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Abstract. The goal of this note is to describe the action of pseudo-differential operators on the space of square
integrable functions which are harmonic outside a smooth closed hyper-surface of a compact Riemannian
manifold.

Résumé. Dans cette note, nous étudions un opérateur du type B = P ∗AP où A est un opérateur pseudo-
différentiel et P l’opérateur de Poisson bilatéral associé à une hypersurface. Nous montrons que, sous
certaines conditions, B est un opérateur pseudo-différentiel sur cette hypersurface dont nous calculons le
symbole principal.
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The goal of this note is to describe the action of pseudo-differential operators on the space
H of L2 functions which are harmonic outside a smooth closed hyper-surface Z of a compact
Riemannian manifold without boundary (X , g ) and whose traces from both sides of Z coïncide.
We will represent these L2 harmonic functions as harmonic extensions of functions in the Sobolev
space H−1/2(Z ) by a Poisson operator P . The main result says that, if A is a pseudo-differential
operator of degree d < 3 on X , the operator

B =P ⋆ ◦ A ◦P

is a pseudo-differential operator on Z of degree d −1 whose principal symbol of degree d −1 can
be computed by integration of the principal symbol of A on the co-normal bundle of Z .
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These “bilateral” extensions are simpler (at least for the Laplace operator) than the “unilateral”
ones whose study is the theory of pseudo-differential operators on manifolds with boundary (see
[1–5, 7]).

1. Symbols

The following classes of symbols are defined in the books [5, Section 7.1] and in [6, Section 18.1].
A symbol of degree d on Ux×Rn

ξ
where U is an open set inRN is a smooth complex valued function

a(x,ξ) on U ×Rn which satisfies the following estimates: for any multi-indices (α,β), there exists
a constant Cα,β so that

|Dα
x Dβ

ξ
a(x;ξ)| ≤Cα,β(1+∥ξ∥)d−|β| .

The symbol a is called classical if a admits an expansion a ∼∑∞
l=0 ad−l where a j is homogeneous

of degree j ( j an integer) for ξ ∈Rn large enough; more precisely, for any J ∈N, a −∑J
j=0 ad− j is a

symbol of degree d − J −1.
We will need the

Lemma 1. If a(x;ξ,η) is a symbol of degree d < −1 defined on Ux ×
(
Rn
ξ
×Rη

)
, b(x;ξ) =∫

R a(x;ξ,η)dη is a symbol of degree d+1 defined on Ux×Rn
ξ

. Moreover, if a is classical, b is also clas-
sical and the homogeneous components of b are given for l ≤ d +1, by bl (x;ξ) = ∫

R al−1(x;ξ,η)dη

2. A general reduction Theorem for pseudo-differential operators

We choose local coordinates in some neighborhood of a point in Z denoted x = (z, y) ∈Rd−1 ×R,
so that Z = {y = 0}. We denote by (Ω j , j = 1, . . . , N ) a finite cover of Z by such charts and denote by
Ω0 an open set disjoint from Z so that X =⋃N

j=0Ω j . We choose the chartsΩ j so that the densities
|dz| and |dx| are the Lebesgue measures.

If X is a smooth manifold, we denote by D′(X ) the space of generalized functions on X of
which the space of smooth functions on X is a dense subspace. We assume that X and Z are
equipped with smooth densities |dx| and |dz|. This allows to identify generalized functions with
Schwartz distributions, i.e. linear functionals on test functions; this duality extending the L2

product is denoted by 〈 | 〉. We introduce the extension operator E : D′(Z ) → D′(X ) sending the
distribution f to the distribution f δ(y = 0) defined

〈 f δ(y = 0) |φ(z, y)〉 = 〈 f |φ(z,0)〉
and its adjoint, the trace T : C∞(X ) →C∞(Z ) defined by φ→φ|Z . Let A be a pseudo-differential
operator on X : let us call A j the restriction of A to test functions compactly supported in Ω j . We
will work with one of the A j ’s given by the following “quantization” rule

A j u(z, y) = 1

(2π)d

∫
R2d

ei(〈z−z ′|ζ〉+(y−y ′)η) a j (z, y ;ζ,η)u(z ′, y ′)dz ′ dy ′ dζdη .

So we have formally, using the facts that the densities on X and Z are given by the Lebesgue
measures in these local coordinates:

T ◦ A j ◦E v(z) = 1

(2π)d

∫
R2d−1

ei〈z−z ′|ζ〉 a j (z,0;ζ,η)v(z ′)dz ′ dζdη ,

which we can rewrite

T ◦ A j ◦E v(z) = 1

(2π)d−1

∫
R2d

ei〈z−z ′|ζ〉 b j (z;ζ)v(z ′)dz ′ dζ ,

with
b j (z;ζ) = 1

2π

∫
R

a j (z,0;ζ,η)dη . (1)

We have the
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Theorem 2. If A is a pseudo-differential operator on X of degree m <−1 whose full symbol in the
chart Ω j is a j , then the operator T ◦ A ◦E is a pseudo-differential operator on Z of degree m +1
whose symbol is given in the chartsΩ j ∩Z by Equation (1).

This is proved by looking at the actions on test functions compactly supported in the chart
Ω j , j ≥ 1: then we use Lemma 1.

Remark 3. The principal symbol can be described in a more intrinsic way: let z ∈ Z be given,
from the smooth densities on Tz X and on Tz Z given by |dx| and |dz|, we get, using the Liouville
densities, densities on the dual bundles T⋆

z Z and T⋆
z X . Let us denote byΩ1(E) the 1-dimensional

space of densities on the vector space E . From the exact sequence

0 −→ N⋆
z Z −→ T⋆

z X −→ T⋆
z Z −→ 0 ,

we deduce
Ω1(T⋆X ) ≡Ω1(N⋆Z )⊗Ω1(T⋆Z )

and a canonical density dm(z) in Ω1(N⋆
z Z ). The principal symbol of B = T ◦ A ◦E is given in

coordinates by b(z,ζ) = (1/2π)
∫

N⋆
z Z a(z;ζ,η)dm(η).

3. The “bilateral” Dirichlet-to-Neumann operator

We will assume that the local coordinates x = (z, y) along Z are chosen so that g (z,0) = h(dz)+dy2

and the Riemannian volume along Z is |dx|g = |dz|h |dy |. We will choose the associated densities
on X and Z . We will denote by ∆g the Laplace–Beltrami operator on (X , g ) as defined by
Riemannian geometers (i.e. with a minus sign in front of the second order derivatives).

If f is given on Z , let us denote by DN ( f ) minus the sum of the interior normal derivatives
on both sides of Z of the harmonic extension F of f ; this always makes sense, even if the normal
bundle of Z is not orientable. We have the

Lemma 4. The distributional Laplacian of the harmonic extension F of a smooth function f on
Z is ∆g F = E (DN ( f )).

Proof. The proof is a simple application of the Green’s formula: by definition of the action of the
Laplacian on distributions, if φ is a test function on X , 〈∆g F | φ〉 := 〈F | ∆gφ〉. We can compute
the righthandside integral as an integral on X \ Z using Green’s formula.∫

X \Z
(F∆gφ−φ∆g F )|dx|g =

∫
Z

(Fδφ−φδF )|dz|h
where δ is the sum of the interior normal derivatives from both sides of Z . Using the fact that
∆g F = 0 in X \ Z and δφ= 0, we get the result. □

Denoting by ∆−1
g the “quasi-inverse” of ∆g defined by ∆−1

g φ j = λ−1
j φ j for the eigenfunc-

tions φ j of ∆g with non-zero eigenvalue λ j and ∆−1
g 1 = 0, we have f =

(
T ◦∆−1

g ◦E
)
◦

DN ( f ) (mod constants). By Theorem 2, the operator B = T ◦∆−1
g ◦E is an elliptic self-adjoint

pseudo-differential operator on Z . The operator DN is a right inverse of B modulo smoothing
operators and hence also a left inverse modulo smoothing operators. So that DN = B−1 is an
elliptic self-adjoint of principal symbol the inverse of

1

2π

∫
R

(∥ζ∥2
h +η2)−1dη= 1

2∥ζ∥h
,

namely 2∥ζ∥h . Hence

Theorem 5. The bilateral Dirichlet-to-Neumann operator DN is a self-adjoint elliptic pseudo-
differential operator of degree 1 on L2(Z , |d z|) and of principal symbol 2∥ζ∥h . The kernel of DN is
the space of constant functions.
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The full symbol of DN can be computed in a similar way from the full symbol of the resolvent
∆−1

g along Z .

4. The Poisson operator

Let A be an pseudo-differential operator on X of principal symbol a. We are interested to
the restriction to the space H of the quadratic form Q A(F ) = 〈AF |F 〉 associated to A. We
will parametrize H as harmonic extensions of functions which are in H− 1

2 (Z ) by the so-called
Poisson operator denoted by P ; the pull-back RA of Q A on L2(Z ) is defined by

RA( f ) = 〈AP f |P f 〉 = 〈P ⋆AP f | f 〉 .

The goal of this section is to compute the operator B = P ⋆AP associated to the quadratic
form RA .

From Lemma 4, we have, modulo smoothing operators,

P =∆−1
g ◦E ◦DN .

Hence
B =DN ◦

[
T ◦

(
∆−1

g ◦ A ◦∆−1
g

)
◦E

]
◦DN .

The operator ∆−1
g ◦ A ◦∆−1

g is a pseudo-differential operator of principal symbol a/(∥ζ∥2
h +η2)2

near Z .
Applying Theorem 2 to the inner bracket and Theorem 5, we get the:

Theorem 6. If A is a pseudo-differential operator of degree d < 3 on X and P the Poisson operator
associated to Z , the operator B = P ⋆AP is a pseudo-differential operator of degree d −1 on Z of
principal symbol

b(z,ζ) = 2

π
∥ζ∥2

h

∫
R

a(z,0;ζ,η)

(∥ζ∥2
h +η2)2

dη .

Remark 7. Note that if A is a pseudo-differential operator without the transmission property, the
operator A ◦P may be ill-behaved and have disagreeable singularities along Z ; however P ∗AP

is always a good pseudo-differential operator on Z .

Note

This note was written with Louis in 2012. We had the project to publish it as an Appendix to a
work still in progress with Gregory Berkolaiko. Finally, I decided to publish it independently and
to dedicate it to the memory of Louis.
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