗L

R k(x)) is locally constant if M is per-
fect i.e. quasi-isomorphic to a bounded above and below complex of finite projective R-
modules.
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Proof. Item (i) is [1, Lemma 0BDI] and Item (ii) is [1, Lemma 0BDJ] □

More precisely, Theorem 3 holds if

(a) RHomH (K ,E)
(
(iG

H E)K , π̃K
)

is perfect and
(b) there is an isomorphism

RHomH (K ,E)

((
iG

H E
)K

, π̃K
)
⊗L

R k(x) ∼= RHomH (K ,E)

((
iG

H E
)K

, π̃K
∣∣∣

x

)
.

As π̃K is projective, the isomorphism in (b) is equivalent to

RHomH (K ,E)

((
iG

H E
)K

, π̃K
)
⊗L

R k(x) ∼= RHomH (K ,E)

((
iG

H E
)K

, π̃K ⊗L
R k(x)

)
.

By the perfectness of (iG
H E)K ∈ D(H (K ,E)), the isomorphism above holds by standard homolog-

ical algebra (see Lemma 10).
With (b) at hand, by the general criterion of perfectness given in Lemma 12 below, the complex

RHomH (K ,E)
(
(iG

H E)K , π̃K
)

is perfect as Exti
H (K ,E)

(
(iG

H E)K , π̃K
)

is finitely generated over R (see

Lemma 14) and there is a positive integer N such that for any closed point x, mi (π|x ) = 0 for
any i ≥ N (see Proposition 15).

Remark 7. We briefly compare our approach with that in [3], which deals with unramfied
twisting families associated with (P, M ,σ). By Frobenius reciprocity law,

Exti
H(F )

(
I G

P (σχ),C
)∼= Exti

M

(
r G

M

(
iG

HC
)

,σ∨χ−1)
where r G

M is the normalized Jacquet module functor from Rep(G ,C) to Rep(M ,C). In loc.cit, the
authors work over M̂ and make full advantage of the theory of Bernstein center and Bernstein
decomposition to show that there is a perfect complex G (M ,σ) over M̂ associated to (M ,σ∨)
such that

Exti
M

(
r G

M

(
iG

HC
)

,σ∨χ−1)= H i
(
RHomC[M̂ ](G (M ,σ),δχ)

)
where δχ is the skyscraper sheaf at χ−1. Then the locally constancy of Euler-Poincare numbers
holds by the semicontinuity theorem for coherent sheaves over smooth varieties. In comparison,
our approach seems more direct:

• it works over G and does not depend on the special form of the family;
• it requires less results from representation theory (while more results from homological

algebra).

We conclude the introduction by the local constancy of m(π|x ) for a finitely generated smooth
admissible torsion-free R[G(F )]-module π.

Corollary 8. Assume the pair (G , H) is strongly tempered and

• the fiber rank of π is locally constant on Σ and there exists a finitely generated smooth
admissible torsion-free R[G(F )]-module π̃ such that π̃|x ∼= (π|x )∨ for any x ∈Σ,

• for any x ∈ Σ, (π|x ) ⊗k(x),τ C is irreducible and tempered for some field embedding
τ : k(x) ,→C.

Then m(π|x ) is locally constant on Σ if m(σ) = EP(σ) holds for all irreducible tempered σ ∈
Rep(G ,C).

We remark that

• when H(F ) is compact, the upper semi-continuity of multiplicities holds under weaker
assumptions (see Proposition 18 below);

• when (G , H) is strongly tempered and Gelfand, i.e. m(σ) ≤ 1 for all σ ∈ Rep(G ,C) ir-
reducible, the local constancy of multiplicities can be deduced from the upper semi-
continuity and the meromorphy property of canonical local periods considered in [6]
(see also [4] for analytic families).

https://stacks.math.columbia.edu/tag/0BDI
https://stacks.math.columbia.edu/tag/0BDJ
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2. Homological algebra

For any (unital but possibly noncommutative) ring A, denote by ModA (resp. K (A)) the category
of left A-modules (resp. complexes of A-modules). The derived category (D(A), q) consists
a category D(A) with a functor q : K (A) → D(A) such that any functor F : K (A) → C (to
any category) which sends quasi-isomorphisms to isomorphisms factors uniquely through q :
K (A) → D(A) (see [14, Chapter III, Section 2]). We usually denote the derived category by D(A).
The tensor product and Hom functor on ModA admit derived version on D(A) (see [1, Chapter 15]
for A commutative and [21] for general A). In particular, we record that

• for any A-algebra A′, viewed as a left A′-module and right A-module, the tensor product
functor

A′⊗A − : ModA −→ ModA′ , M 7−→ A′⊗A M

has the derived version

A′⊗L
A − : D(A) −→ D(A′).

Note that if M ∈ D(A) is represented by a bounded above complex P• ∈ K (A) of projective
A-modules, A′⊗L

A M is represented by A′⊗A P•;
• for any N ∈ ModA , the functor

HomA(−, N ) : ModA −→ ModZ; M 7−→ HomA(M , N )

has the derived version

RHomA(−, N ) : D(A) −→ D(Z).

Note that if M ∈ D(A) is represented by a bounded above complex P• ∈ K (A) of projective
A-modules, RHomA(M , N ) is represented by the complex Hom(P•, N ). Moreover, if N ∈
ModA admits a compatible left R-module structure for some commutative ring R, the
functor RHomA(−, N ) admits a natural lifting, which we denote by the same notation,

RHomA(−, N ) : D(A) −→ D(R).

The following results on base change morphisms in derived category are crucial to our approach.
Recall that a complex M ∈ D(A) is called pseudo-coherent (resp. perfect) if it is quasi-isomorphic
to a bounded above (resp. above and below) complex of finite free (resp. projective) A-modules.
Let R be a commutative ring.

Lemma 9. Let A′ be a flat A-algebra and take N ∈ ModA′ . Then for any pseudo-coherent M ∈ D(A),
there is a canonical isomorphism

RHomA(M , N ) ∼= RHomA′ (A′⊗L
A M , N ).

Proof. Assume M is represented by the bounded above complex P• ∈ K (A) of finite projective
A-modules. Then RHomA(M , N ) is represented by HomA(P•, N ) and RHomA′ (A′ ⊗L

A M , N ) is
represented by HomA′ (A′⊗A P•, N ). The desired result follows from the canonical isomorphism

HomA(P,Q) ∼= HomA′ (A′⊗A P,Q)

for any A-module P and A′-module Q and the exactness of A′⊗A . □

Lemma 10. Assume that R is commutative and N ∈ ModA admits a compatible left R-module
structure. Then for any perfect M ∈ D(A) and P ∈ D(R), one has the canonical isomorphism

RHomA(M , N )⊗L
R P −→ RHomA(M , N ⊗L

R P ).
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Proof. Represent M by a bounded above and below complex Q• of finite projective mod-
ules and P by any complex P•. Then RHomA(M , N )⊗L

R P is represented by the total complex
Tot(HomA(Q•, N )⊗R P•) and RHomA(M , N ⊗L

R P ) is represented by the complex Hom•
A(Q•, N ⊗R

P•) with
Homn

A(Q•, N ⊗R P•) := ∏
n=p+q

HomA(Q−p , N ⊗R P q ).

Note that for any W ∈ ModA finite projective and V ∈ ModR , one has

HomA(W, N )⊗R V ∼= HomA(W, N ⊗R V ).

Thus the complexes Tot(HomA(Q•, N )⊗R P•) and Hom•
A(Q•, N ⊗R P•) are isomorphic and we are

done. □

Lemma 11. Assume A is an algebra over R and let R ′ be a flat commutative R-algebra. Then for
M ∈ D(A) pseudo-coherent and N ∈ ModA , the canonical morphism

RHomA(M , N )⊗L
R R ′ −→ RHomA⊗R R ′ (M ⊗L

R R ′, N ⊗L
R R ′)

is an isomorphism. In particular if A is Noetherian, one has natural isomorphism

HomA(M , N )⊗R R ′ −→ HomA⊗R R ′ (M ⊗R R ′, N ⊗R R ′)

for any finitely generated M ∈ ModA .

Proof. Take a bounded above complex P• of finite free A-modules representing M ∈ D(A). Then
RHomA(M , N ) ⊗L

R R ′ is represented by HomA(P•, N ) ⊗R R ′ and RHomA⊗R R ′ (M ⊗L
R R ′, N ⊗L

R R ′)
is represented by HomA⊗R R ′ (P• ⊗R R ′, N ⊗R R ′). The desired result follows from the canonical
isomorphism

HomA(P,Q)⊗R R ′ ∼= HomA⊗R R ′ (P ⊗R R ′,Q ⊗R R ′)
for any finite free A-module P and arbitrary A-module Q.

By [1, Lemma 064T], any finitely generated A-module is pseudo-coherent when A is Noether-
ian and the ‘in particular’ part follows. □

Now we turn to perfect complexes over commutative rings. Let R be a commutative Noether-
ian ring. For any x ∈ Spec(R), let k(x) be the residue field.

Lemma 12. A complex M ∈ D(R) is perfect if the following conditions holds:

(i) the R-module H i (M) is finitely generated for each i ∈Z;
(ii) there exists a < b ∈ Z such that for all closed point x ∈ Spec(R), H i (M ⊗L

R k(x)) = 0 if
i ∉ [a,b].

Proof. By [1, Lemma 068W], when M is pseudo-coherent, Item (ii) implies M is perfect. By [1,
Lemma 064T] the assumption R is Noetherian implies that all H i (M) is pseudo-coherent. Thus
by [1, Lemma 066B], M is pseudo-coherent if H i (M) = 0 for all i > b +1. To see this, consider the
exact sequence

0 −→ pn/pn+1 −→ R/pn+1 −→ R/pn −→ 0

for any maximal ideal p ⊂ R. By induction, one finds that H i (M ⊗L
R R/pn) = 0 for all i > b. By [1,

Lemma 0CQE] and [1, Proposition 0922], one has the short exact sequence

0 −→ R1 lim H i−1 (
M ⊗L

R R/pn)−→ H i (
R lim M ⊗L

R R/pn)−→ lim H i (
M ⊗L

R R/pn)−→ 0.

By [1, Lemma 0A06], one has

H i (M)⊗R R̂p = H i (R lim
n

M ⊗L
R R/pn).

Thus H i (M)⊗R R̂p = 0 for all i > b +1 and all maximal ideal p ⊂ R. Consequently, H i (M) = 0 for
all i > b +1 and we are done. □

https://stacks.math.columbia.edu/tag/064T
https://stacks.math.columbia.edu/tag/068W
https://stacks.math.columbia.edu/tag/064T
https://stacks.math.columbia.edu/tag/066B
https://stacks.math.columbia.edu/tag/0CQE
https://stacks.math.columbia.edu/tag/0922
https://stacks.math.columbia.edu/tag/0A06
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Finally, we record the following result for a commutative Noetherian ring R.

Lemma 13. For any finitely generated R-module M, the fiber rank function

β(x) : Spec(R) −→N; x 7−→ dimk(x) M ⊗R k(x)

is upper-semicontinuous. If R is moreover reduced, then M is projective iff β is locally constant.

Proof. The first part follows from Proposition 6. For the second part, see [1, Lemma 0FWG]. □

3. Homological multiplicities

Let (G , H) be a spherical pair of reductive groups over p-adic field F . Let I G
HC be the space

{ f : G(F ) −→C smooth | f (hg ) = f (g ) ∀ h ∈ H(F ), g ∈G(F )}

on which G(F ) acts by right translation and iG
HC ⊂ I G

HC be the subspace consisting of functions
which are compactly supported modulo H(F ). Since H(F ) is unimodular, I G

HC and iG
HC are just

the normalized induction and normalized compact induction of the trivial representation C of
H(F ) respectively.

By [16, Proposition 2.5],

mi (σ) = dimCExti
G(F )(σ, I G

HC) = dimCExti
G(F )(iG

HC,σ∨), ∀ σ ∈ Rep(G ,C).

For any compact open subgroup K ⊂ G(F ), let H (K ,C) be the Hecke algebra of C-valued bi-
K -invariant Schwartz functions on G(F ). Then by Bernstein’s decomposition theorem (see [3,
Theorem 2.5(1)] etc.), there exists a neighborhood basis {K } of 1 ∈ G(F ) consisting of splitting
(see [2] for the notation) open compact subgroups such that H (K ,C) is Noetherian, the subcat-
egory M (G ,K ,C) of representations generated by their K -fixed vectors is a direct summand of
Rep(G ,C) and the functor σ 7→σK induces an equivalence of categories M (G ,K ,C) ∼= ModH (K ,C).
Thus for σ∨ ∈ M(G ,K ,C) with K splitting,

Exti
H (K ,C)

((
iG

HC
)K

, (σ∨)K
)∼= Exti

G(F )(iG
HC,σ∨), ∀ i ∈Z.

Under our working hypothesis

the multiplicity m(σ) is finite for all irreducible σ ∈ Rep(G ,C),

iG
HC is locally finitely generated, i.e. for any compact open subgroup K ⊂ G(F ), (iG

HC)K is finitely
generated over H (K ,C), by [2, Theorem A]. Thus for K splitting, (iG

HC)K admits a resolution by
finite projective H (K ,C)-modules and consequently for σ ∈ Rep(G ,C) such that σ∨ ∈ M(G ,K ,C),

mi (σ) = dimCExti
H (K ,C)

((
iG

HC
)K

, (σ∨)K
)
<∞, ∀i ∈N.

In particular, for any σ ∈ Rep(G ,C) of finite length, mi (σ) is finite for all i . Finally by [16,
Corollary III.3.3], for any finite length σ ∈ Rep(G ,C), mi (σ) = 0 for i > d(G), the split rank of G .

Now we change the coefficient field C to a subfield E ⊂ C. Let Rep(G ,E) be category of
smooth G(F )-representations over E . For any open compact subgroup K ⊂ G(F ), let H (K ,E)
be the Hecke algebra of E-valued bi-K -invariant Schwartz functions on G(F ), and M(G ,K ,E) ⊂
Rep(G ,E) be the subcategory of representations generated by their K -fixed vectors. For any
σ ∈ Rep(G ,E), set

mi (σ) := dimE Exti
H(F )(σ,E), ∀ i ∈N, EP(σ) :=∑

i
(−1)i mi (σ).

Let iG
H E ∈ Rep(G ,E) be the compact induction of the trivial H(F )-representation E . For any open

compact subgroup K ⊂G(F ),

Lemma 14. For any splitting open compact subgroup K ⊂ G(F ), the Hecke algebra H (K ,E) is
Noetherian and (iG

H E)K is finitely generated over H (K ,E).

https://stacks.math.columbia.edu/tag/0FWG
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Proof. Note that (iG
H E)K ⊗E C = (iG

HC)K . Take generators {yi = ∑
j fi , j ⊗ ai , j } of (iG

HC)K over
H (K ,C) with fi , j ∈ (iG

H E)K . Let V ⊂ iG
H E be the H (K ,E)-submodule generated by fi , j . Since

yi belongs to V ⊗E C for each i , one has V ⊗E C= (iG
H E)K ⊗E C. Consequently, V = iG

H E and iG
H E is

locally finitely generated.
Take any ascending chain of left ideals of H (K ,E)

I0 ⊂ I1 ⊂ ·· · ⊂ In ⊂ ·· · .

Then Ii ⊗E C forms an ascending chain of left ideals of H (K ,C) ∼=H (K ,E)⊗E C. Since H (K ,C) is
Noetherian, we have that for some n,

In ⊗E C= In+1 ⊗E C= ·· · .

Consequently, In = In+1 = ·· · and H (K ,E) is Noetherian. □

Proposition 15. For any σ ∈ Rep(G ,E) such that σ∨ ∈ M(G ,K ,E), the homological multiplicity

mi (σ) = dimE Exti
H (K ,E)((iG

H E)K , (σ∨)K ) ∀ i ∈N.

If moreover σ has finite length, then mi (σ) is finite for each i ≥ 0 and 0 for i > d(G). In particular,
EP(σ) is actually a finite sum.

Proof. For any σ ∈ Rep(G ,E), set σC :=σ⊗E C. Then for any σ ∈ Rep(G ,E) and θ ∈ Rep(G ,C)

HomG(F )(σ,θ) = HomG(F )(σC,θ).

Thus computing using any projective resolution of σ, one finds

Exti
G(F )(σ, I G

H E)⊗E C∼= Exti
G(F )(σC, I G

HC) ∀ i ≥ 0.

By Lemma 14, (iG
H E)K ∈ D(H (K ,E)) is pseudo-coherent for K splitting. Thus by Lemma 11,

Exti
H (K ,E)((iG

H E)K , (σ∨)K )⊗E C∼= Exti
H (K ,C)((iG

HC)K , (σ∨
C)K ) ∀ i ≥ 0.

From the corresponding results for σC, one deduce that

• if σ∨ ∈ Rep(G ,K ,E),

mi (σ) = dimE Exti
H (K ,E)

((
iG

H E
)K

, (σ∨)K
)

, ∀ i ≥ 0,

• if σ has finite length, mi (σ) is finite for all i ≥ 0 and mi (σ) = 0 if i > d(G). □

Proposition 16. For any splitting open compact subgroup K ⊂ G(F ), (iG
H E)K ∈ D(H (K ,E)) is

perfect.

Proof. Take V ⊂ iG
HC be the sub-representation generated by (iG

HC)K . By [13, Appendix], V ad-
mits an explicit bounded above and below resolution by projective objects in Rep(G ,C) (actually
for certain K , the projective resolution can be made explicitly by the theory of Schneider-Stuhler,
see [19, Theorem II.3.1] and [15, Theorem 1.2]). Thus there exists a positive integer N such that
for any W ∈M (G ,K ,C),

Exti
G (V ,W ) = 0, ∀ i > N .

Note that σ 7→ σK induces an equivalence between M (G ,K ,C) and the category of H (K ,C)-
modules (see [3, Theorem 2.5(1)]). Since (iG

HC)K =V K , one finds

Exti
H (K ,C)

((
iG

HC
)K

, M
)
= 0, ∀ i > N

for any H (K ,C)-module M . Thus by Lemma 11, for any H (K ,E)-module M ,

Exti
H (K ,E)

((
iG

H E
)K

, M
)
= 0, ∀i > N .

Take any resolution P• of (iG
H E)K

· · · −→ PN+1 −→ PN −→ ·· ·P1 −→ P0 −→ 0 · · ·
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by finite projective H (K ,E)-modules. Let Q = coker(PN+2 → PN+1). Then Q admits a resolution

· · · −→ PN+2 −→ PN+1 −→ 0 · · ·
Then Ext1

H (K ,E)(Q, M) = 0 for M = ker(PN+1 → Q). Consequently, PN+1 = Q ⊕ M and Q is

projective. Consequently, (iG
H E)K is perfect as it is quasi-isomorphic to

· · ·0 −→Q −→ PN −→ ·· · −→ P0 −→ 0 · · · . □

Now we prove Theorem 3. Let R be a finitely generated reduced E-algebra and Σ⊂ Spec(R) be
a Zariski denset subset of closed points. We restate Theorem 3 for the convenience of readers.

Theorem 17. Let π be a torsion-free smooth admissible finitely generated R[G(F )]-module whose
fiber rank is locally constant on Σ. Assume that there exists a finitely generated smooth admissible
torsion-free R[G(F )]-module π̃ such that π̃|x ∼= (π|x )∨ for any x ∈ Σ. Then mi (π|x ) is upper semi-
continuous for each i ∈N and EP(π|x ) is locally constant.

Proof. Since splitting open subgroups form an neighborhood system of 1 ∈G(F ), one can take a
splitting open compact subgroup K ⊂G(F ) such that π̃K generates π̃ and (iG

H E)K ∈ D(H (K ,E)) is
perfect by Proposition 16. Thus by Proposition 10,

RHomH (K ,E)

((
iG

H E
)K

, π̃K
)
⊗L

R k(x) ∼= RHomH (K ,E)

((
iG

H E
)K

, π̃K ⊗L
R k(x)

)
By the duality between πK |x and π̃K |x and Lemma 13, upon shrinking Spec(R) to an open subset
containing Σ we can and will assume the fiber rank of π̃U is locally constant on Σ and thus the
R-module π̃U is finite projective. Thus

RHomH (K ,E)

((
iG

H E
)K

, π̃K ⊗L
R k(x)

)∼= RHomH (K ,E)

((
iG

H E
)K

, π̃K |x
)

.

By Lemma 9 and Proposition 15, one has mi (π|x ) = dimk(x) Exti
H (K ,E)

(
(iG

H E)K , π̃K |x
)
. By Proposi-

tion 6, to finish the proof it suffices to show the complex RHomH (K ,E)
(
(iG

H E)K , π̃K
)

is perfect in
D(R). As (iG

H E)K admits a bounded above and below resolution P• by finite projective H (K ,E)-
modules, the complex RHomH (K ,E)

(
(iG

H E)K , π̃K
)

is represented by HomH (K ,E)(P•, π̃K ). Since π̃K

is finitely generated over R by the admissibility of π̃, HomH (K ,E)(P•, π̃K ) is a complex of finitely
generated R-modules. Thus H i (RHomH (K ,E)

(
(iG

H E)K , π̃K )
)

are finitely generated as R-modules
for each i ∈Z. Now the desired perfectness follows from Lemma 12 and Proposition 15. □

Finally, we remark that when H(F ) is compact, the upper semi-continuity of mi (π|x ) holds for
all torsion-free finitely generated smooth admissible R[G(F )]-modules π (here we do not assume
the existence of π̃).

Proposition 18. Assume H(F ) is compact. Then for any torsion-free finitely generated smooth ad-
missible R[G(F )]-module π, the function EP(π|x ) = m0(π|x ) is upper semi-continuous on Spec(R).

Proof. By [2, Theorem 2.14], mi (π|x ) = 0 for each i ≥ 1 and EP(π|x ) = m0(π|x ) for any x ∈ Spec(R).
Let πH (resp. πH ) be the H(F )-coinvariant (resp. H(F )-invariant) of π. Since H(F ) is compact,
the natural map πH → πH is an isomorphism and for any x ∈ Spec(R), (πH )|x ∼= (π|x )H ∼= (π|x )H .
In particular, m0(π|x ) = dimk(x)(π|x )H = dimk(x)π

H |x . By Lemma 13 to finish the proof, it suffices
to show πH is coherent.

Note that [3, Theorem 2.5(1)] actually works for any algebraically closed field of characteristic
zero. Thus by Proposition 15, for each generic point η of Spec(R) and some splitting open
subgroup K

dimk(η)π
H |η = dimk(η) HomG(F )

((
iG

H k(η)
)K

, (π|η)∨,K
)
<∞.

Thus there exists an open compact subgroup K ′ ⊂ G(F ) such that πH |η ⊂ (π|η)K ′
for all η. Then

for any v ∈ πH and k ∈ K ′, k · v = v in
∏
ηπ|η. Since the diagonal map π ,→∏

ηπ|η is injective, one
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has k · v = v in π and consequently πH ⊂ πK ′
. As πK ′

is coherent by the admissibility of π, πH is
coherent and we are done. □
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