
Comptes Rendus

Mathématique

Xucheng Zhang

Moduli of rank 2 vector bundles over a curve

Volume 362 (2024), p. 1915-1918

Online since: 16 December 2024

https://doi.org/10.5802/crmath.628

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.628
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mathématique
2024, Vol. 362, p. 1915-1918

https://doi.org/10.5802/crmath.628

Research article / Article de recherche
Algebraic geometry / Géométrie algébrique

Moduli of rank 2 vector bundles over a curve

Espace de modules des fibrés vectoriels de rang 2 sur une
courbe

Xucheng Zhang ,∗,a

a Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

E-mail: zhangxucheng@mail.tsinghua.edu.cn

Abstract. We show that among rank 2 vector bundles over a curve only semistable and simple objects admit
a good moduli space.

Résumé. Nous montrons que parmi les fibrés vectoriels de rang 2 sur une courbe, seuls les objets semistables
et simples admettent de bons espaces de modules.
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1. Main result

It is a classical result that semistable vector bundles and simple vector bundles over a curve form
a moduli space. The purpose of this note is to show that they are the only possibilities in rank 2
case. To be precise

Theorem 1 (Corollary 5 and Lemma 6). Let C be a smooth projective connected curve of genus
gC > 1 over an algebraically closed field k of characteristic 0. Denote by Bund

n the moduli stack of
vector bundles of rank n and degree d over C .

(1) If (2,d) = 1, i.e., d is odd, then the open substack Bund ,simple
2 ⊆ Bund

2 of simple vector
bundles is the unique maximal open substack that admits a good moduli space.

(2) If (2,d) ̸= 1, i.e., d is even, then the open substack Bund ,simple
2 ⊆ Bund

2 of simple vector
bundles and the open substack Bund ,ss

2 ⊆Bund
2 of semstable vector bundles are the only

maximal open substacks that admit a good moduli space.

Similar results no longer hold in higher rank, as observed in [3, Theorem C] that there are other
open substacks that admit (even separated) good moduli spaces.
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2. Preliminary

The key ingredient to prove Theorem 1 is the following existence criteria for algebraic stacks to
admit good moduli spaces.

Theorem 2 ([1, Theorem 4.1]). Let X be an algebraic stack, locally of finite type with affine
diagonal over a quasi-separated and locally noetherian algebraic space. Then X admits a good
moduli space if and only if

(1) every closed point of X has linearly reductive stabilizer;
(2) X isΘ-reductive; and
(3) X has unpunctured inertia.

Let U ⊆Bund
n be an open substack of vector bundles. Since automorphism groups of vector

bundles (or in general, coherent sheaves) are connected, the open substack U has unpunctured
inertia by [1, Proposition 3.55]. So the condition (3) is automatic for U . Furthermore, [3,
Proposition 3.6] gives a characterization for U to be Θ-reductive, which implies that in rank 2
case any Θ-reductive open substack cannot contain direct sum of line bundles of different
degrees (see [3, Proposition 4.2]). Therefore, it remains to consider condition (1), i.e., we need
to understand vector bundles with linearly reductive automorphism groups. In rank 2 case we
have a complete classification of such vector bundles.

Proposition 3. Let E ∈Bund
2 (k) be a point such that Aut(E ) is linearly reductive. Then one of the

following occurs:

(1) E is simple, in which case Aut(E ) =Gm .
(2) E ∼= L1 ⊕L2 for some line bundles L1 ≇ L2 with Hom(L1,L2) = 0 = Hom(L2,L1), in

which case Aut(E ) =G2
m .

(3) E ∼=L ⊕2 for some line bundle L , in which case Aut(E ) = GL2.

Proof. In characteristic 0, linear reductivity is equivalent to reductivity.
Suppose E is indecomposable. By [2, Proposition 16] the set of nilpotent endomorphisms

Endnil(E ) ⊆ End(E ) forms a k-subalgebra and

End(E ) = k · idE ⊕Endnil(E ).

In particular we see idE +Endnil(E ) is a unipotent normal subgroup of Aut(E ), so Endnil(E ) = 0
and then End(E ) = k. This is case (1).

Suppose E = L1 ⊕L2 for some line bundles L1,L2. If L1
∼= L2, then Aut(E ) = GL2. This is

case (3).
If L1 ≇L2, then any compositions L1 →L2 →L1 and L2 →L1 →L2 are zero. Using this it

is straightforward to see that the following subset{(
idL1 φ12

φ21 idL2

)
:φi j ∈ Hom(Li ,L j )

}
⊆ Aut(E )

is a unipotent normal subgroup of Aut(E ), so Hom(L1,L2) = 0 = Hom(L2,L1) and then Aut(E ) =
G2

m . This is case (2). □

3. Proof

Now we are able to prove Theorem 1. Let U ⊆Bund
2 be an open substack, the road map is:

• If every closed point of U has linearly reductive stabilizer and U isΘ-reductive, then U
is contained in Bund ,ss

2 ∪Bund ,simple
2 (see Lemma 4).
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• If U ⊈ Bund ,ss
2 and U ⊈ Bund ,simple

2 , then U supports a degeneration family from
a semistable vector bundle to an unstable vector bundle, which is not allowed by Θ-
reductivity (see [3, Corollary 3.9]).

Thus, to obtain a good moduli space we must have U ⊆Bund ,ss
2 or U ⊆Bund ,simple

2 .

Lemma 4. If U ⊆ Bund
2 is an open substack that admits a good moduli space, then U ⊆

Bund ,ss
2 ∪Bund ,simple

2 .

Proof. Any point E ∈ U (K), for some field K/k, specializes to a closed point E0 ∈ U (k) and we
know Aut(E0) is linearly reductive by Theorem 2. Using Proposition 3

(1) either E0 is simple. Then E is also simple by the openness of simpleness.
(2) or E0

∼=L1⊕L2 for some line bundles L1,L2. By [3, Proposition 4.2] theΘ-reductivity of
U forces that deg(L1) = deg(L2). Then E0 is semistable and hence E is also semistable
by the openness of semistability.

This shows that E ∈Bund ,ss
2 (K)∪Bund ,simple

2 (K), as desired. □

Corollary 5. If (2,d) = 1, i.e., d is odd, then Bund ,simple
2 ⊆ Bund

2 is the unique maximal open
substack that admits a good moduli space.

Proof. In this case Bund ,ss
2 =Bund ,s

2 ⊆Bund ,simple
2 and we are done by Lemma 4. □

Lemma 6. If (2,d) ̸= 1, i.e., d is even, then Bund ,simple
2 ⊆Bund

2 and Bund ,ss
2 ⊆Bund

2 are the only
maximal open substacks that admit a good moduli space.

Proof. If U ⊆Bund
2 is an open substack that admits a good moduli space, then U ⊆Bund ,ss

2 ∪
Bund ,simple

2 by Lemma 4. It suffices to show U ⊆ Bund ,ss
2 or U ⊆ Bund ,simple

2 . Suppose
otherwise, then

(1) U ⊈Bund ,ss
2 implies that U contains an unstable vector bundle.

Let E ∈ U (k) be an unstable vector bundle. Denote by 0 → L1 → E → L2 → 0 its
Harder–Narasimhan filtration.

(2) U ⊈Bund ,simple
2 implies that U contains a direct sum of line bundles.

Indeed, if U doesn’t contain any direct sum of line bundles, then by Proposition 3
every point in U specializes to a simple vector bundle, thus U ⊆ Bund ,simple

2 by the
openness of simpleness, a contradiction.

Let V1 ⊕ V2 ∈ U (k) be a direct sum of line bundles, then V1 ⊕ V2 is semistable by
Lemma 4, i.e., deg(V1) = deg(V2) = d/2. Consider the direct sum morphism

⊕ : Picd/2×Picd/2 →Bund
2

ThenΩ :=⊕−1(U ) ⊆ Picd/2×Picd/2 is open and dense since it contains (V1,V2).

From these data, we can construct a degeneration family in U , over some DVR R over k with
fraction field K and residue field κ, from a semistable vector bundle GK (as an extension of line
bundles of the same degree, using the open subset Ω constructed in (2)) to an unstable vector
bundle Gκ (using the unstable vector bundle E in (1)). Then any Jordan–Hölder filtration G •

K
of GK with the associated graded sheaf gr(G •

K ) ∈ U (K ) cannot even extend to a filtration of
subbundles of Gκ (otherwise Gκ will be semistable as well), contradicting to the Θ-reductivity
of U . This concludes the proof.

Let us make this precise. By the same proof of [3, Lemma 4.7], the following subset

∆ := {
L ∈ Pic0 : ∃ [e] ∈ Ext1(L ⊗L2,L ⊗L1) such that E ([e]) ∈U

}
is open and dense in Pic0, where E ([e]) is the extension vector bundle associated to [e]. To finish
the proof, we claim that
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Claim 7. There exist a line bundle L ∈ ∆ and an effective divisor D ∈ Diva(C ) such that
(L (−D)⊗L1)⊕ (L (D)⊗L2) ∈U (k), where a := deg(L1)−d/2 > 0.

Indeed, for any line bundle L ∈ ∆ and effective divisor D ∈ Diva(C ) in Claim 7, by definition
of ∆ there exists a class [e] ∈ Ext1(L ⊗L2,L ⊗L1) such that E ([e]) ∈U (k). The extension

[e] : 0 →L ⊗L1 → E ([e]) →L ⊗L2 → 0

yields a twisted one

[eD ] : 0 →L (−D)⊗L1 → E ([e]) → (L ⊕OD )⊗L2 → 0.

Then by definition the quadruple

(L (−D)⊗L1,L (D)⊗L2,D, [eD ])

∈ Picd/2(k)×Picd/2(k)×Diva(C )×Ext1((L ⊕OD )⊗L2,L (−D)⊗L1)

satisfies (L (−D)⊗L1)⊕ (L (D)⊗L2) ∈ U (k) and E ([eD ]) ∈ U (k). Then U is not Θ-reductive
by [3, Corollary 3.9], a contradiction.

Proof of Claim 7. Consider the morphism

λ : Pic0×Diva(C ) → Picd/2×Picd/2 mapping (L ,D) 7→ (L1 ⊗L (−D),L2 ⊗L (D))

and it is surjective since for any (N1,N2) ∈ Picd/2×Picd/2 we have(
(N1 ⊗N2 ⊗L ∗

1 ⊗L ∗
2 )1/2, (N ∗

1 ⊗N2 ⊗L1 ⊗L ∗
2 )1/2) 7→ (N1,N2).

Then λ−1(Ω) ⊆ Pic0×Diva is an open dense subset of Pic0×Diva and therefore

λ−1(Ω)∩ (∆×Diva(C )) ̸= ;.

By definition any point (L ,D) in this intersection satisfies the required condition. □
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