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Abstract. Every Killing tensor field on the space of constant curvature and on the complex projective space
can be decomposed into the sum of symmetric tensor products of Killing vector fields (equivalently, every
polynomial in velocities integral of the geodesic flow is a polynomial in the linear integrals). This fact
led to the natural question on whether this property is shared by Killing tensor fields on all Riemannian
symmetric spaces. We answer this question in the negative by constructing explicit examples of quadratic
Killing tensor fields which are not quadratic forms in the Killing vector fields on the quaternionic projective
spaces HP n , n ≥ 3, and on the Cayley projective plane OP 2.

Résumé. Chaque champ tensoriel de Killing sur l’espace de courbure constante et sur l’espace projectif
complexe peut être décomposé en la somme des produits tensoriels symétriques des champs vectoriels
de Killing (de manière équivalente, chaque polynôme des intégrales de vitesses du flux géodésique est un
polynôme dans les intégrales linéaires). Ce fait a conduit à la question naturelle de savoir si cette propriété est
partagée par les champs tensoriels de Killing sur tous les espaces symétriques riemanniens. Nous répondons
à cette question par la négative en construisant des exemples explicites de champs tensoriels de Killing
quadratiques qui ne sont pas des formes quadratiques dans les champs vectoriels de Killing sur les espaces
projectifs quaternioniques HP n , n ≥ 3, et sur le Cayley plan projectif OP 2.

Keywords. quadratic Killing tensor, symmetric space, Cayley projective plane, Quaternionic projective space.

Mots-clés. Tenseur de Killing quadratique, espace symétrique, plan projectif de Cayley, espace projectif
quaternionique.

2020 Mathematics Subject Classification. 53C35, 53B20, 37J30, 37J35, 70H06, 22E46.

Funding. The first named author was partially supported by ARC Discovery Grant DP210100951 and by
the DFG projects 455806247 and 529233771. The first named author is thankful to La Trobe University for
hospitality. The second named author was partially supported by ARC Discovery Grant DP210100951. The
second named author is thankful to Friedrich-Schiller-Universität for hospitality.

Manuscript received 30 December 2023, accepted 27 August 2024.

∗Corresponding author

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.624
mailto:vladimir.matveev@uni-jena.de
mailto:Y.Nikolayevsky@latrobe.edu.au
https://comptes-rendus.academie-sciences.fr/mathematique/


1044 Vladimir S. Matveev and Yuri Nikolayevsky

1. Introduction

A Killing tensor field K = K (x)i1...id of rank d ≥ 1 on a Riemannian manifold (M ,d s2 = gi j xi x j ) is
a symmetric tensor field that satisfies the Killing equation

K(i1...id , j ) = 0, (1)

where the comma denotes the covariant derivative and the parentheses denote the sym-
metrisation by all indices. This definition is equivalent to the fact that the function ξ ∈
Tx M 7→ K (x)i1...id ξ

i1 · · ·ξid polynomial in the velocities is an integral of the geodesic flow of
(M ,d s2): for any naturally parameterised geodesic s 7→ γ(s) of (M ,d s2), the function s 7→
K (γ(s))i1...id (γ̇(s))i1 . . . (γ̇(s))id is constant.

Killing tensor fields of rank d = 1 are called Killing (co)vector fields. It is well known that a
vector field is Killing if and only if the 1-parametric group of diffeomorphisms of M which it
generates is a group of isometries. To the best of our knowledge, no such geometric definition
is available for Killing tensor fields of degree d ≥ 2, though of course, Killing tensors correspond
to the so-called hidden symmetries of the geodesic flow, that is, to the Hamiltonian vector fields
which commute with the generator of the geodesic flow.

Denote Kd (M) the space of Killing tensor fields of rank d on (M ,d s2). For every d ≥ 1, the
space Kd (M) is finite dimensional. Moreover, the space K(M) = R⊕K1(M)⊕K2(M)⊕ ·· · of all
Killing tensor fields on (M ,d s2) is an associative, commutative algebra relative to the symmetric
tensor product. In particular, the polynomial algebra S(M) generated by Killing vector fields is
a subalgebra of K(M) (it should be noted that the homomorphism from the polynomial algebra
generated by K1(M) to S(M) may have a nontrivial kernel). We will call the elements of S(M)
decomposable, and the elements of K(M) \ S(M) indecomposable. The fact that not every Killing
tensor field of rank d ≥ 2 is decomposable, even if one disregards the polynomials in the metric
tensor, is well known (since at least Darboux): for example, a 2-dimensional Liouville metric
d s2 = (λ(x)+µ(y))(d x2 +d y2) has quadratic Killing tensors not proportional to the metric, but
in general, a trivial isometry group. On the other hand, any Killing tensor field on the space
of constant curvature is decomposable [6, 8, 10]. This fact suggested the following question [2,
Question 3.9]: “In a symmetric space, is every Killing tensor field decomposable?” The answer to
this question is known to be in the positive for the complex projective space [3, Corollary 5], [9,
Theorem 2.2], and one may expect that because symmetric spaces (especially of rank one) have
such a large isometry group, any Killing tensor field on them must be decomposable.

Surprisingly, this is not true already for quadratic Killing tensor fields on all but one “re-
maining” rank-one symmetric spaces, namely on the quaternionic projective spaces HP n =
Sp(n+1)/(Sp(n)Sp(1)) with n ≥ 3, and on the Cayley projective planeOP 2 = F4/Spin(9). We prove
the following.

Theorem 1. For n ≥ 3, the space K2(HP n) contains a subspace (in fact, an irreducible Sp(n +1)-
module) of dimension 1

6 (n −2)(n +1)(2n +1)(2n +3) all of whose nonzero elements are indecom-
posable.

Theorem 2. The space K2(OP 2) contains a subspace (in fact, an irreducible F4-module) of
dimension 26 all of whose nonzero elements are indecomposable.

In the paper which is currently in preparation we will show that the quadratic Killing tensors
on HP 2 are decomposable, and that K2(HP n) with n ≥ 3 (respectively, K2(OP 2)) is the direct
sum of the module of decomposable quadratic Killing tensors and the module from Theorem 1
(respectively, from Theorem 2). We will also establish a connection between the algebras of
Killing tensors on dual irreducible symmetric spaces; this will enable one to extend the above
results to noncompact rank-one symmetric spaces.
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The proofs of both theorems follow the same scheme: we first construct the required sub-
module explicitly, and then check that the decomposition of the module of quadratic decompos-
able Killing tensor fields (which is isomorphic to the G-module Sym2(AdG ) for G = Sp(n +1) and
G = F4) does not contain that submodule.

2. Quaternionic projective space. Proof of Theorem 1

We equip the space R4n+4 with the quaternionic structure defined by three anticommuting
Hermitian structures J1, J2 and J3 = J1 J2.

We denote sp(1) = Span(J1, J2, J3) and define sp(n+1) ⊂ so(4n+4) to be the centraliser of sp(1)
in so(4n+4). Furthermore, let Vn+1 be the space of symmetric operators inR4n+4 which commute
with sp(1). Then Vn+1 is an sp(n+1)-module, which can be decomposed as Vn+1 =RI4n+4⊕Wn+1,
where Wn+1 is the subspace of Vn+1 consisting of operators with trace zero. The sp(n+1)-module
RI4n+4 is trivial, and the sp(n + 1)-module Wn+1 (of dimension n(2n + 3)) is irreducible (it can
be viewed as the tangent space of the irreducible symmetric space SU(2n + 2)/Sp(n + 1) at the
projection of the identity).

As Vn+1 commutes with sp(1), all the operators S Jα, S ∈ Vn+1,α = 1,2,3, are skew-symmetric.
For S ∈Vn+1, we define the constant tensor TS of type (0,4) on R4n+4 by

TS (X ,Y ,P,Q) = 1

2

3∑
α=1

(〈S JαX ,P〉〈S JαY ,Q〉+〈S JαX ,Q〉〈S JαY ,P〉), (2)

where X ,Y ,P,Q ∈ R4n+4, so that TS (X , X ,P,P ) = ∑3
α=1〈S JαX ,P〉2. It is easy to see that the tensor

TS is symmetric in the first two arguments and in the second two arguments, and satisfies the first
Bianchi identity by any three arguments (this follows from the fact that S Jα are skew-symmetric).

Denote π : S4n+3 →HP n the natural projection (which is a Riemannian submersion) from the
unit sphere S4n+3 ⊂R4n+4 along the fibers of the Hopf fibration defined by the orbits of the action
of Sp(1) on S4n+3.

We claim that for any S ∈ Vn+1, the tensor TS defined by (2) is Sp(1)-invariant, and hence
descends under π to a quadratic tensor field on HP n , that is, for X ∈ S4n+3 and P ∈ TX S4n+3,
the quadratic tensor field FS on HP n defined by

FS (π(X ),π(X ), (dπ)X P, (dπ)X P ) = TS (X , X ,P,P ) (3)

is well-defined. To see this, given S ∈ Vn+1 and β = 1,2,3, we compute the Lie deriva-
tive LvβTS of the tensor field TS along the vector field vβ(X ) = JβX on R4n+4. We obtain
(LvβTS )(X , X ,P,P ) = 2

∑3
α=1〈[S Jα, Jβ]X ,P〉〈S JαX ,P〉 = 2

∑3
α=1〈S[Jα, Jβ]X ,P〉 〈S JαX ,P〉, as S com-

mutes with Jβ, and so (LvβTS )(X , X ,P,P ) = 0, as for α ̸= β we have [Jα, Jβ] = 2εJγ, where ε is
the sign of the permutation (α,β,γ) 7→ (1,2,3). It follows that LvβTS = 0, for all β = 1,2,3 and all
S ∈Vn+1, which proves our claim.

Furthermore, the quadratic tensor field FS defined by (3) is Killing. To prove this, we note
that the geodesics of HP n are the projections of horizontal geodesics of S4n+3 under π. For a
geodesic γ(s) = (cos s)X + (sin s)P parameterised by the arc length s, where X ,P ∈ R4n+4, with
∥X ∥ = ∥P∥ = 1, X ⊥ P , we have TS (γ(s),γ(s), γ̇(s), γ̇(s)) =∑3

α=1〈S JαX ,P〉2, which does not depend
on s.

The map F : Vn+1 → K2(HP n), S 7→ FS , defined by (3) extends to the linear map Φ :
Sym2(Vn+1) → K2(HP n) from the space of quadratic forms on Vn+1 to K2(HP n) (where we iden-
tify the symmetric square Sym2(Vn+1) with its dual using the natural inner product in the space
of tensors). Relative to a basis B = {S A}, A = 1, . . . ,n(2n +3)+1, for Vn+1, the mapΦ is given by

(Φ(Q))(π(X ),π(X ), (dπ)X P, (dπ)X P ) = ∑
A,B

Q AB

(
3∑

α=1
〈S A JαX ,P〉〈SB JαX ,P〉

)
, (4)
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where Q ∈ Sym2(Vn+1) has components Q AB = QB A relative to the basis B for Vn+1, and X ,P ∈
R4n+4.

It is easy to see that Φ is a homomorphism of Sp(n +1)-modules. However, it is not injective.
Define the linear form Tr : Vn+1 →R by S 7→ TrS for S ∈Vn+1. We prove the following.

Lemma 3. Suppose n ≥ 3. Let Q ∈ Sym2(Vn+1). Then Q ∈ KerΦ if and only if Q is divisible by Tr.

Proof. In the quaternionic language, the module Vn+1 is the space of quaternionic Hermitian
matrices acting on the module Hn+1 from the left (where Span(J1, J2, J3) acts on Hn+1 by the
right componentwise multiplication by imaginary quaternions). However, for the purposes of
the proof it will be more convenient to work in the real settings.

Choose a basis for Vn+1 as follows. In H=R4, with the basis {1, i, j,k}, we denote L(u) and R(u)
the matrices of the left and of the right multiplication by the quaternion u ∈H, respectively. We
view R4n+4 as the direct, orthogonal sum

⊕n+1
s=1 R

4
s , which gives the decomposition of the space

of 4(n + 1)× 4(n + 1) matrices into the corresponding 4× 4 blocks. We choose a basis for R4n+4

by identifying each R4
s with H and choosing a basis {1, i, j,k} in it. Relative to this basis, we can

view the matrix of each of the operators J1, J2 and J3 as the block-diagonal matrix with each
4×4 diagonal block being the matrix R(i),R(j) and R(k), respectively. Now for 1 ≤ i ≤ n +1, we
define Si to be the 4(n + 1)× 4(n + 1) matrix having the identity matrix I4 in the i -th diagonal
4 × 4 block, and zeros elsewhere. For 1 ≤ i < j ≤ n + 1, we define Si j (u), u ∈ q := {1, i, j,k},
to be the matrix containing L(u) in the (i , j )-th 4 × 4 block, L(u∗) in the ( j , i )-th 4 × 4 block
(where u∗ is the quaternion conjugate to u) and zeros elsewhere. Then the set of matrices
B = {Si , 1 ≤ i ≤ n + 1}∪ {Si j (u), 1 ≤ i < j ≤ n + 1, u ∈ q} is a basis for Vn+1. We will need two
properties of this basis. First, for any subset I ⊂ {1, . . . ,n+1}, of cardinality #I = m, 1 ≤ m ≤ n+1,
the subset of B consisting of the matrices Sk ,Si j (u), with k, i , j ∈ I , i < j , u ∈ q, forms a basis
for the space Vm constructed as above for the space Hm(I ) = ⊕

s∈I R
4
s . Second, for any two

elements of B, there exists a subset I ⊂ {1, . . . ,n+1}, of cardinality m ≤ 4 such that the orthogonal
complement to Hm(I ) =⊕

s∈I R
4
s lies in the common kernel of these two elements.

For an element S ∈Vn+1 with the decomposition S =∑n+1
p=1 ap Sp +∑

i< j ,u∈q ai , j ,uSi j (u) relative

to the basis B we have TrS =∑n+1
p=1 ap , and so for a quadratic form Q on Vn+1 with the decompo-

sition Q =∑n+1
p,q=1 bpq Sp ⊙Sq +∑

i< j ,u∈q,p cp,i , j ,uSi j (u)⊙Sp +∑
i< j ,k<l ,u,v∈qµi , j ,u,k,l ,v Si j (u)⊙Skl (v)

(where bpq = bqp and µi , j ,u,k,l ,v =µk,l ,v,i , j ,u) the condition of the lemma saying that Q is divisible
by Tr means that for all u, v ∈ q and all i , j ,k, l , p, q,r, s ∈ {1, . . . ,n +1} with i < j and k < l we have

µi , j ,u,k,l ,v = 0, cp,i , j ,u = cq,i , j ,u , bpq +br s = bps +br q . (5)

The condition that Q belongs to the kernel of Φ means that the right-hand side of (4) is zero for
all P in the horizontal distribution of the Hopf fibration, that is, for all X ,P ∈ R4n+4 such that
P ⊥ X , J1X , J2X , J3X .

Now for the “if” direction of the lemma, we assume that Q is divisible by Tr, and
so Q = (

∑n+1
p=1 Sp ) ⊙ S′, for some S′ ∈ Vn+1. Then the right-hand side of (4) equals∑n+1

p=1
∑3
α=1〈Sp JαX ,P〉〈S′ JαX ,P〉 = ∑3

α=1〈JαX ,P〉〈S′ JαX ,P〉, which is zero for all X ,P ∈ R4n+4

with P ⊥ X , J1X , J2X , J3X .
For the “only if” direction we first consider the case n = 3. Then dimVn+1 =

28, dimSym2(Vn+1) = 406, and the fact that the right-hand side of (4) is zero for P ⊥
X , J1X , J2X , J3X gives a system of linear equations for the coefficients of Q. By a straightforward
calculation, with the aid of computer algebra, one shows that it is equivalent to the system (5).
Now assume n ≥ 4. The fact that the right-hand side of (4) equals zero for all P ⊥ X , J1X , J2X , J3X ,
implies that the same is true under an additional assumption that X and P are chosen from a
subspace Hm(I ) = ⊕

s∈I R
4
s for some I ⊂ {1, . . . ,n +1}, with #I = m. But for any quadruple of
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indices (i , j ,k, l ), (i , j , p, q), (p, q,r, s) we can choose such a subset I of cardinality m = 4 which
contains that quadruple, and so the equations (5) are satisfied by induction by n ≥ 3. □

We have Vn+1 = RI4n+4 ⊕Wn+1, where Wn+1 = KerTr. This gives the direct decomposition
Sym2(Vn+1) =R(I4n+4 ⊙ I4n+4)⊕ (I4n+4 ⊗Wn+1)⊕ (Sym2(Wn+1)) into Sp(n+1)-modules. Lemma 3
tell us that the restrictionΨ of the homomorphism Φ : Sym2(Vn+1) → K2(HP n) to Sym2(Wn+1) is
injective.

For the complexification sp(n+1,C), the adjoint (complex) representation Ad is isomorphic to
R(2π1), and so we have the decomposition Sym2(Ad) = R(4π1)+R(2π2)+R(π2)+1 into irreducible
sp(n +1,C)-modules (in the notation of [11]), where 1 is the 1-dimensional trivial module. The
complexified module Wn+1 is isomorphic to the irreducible representation R(π2), and we have
the decomposition Sym2(R(π2)) = R(π4) + R(2π2) + R(π2) + 1 for n ≥ 3. As all the modules
in these decompositions are of the orthogonal type (see e.g. [7, Theorem 11.3(c)]), we have
the same decompositions into irreducibles for the real representations of sp(n + 1). But the
module of decomposable quadratic Killing fields onHP n is Sym2(Ad), which does not contain the
submoduleΨ(R(π4)) ⊂ K2(HP n) of the moduleΨ(Sym2(Wn+1)) ⊂ K2(HP n). AsΨ is injective, we
obtain the module isomorphic to R(π4) (of dimension 1

6 (n−2)(n+1)(2n+1)(2n+3)) of quadratic
Killing fields on HP n all nonzero elements of which are indecomposable.

3. Cayley projective plane. Proof of Theorem 2

Out of several equivalent descriptions ofOP 2 we will work with the following one [1, 4, 5]. Denote
O the algebra of octonions with the conjugation ∗ and the inner product 〈x, y〉 = 1

2 (x y∗+ y x∗) for
x, y ∈O.

Let H3(O) be the Albert algebra, the Jordan algebra of 3 × 3 Hermitian octonion matrices.
Elements of H3(O) have the form

A =
r1 x∗

3 x∗
2

x3 r2 x1

x2 x∗
1 r3

 , x1, x2, x3 ∈O, r1,r2,r3 ∈R, (6)

with the Jordan multiplication given by A◦B = 1
2 (AB +B A). The automorphism group of H3(O) is

the exceptional Lie group F4. The action of F4 preserves the trace given by Tr(A) = r1 + r2 + r3,
the squared norm given by ∥A∥2 = Tr(A2), and the determinant given by det(A) = r1r2r3 +
2Re(x1x2x3)− r1∥x1∥2 − r2∥x2∥2 − r3∥x3∥2. The squared norm defines a positive definite inner
product on H3(O).

The determinant defines a symmetric trilinear form Φ on H3(O) given by Φ(A1, A2, A3) =
1
6

∂3

∂t1∂t2∂t3
det(t1 A1 + t2 A2 + t3 A3), for A1, A2, A3 ∈ H3(O) and t1, t2, t3 ∈R.

The Cayley projective plane OP 2 is the submanifold of H3(O) defined as follows:

OP 2 = {X ∈ H3(O) | Tr(X ) = 1,Φ(A, X , X ) = 0, for all A ∈ H3(O)}.

With the induced metric, OP 2 becomes a rank-one Riemannian symmetric space. The group F4

acts transitively on OP 2, so that OP 2 is a single orbit, which is the orbit of the element

E =
1 0 0

0 0 0
0 0 0

 ∈ H3(O).
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Moreover, any element of OP 2 can be represented as (x, y, z)t (x∗, y∗, z∗), where the octonions
x, y, z satisfy ∥x∥2 + ∥y∥2 + ∥z∥2 = 1 and associate, that is, x(y z) = (x y)z [5, Lemma 14.90,
Theorem 14.99]. In particular, the tangent space to OP 2 at E is given by

TEOP 2 = {T (y, z) | y, z ∈O}, where T (y, z) =
0 y∗ z∗

y 0 0
z 0 0

 (7)

The group F4 acts transitively on the set of geodesics of OP 2, and any geodesic can be obtained
by the action of an element of F4 from the geodesic

γ(s) =
 (cos2 s)1 (cos s sin s)1 0

(cos s sin s)1 (sin2 s)1 0
0 0 0

 , (8)

where s ∈R is an arc length parameter.
Denote V the hyperplane Tr A = 0 in H3(O). As F4 preserves the trace, the hyperplane V

is a 26-dimensional F4-module, which is the standard (the smallest nontrivial) real irreducible
representation of F4.

For any A ∈ V , we define the quadratic tensor field K A on OP 2 as follows: for X ∈ OP 2 and
Y , Z ∈ TXOP 2, set K A(Y , Z ) =Φ(Y , Z , A). The mapping V ∋ A 7→ K A defines the structure of an F4-
module on the space L= {K A | A ∈V }. By Schur’s Lemma, this mapping is either an isomorphism,
or L = 0. But the latter is not the case: taking Y = T (1,0), Z = T (0,1) ∈ TEOP 2 in the notation
of (7) and A ∈V whose only nonzero elements are A23 = A32 = 1 one easily sees that K A(Y , Z ) = 1

3 .
Therefore L is an irreducible 26-dimensional F4-module.

We claim that the quadratic tensor fields K A on OP 2 are Killing. We need to show that any K A

takes constant values along any geodesic. It is sufficient to show that for any A ∈V , the function
s 7→ K A(γ̇(s), γ̇(s)) is constant, where γ(s) is given by (8). Taking A as in (6) with Tr A = 0, a direct
calculation shows that K A(γ̇(s), γ̇(s)) = 1

6
∂3

∂t1∂t2∂t3
det((t1 + t2)γ̇(s)+ t3 A) =− 1

3 r3.
We therefore obtain a 26-dimensional (irreducible) F4-submodule L ⊂ K(OP 2). To show that

all its nonzero elements are indecomposable, we note that all the irreducible complex represen-
tations of the complexification of the algebra f4 are of the orthogonal type [7, Theorem 3.11(f)],
and so the decomposition of the F4-module of decomposable quadratic Killing tensor fields into
irreducible submodules is given by Sym2(Ad) = R(2π4)+R(2π1)+1 (in the notation of [11]), while
L is isomorphic to R(π1).
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