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Abstract. Given a holomorphic Lagrangian fibration of a compact hyperkähler manifold, we use the differ-
ential geometry of the special Kähler metric that exists on the base away from the discriminant locus, and
show that the pullback of the tangent bundle of the base to the total space of a family of minimal rational
curves admits a parallel splitting. The splitting is nontrivial when the base is not half-dimensional projective
space. Combining this with results of Voisin, Hwang and Bakker–Schnell, we deduce that the base must be
projective space, a result first proved by Hwang.

Résumé. Étant donné une fibration lagrangienne holomorphe d’une variété hyperkählérienne compacte,
nous utilisons la géométrie différentielle de la métrique kählérienne spéciale qui existe sur la base au dehors
du lieu discriminant, et montrons que l’image réciproque du fibré tangent de la base par le morphisme d’éva-
luation d’une famille de courbes rationnelles minimales admet une décomposition parallèle. La décompo-
sition n’est pas triviale lorsque la base n’est pas un espace projectif demi-dimensionnel. En combinant cela
avec des résultats de Voisin, Hwang et Bakker–Schnell, nous en déduisons que la base doit être un espace
projectif, résultat prouvé pour la première fois par Hwang.
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1. Introduction

Let X 2n be a hyperkähler manifold, so X is a simply connected compact Kähler manifold with a
holomorphic symplectic 2-form Ω such that H 2,0(X ) = CΩ. By Yau’s Theorem every Kähler class
on X contains a unique Ricci-flat Kähler metric. It was later realized by Beauville [5] that these
metrics are hyperkähler, which means that they have holonomy equal to Sp(n).

Suppose that B is an irreducible normal complex analytic space with 0 < dimB < 2n, and
f : X → B is a holomorphic surjective map with connected fibers. Then work of Matsushita [38]
shows that necessarily dimB = n, that all irreducible components of the fibers of f are Lagrangian
with respect to Ω, and the smooth fibers are tori. We call such f a holomorphic Lagrangian
fibration. The following basic conjecture is widely expected to hold:

Conjecture 1. If X is a hyperkähler manifold and f : X → B is a holomorphic Lagrangian
fibration, then B ∼=Pn .

This conjecture is clearly true when n = 1. The most striking result about this Conjecture is
due to Hwang [28]:

Theorem 2 (Hwang [28]). Conjecture 1 holds if X is projective and B is smooth.

Theorem 2 was later extended to X Kähler and B smooth by Greb–Lehn [17]. Assuming X
projective and n = 2, it was proved by Ou [49] that either B is smooth (hence P2) or else it has
just one very specific singular point. This case was later ruled out independently by Bogomolov–
Kurnosov [6] and Huybrechts–Xu [26], so the conjecture is known in this case. It is also known for
some families of hyperkähler manifolds [4, 10, 37, 42, 63], but it remains open in general.

There are also a number of partial results towards Conjecture 1 in general, see [25] for an
excellent recent overview. It is known that B must be a Kähler space (see e.g. [17, Proposition 2.2])
and Moishezon [39, Section 2.3], and that B isQ-factorial and has at worst klt singularities (by [39,
Theorem 2.1]). It follows that B has at worst rational singularities, and hence it is projective
by [47, Corollary 1.7]. Again thanks to [39, Theorem 2.1] we see that B is a Fano variety with
Picard number one, and in particular it is uniruled [43] and simply connected [55]. The rational
cohomology of B is isomorphic to the one of Pn [51]. It is also known that the map f is locally
projective [9], so the smooth fibers are abelian varieties, and if B is smooth then the discriminant
locus D ⊂ B of f has pure codimension 1 by [30, Proposition 3.1].

Our main result forms part of a new proof of Hwang’s theorem, as well as Greb–Lehn’s
extension. In order to describe this, suppose B is not Pn . Then from a result of Cho–Miyaoka–
Shepherd–Barron [10], which uses Mori theory, it follows that there is a rational curve in B (not
contained in D) with anticanonical degree at most n. We show that such a curve is free, and
together these imply that the Grothendieck decomposition of the pullback of T B to this rational
curve has some degree zero factors. Taking such rational curves with minimal anticanonical
degree, we can consider the universal family U with evaluation map µ : U → B , which we may
assume is a submersion over a Zariski open set B◦ ⊂ B (which we may assume is equal to B\D
up to enlarging D), and the positive degree factors in the Grothendieck decomposition define a
nontrivial holomorphic subbundle V ⊂ µ∗T B◦, whose rank is strictly less than n. At the same
time, classical work of Freed [13] shows that on B◦ there is a “special Kähler metric” gSK, whose
Kähler form ωSK is parallel with respect to a “special Kähler connection” ∇SK on T RB◦, which is
torsion-free, flat, and d∇SK

J = 0 (where J is the complex structure of B). Our main result is then:

Theorem 3. In this setting, V is preserved by the pullback of the Chern connection of gSK.

We also show that the corresponding real subbundle VR ⊂ µ∗T RB◦ is also preserved by the
pullback of the special Kähler connection ∇SK. This in turn can be interpreted as giving a
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nontrivial splitting of a real variation of Hodge structures (which naturally exists on B◦) when
pulled back via µ. As we will discuss below, by combining Theorem 3 with work of Voisin [60],
Hwang [27, 28] and Bakker–Schnell [2], one can deduce Hwang’s Theorem 2.

Let us first give some intuition for our approach. One of the key features of the rich geometry
of special Kähler metrics is that they have nonnegative bisectional curvature. Recall here the
fundamental theorem of Mori [45] and Siu–Yau [53] which states that a compact Kähler manifold
with positive bisectional curvature must be isomorphic to Pn . This was generalized by Mok [44]
to classify compact Kähler manifolds with nonnegative bisectional curvature: their universal
cover splits as a product of a Euclidean factor, of projective space, and of compact Hermitian
symmetric spaces of rank ⩾ 2. A large part of our arguments are motivated by trying to extend
Mok’s techniques to our noncompact manifold B\D with an incomplete metric with nonnegative
bisectional curvature, making essential use of the special features of special Kähler metrics, which
are summarized in Section 2.

To prove Theorem 3, thanks to a recent result of Bakker [1] we need to consider two cases:
either f has maximal variation or f is isotrivial. In the first case, we prove in Section 4 a crucial
rigidity result (Theorem 16) which shows that the bisectional curvature of ωSK vanishes when
evaluated on a vector in V and a vector in its orthogonal complement. For this, we use results of
Zhang and the second-named author [59] on the asymptotic behavior of ωSK near D , as well as
a strictly positive lower bound for ωSK near D obtained by Gross, Zhang and the second-named
author in [18, 19, 57]. These are explained in Section 3. In Section 5 we then supplement the
rigidity result by showing that the rough Laplacian of the bisectional curvature of ωSK evaluated
on the same vectors vanishes as well. This result is analogous to a statement in Mok [44],
although our proof is quite different. Equipped with these rigidity results, in Section 6 we adapt
an argument of Mok [44] and conclude. In the isotrivial case the rigidity results are trivial because
ωSK is flat, but this flatness can be effectively exploited to show again that V is preserved by the
Chern connection of gSK.

In Section 7 we sketch how Theorem 2 follows by combining Theorem 3 with a number of
recent results in the literature. As mentioned above, we first show that the real subbundle
VR ⊂ µ∗T RB◦ which corresponds to V is preserved also by the pullback of the special Kähler
connection ∇SK. This uses again our rigidity theorem. Then we invoke an important result of
Hwang [27, 28], which also has a recent proof by Bakker–Schnell [2] (Theorem 27 below), which
gives that the map µ must have connected fibers. Thus, our splitting descends to a parallel
splitting of T RB◦, from which we obtain a parallel real (1,1)-form on B◦ which is not proportional
to ωSK, which is contradiction to a result of Voisin [60].

Lastly, in Section 8 we make some comments on the obstacles that we faced when trying to
extend our approach to the case when B is singular.

Remark 4. In the first draft of our paper, our original argument in Section 7 to construct the
parallel form on B◦ turned out to be incomplete. After our first draft was posted to arXiv, Bakker
and Schnell sent us their paper [2] with a new proof of Hwang’s theorem. As mentioned above,
to deduce Theorem 2 from Theorem 3 we now rely on their paper. On the other hand, without
using [2], what our arguments show is that B must be Pn provided that µ has connected fibers.
As pointed out to us by Hwang, this result was implictly proved by Cho–Miyaoka–Shepherd–
Barron [10, Section 7] using a different method (under the extra assumption that f has a section,
which was removed by Nagai [46]).
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2. Special Kähler metrics

2.1. Notation

Let us first fix some notation. For a complex manifold B we will denote by T RB its real tangent
bundle, and with T B ⊂ T CB = T RB ⊗C its holomorphic tangent bundle (of complex tangent
vectors of type (1,0)). The dual of T B will be denoted by Ω1

B . The complex structure will be
denoted by J : T RB → T RB . We will also denote B◦ := B\D and X ◦ := f −1(B◦).

2.2. Existence of special Kähler metrics

The paper by Freed [13], following work of Donagi–Witten [12], shows that the base of an algebraic
integrable system (which in our case is B◦) admits a geometric structure called “special Kähler
metric”, ωSK. This means that (B◦, J ,ωSK) is a Kähler manifold and there is a torsion-free flat
connection ∇SK on T RB◦ which makes ωSK parallel and d∇SK

J = 0 (however, in general ∇SK J ̸= 0),
where d∇SK

:Ω1(T RB◦) →Ω2(T RB◦) is the usual extension of ∇SK (cf. [13, p. 33]). The Riemannian
metric associated to ωSK will be denoted by gSK and its Levi-Civita/Chern connection, which in
general is different from ∇SK, will be denoted simply by ∇ (see (56) below for an explicit formula
relating ∇ and ∇SK). On every sufficiently small open set U ⊂ B◦ we can find special holomorphic
local coordinates {z j }n

j=1 (whose real parts are flat Darboux coordinates) and a holomorphic map
Z : U →Hn into the Siegel upper half space

Hn = {A ∈ gl(n,C) | A = At , Im A > 0},

such that Z (y) are the periods of the torus fiber f −1(y), and we can write

ωSK = 1

2

∑
i , j

Im Zi j dzi ∧dz j .

It is also worth noting that special Kähler manifolds can only be complete if they are flat, by a
result of Lu [36]. See [59] for a description of the metric completion of (B◦,ωSK) and of its metric
singularities.

Special Kähler metrics have a Hodge-theoretic origin (see [24, 40]): as mentioned earlier there
is a natural weight-one polarized real variation of Hodge structures R1 f∗RX ◦ on B◦, whose Hodge
bundle of type (1,0) is isomorphic to T B◦ (by contracting with the holomorphic symplectic form),
and its Hodge metric is exactly the special Kähler metric.

In [18, 19, 57] it is also shown that ωSK can be written as ωB + i∂∂ϕ for some Kähler metric ωB

on B and some function ϕ ∈ C∞(B◦)∩L∞(B). In fact, a priori there is a different special Kähler
metric on B◦ for each chosen Kähler class [ωB ] on B , but since B is smooth Fano and of Picard
number one, it follows that b2(B) = 1 so there is a unique choice of Kähler class up to scaling. In
the following, we fix one such ωB once and for all. This way, we can unambiguously talk about
“the” special Kähler metric ωSK in the following.
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2.3. Curvature properties

Following Freed [13], there is a holomorphic symmetric cubic form Ξ ∈ H 0(B◦,Sym3 T ∗B◦) such
that, in any local holomorphic coordinate system, the curvature tensor of ωSK can be written as

Ri j kℓ = g pq
SK Ξi kpΞ jℓq , (1)

and on any sufficiently small U as above we can find a holomorphic function F : U → C such
that, in special holomorphic coordinates, the period matrix and the cubic form can be written as

Zi j = ∂2F

∂zi∂z j
, Ξi pk = ∂3F

∂zi∂zk∂zp
. (2)

From the curvature formula (1) we see in particular that ωSK has nonnegative bisectional curva-
ture on B◦: given any v, w ∈ T 1,0B◦ we have

Rm(v, v , w, w) = Ri j kℓv i v j wk wℓ =∑
p

∣∣Ξ(v, w,ep )
∣∣2 ⩾ 0,

where {ep } is any gSK-unitary frame.
We will also use the following dichotomy, which was conjectured by Matsushita, and after

progress by van Geemen–Voisin [14] it was recently proved by Bakker [1]:

Theorem 5. Either f is isotrivial, or else f has maximal variation.

This dichotomy is then reflected in the curvature properties of ωSK:

Corollary 6. Either ωSK is flat on B◦, or else ωSK has positive Ricci curvature on a Zariski open
subset of B◦.

In the second case, up to replacing D with a larger closed analytic subvariety we will always
assume that RicgSK > 0 on B◦.

Proof. We use Bakker’s Theorem 5. If f is isotrivial, then the local period map Z is constant, so
from (2) we see that Ξ ≡ 0 on B◦, and (1) shows that ωSK is flat. If f has maximal variation, then
the period map Z is generically of maximal rank (equal to n), so Z is an immersion on a Zariski
open subset of B◦ (which, up to enlarging D , we may assume is equal to B◦). Given any v ∈ T 1,0

x B◦,
the Ricci curvature of ωSK in the direction of v is given by

Ric(v, v) = ∑
p,q

∣∣Ξ(v,ep ,eq )
∣∣2 ⩾ 0,

and if this vanishes for some v ̸= 0 then in special holomorphic coordinates we have that for all
p, q

0 =Ξ(v,ep ,eq ) = ∂3F

∂v∂ep∂eq
= ∂

∂v
Zpq ,

so the period map is not an immersion at x, a contradiction. □

Remark 7. The holomorphic sectional curvature of ωSK is given by

HSC(v) = Ri j kℓv i v j vk vℓ =∑
p

∣∣∣∣ ∂3F

∂v∂v∂ep

∣∣∣∣2

⩾ 0,

where v ∈ T 1,0B◦ is a unit vector (and in the last equality we use special holomorphic coordi-
nates). The condition that ωSK has (strictly) positive holomorphic sectional curvature on B◦ thus
means that none of the “diagonal” entries of the period matrix Z

Zi j v i v j = ∂2F

∂v∂v
is locally constant. We expect that this always holds (up to enlarging D) when f has maximal
variation.
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Remark 8. We are grateful to B. Bakker for the following observation. Let f : S →P1 be an elliptic
fibration of a K 3 surface S. For n ⩾ 2 let X = S[n] be the Hilbert scheme parametrizing length n
subschemes of S. We obtain an induced holomorphic Lagrangian fibration f̃ : X → (P1)[n] = Pn

whose general fiber is isomorphic to the product of n general fibers of f , and if f has maximal
variation then so does f̃ . Since the period matrix of such a torus is diagonal, we see that the
period map Z of f̃ has Zi j = 0 for i ̸= j . It follows that for these examples the special Kähler
metric, which is not flat if f has maximal variation, nevertheless does not have strictly positive
bisectional curvature on Pn\D , since in local special coordinates we have

Rm(ei ,ei ,e j ,e j ) = Ri i j j = 0,

for all i ̸= j . Thus, to prove our main theorem, it would not be sufficient to prove a suitable
noncompact version of the Mori–Siu–Yau theorem [45, 53], but we must instead generalize the
work of Mok [44].

3. Estimates on the special Kähler metric

We collect in this section two crucial estimates for the special Kähler metric ωSK, which are
contained or follow from earlier work of the second-named author and coauthors [57–59]. See
also [8, 22] for a study of the asymptotics of special Kähler metrics on Riemann surfaces.

3.1. Strict positivity

The first estimate, taken from [18, 19, 57, 58], says that the positivity ofωSK does not degenerate as
we approach D . Since this statement is valid even if B is singular, we present it in this generality.

Proposition 9. Let X be a hyperkähler manifold, f : X → B a holomorphic Lagrangian fibration
with B a normal analytic variety. Let ωB be a smooth Kähler metric on B (in the sense of analytic
spaces) andωSK the special Kähler metric on B◦ cohomologous toωB . Then there is C > 0 such that
on B◦ we have

ωSK ⩾C−1ωB . (3)

Proof. Fix a Kähler metric ωX on X and for t ⩾ 0 let ωt be the hyperkähler metric on X
cohomologous to f ∗ωB + e−tωX . Then the Schwarz Lemma [57, Lemma 3.1] (using also [58,
Proof of Theorem 3.2] in the case when B is singular) gives

ωt ⩾C−1 f ∗ωB ,

on X ◦ (with C independent of t ⩾ 0), and thanks to [18, Theorem 1.1], [23] and [19, Theorem 1.2]
we know that as t →∞ we have

ωt → f ∗ωSK,

locally uniformly on X ◦ (and even locally smoothly), so we conclude that

f ∗ωSK ⩾C−1 f ∗ωB ,

on X ◦, and since f is a submersion over B◦ this is equivalent to

ωSK ⩾C−1ωB ,

on B◦. □

Remark 10. If B has quotient singularities (which is expected to hold in general [25, Re-
mark 1.11]) then we can replace ωB with an orbifold Kähler metric ωorb, and a similar argument
gives the stronger bound

ωSK ⩾C−1ωorb,

on B◦.
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3.2. Ricci curvature bounds near D

From now on, we return to our standing assumption that B is smooth. The second crucial
estimate is a bound for the Ricci curvature of ωSK. We have seen in the previous section that ωSK

has nonnegative Ricci curvature on B◦. In fact, as shown in [54, 57] (see also [59, Proposition 4.1]),
we have

RicgSK =ωWP ⩾ 0,

where ωWP is the Weil–Petersson form of the family of abelian varieties f : X ◦ → B◦ (pullback of
the Weil–Petersson metric on the moduli space via the moduli map). Concretely, on B◦ we have

ωn
SK = c(−1)

n2
2 f∗(σn ∧σn), (4)

where c > 0 and σ is a holomorphic symplectic form on X , and to obtain ωWP it suffices to take
−i∂∂ log of the fiber integral in (4) divided by the local Euclidean volume form.

Recall that the discriminant locus D ⊂ B is a closed analytic subvariety of pure codimension 1,
see [30, Proposition 3.1]. Let x ∈ D be any smooth point of D , and choose an open neighborhood
U of x with local holomorphic coordinates centered at x such that D ∩U = {z1 = 0}. Thus, at
points of D ∩U , the vectors ∂

∂z2
, . . . , ∂

∂zn
are tangent to D , while ∂

∂z1
is transversal. The main claim

is the following:

Proposition 11. On {z1 ̸= 0} the Ricci curvature tensor Ri j = RicgSK

(
∂
∂zi

, ∂
∂z j

)
of ωSK satisfies

0⩽Ri i ⩽C , 2⩽ i ⩽ n, (5)

0⩽R11 ⩽
C

|z1|2
, (6)

for some constant C > 0.

Proof. We will use freely the arguments in [59, Section 4.3] (these are stated for X projective
hyperkähler, but all arguments there go through for general X hyperkähler using that Lagrangian
fibrations are locally projective [9]). By the Monodromy Theorem, there is m ∈ N>0 such that
the eigenvalues of the monodromy operator T (acting on H 1( f −1(y),Z) for some fixed basepoint
y ∈U \D) are mth roots of unity. We may assume without loss that in our coordinates U is the unit
polydisc, and letting Ũ be the unit polydisc with coordinates (t1, . . . , tn), we define the branched
covering

q : Ũ →U , q(t1, . . . , tn) = (t m
1 , t2, . . . , tn).

Then after pulling back to Ũ , the monodromy operator T becomes unipotent, with

(T − Id)2 = 0.

Thanks to the argument in [59, p. 774], we can find holomorphic functions w1, . . . , wn on Ũ , which
are special holomorphic coordinates on Ũ ∩ {t1 ̸= 0} (but need not form a coordinate system at
points on {t1 = 0}, and they may even vanish there), such that, on Ũ ∩ {t1 ̸= 0}, we can write

q∗ωSK = i

2

∑
j ,k

Im Z j k (t )dw j ∧dwk = i

2

∑
j ,k,p,q

Im Z j k (t )
∂w j

∂tp

∂wk

∂tq
dtp ∧dtq ,

where Z j k (t ) is the local period map pulled back to Ũ . Thus, if we denote by dVE the Euclidean
volume form on Ũ given by the coordinates t1, . . . tn , we have

log
q∗ωn

SK

dVE
= logdetIm Z + log

∣∣∣∣det

(
∂w j

∂tp

)∣∣∣∣2

,

and since det
(
∂w j

∂tp

)
is holomorphic and nonzero on Ũ ∩ {t1 ̸= 0}, we get

Ricq∗gSK

(
∂

∂t j
,
∂

∂tk

)
=− ∂

∂t j

∂

∂tk
log

q∗ωn
SK

dVE
=− ∂

∂t j

∂

∂tk
logdetIm Z . (7)
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To estimate this, following [59, Lemma 4.3] we use Schmid’s Nilpotent Orbit Theorem [50] and
see there are b j k ∈Q and a holomorphic map Q from Ũ to the space of symmetric n ×n complex
matrices, such that on Ũ ∩ {t1 ̸= 0} we have

Z j k (t ) =Q j k (t )+ log t1

2πi
b j k , 1⩽ j ,k ⩽ n,

for some branch of log. Thus,

Im Z j k (t ) = ImQ j k (t )− b j k

2π
log |t1|, (8)

and furthermore (see [59, Lemma 4.3]) there is C > 0 such that on Ũ ∩ {t1 ̸= 0} we have

Im Z (t )⩾C−1 Id, (9)

and so the inverse matrix of Im Z (t ), whose entries will be denoted by (Im Z (t ))pq , satisfies

0 < (Im Z (t ))−1 ⩽C Id. (10)

Differentiating the determinant gives

− ∂

∂t j

∂

∂tk
logdetIm Z (t ) =−(Im Z (t ))pq ∂

∂t j

∂

∂tk
Im Zpq (t )

+ (Im Z (t ))pq (Im Z (t ))r s ∂

∂t j
Im Zpr (t )

∂

∂tk
Im Zqs (t ).

First we take j ⩾ 2, and differentiating (8) gives

− ∂

∂t j

∂

∂t j
logdetIm Z (t ) = (Im Z (t ))pq (Im Z (t ))r s ∂

∂t j
ImQpr (t )

∂

∂t j
ImQqs (t )⩽C ,

using (10) and the fact that Q is holomorphic on all of Ũ . As for the t1 direction, differentiating (8)
we have

− ∂

∂t1

∂

∂t1
logdetIm Z (t )

= (Im Z (t ))pq (Im Z (t ))r s ∂

∂t1

(
ImQpr (t )− bpr

2π
log |t1|

)
∂

∂t1

(
ImQqs (t )− bqs

2π
log |t1|

)
⩽C

∑
p,r

∣∣∣∣ ∂

∂t1

(
ImQpr (t )− bpr

2π
log |t1|

)∣∣∣∣2

⩽C +C

∣∣∣∣ ∂

∂t1
log |t1|

∣∣∣∣2

⩽
C

|t1|2
.

Going back to (7), this shows that on Ũ ∩ {t1 ̸= 0}) we have

0⩽Ricq∗gSK

(
∂

∂t j
,
∂

∂t j

)
⩽C , j ⩾ 2,

0⩽Ricq∗gSK

(
∂

∂t1
,
∂

∂t1

)
⩽

C

|t1|2
,

and so on U ∩ {z1 ̸= 0} we have for j ⩾ 2,

0⩽R j j = RicgSK

(
∂

∂z j
,
∂

∂z j

)
= Ricq∗gSK

(
∂

∂t j
,
∂

∂t j

)
⩽C ,
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and

0⩽R11 = RicgSK

(
∂

∂z1
,
∂

∂z1

)
= 1

m2|t1|2m−2 Ricq∗gSK

(
∂

∂t1
,
∂

∂t1

)
⩽

C

m2|t1|2m ⩽
C

|z1|2
,

as desired. □

Remark 12. We expect that the sharp bound in (6) in general is of the form C
|z1|2 log2 |z1| , cf. [62]

when dimB = 1. One may be able to show this by proving an asymptotic expansion for the fiber
integral in (4) which can be differentiated term-by-term, as in [3, 56].

4. Rational curves and rigidity

Recall that B is a Fano manifold, hence uniruled. Let ν : P1 → B be a rational curve (i.e. a
nonconstant holomorphic map) whose image is not contained in D . Our first result of this section
shows that ν is a free rational curve, in the terminology of Mori Theory, cf. [35].

4.1. Freeness of the rational curve

By Grothendieck’s Theorem, the vector bundle ν∗T B splits and so we can write

ν∗T B ∼=
n⊕

i=1
O (ai ), (11)

for some integers ai , which we order by a1 ⩾ · · ·⩾ an . Dualizing, we have

ν∗Ω1
B
∼=

n⊕
i=1

O (−ai ), (12)

and

q :=−KB ·ν(P1) =
n∑

i=1
ai > 0, (13)

since B is Fano.
On B◦ we equip Ω1

B with the Hermitian metric hSK induced by the special Kähler metric ωSK.

Lemma 13. We have an ⩾ 0.

Proof. This argument was suggested to us by M. Păun. Consider the nontrivial section v ∈
H 0(P1,ν∗Ω1

B ⊗ O (an)) which corresponds to the quotient morphism ν∗T B → O (an). Equip
L := O (an) with a smooth metric hL on P1, and equip ν∗Ω1

B with the smooth metric ν∗hSK on
P1\ν−1(D) which is the pullback of the metric induced by ωSK. Thus, the curvature of ν∗hSK

is Griffiths nonpositive on P1\ν−1(D), since ωSK has nonnegative bisectional curvature on B◦

and dualization reverses the sign of Griffiths positivity (see e.g. [11, Section VII.6]). Equip then
ν∗Ω1

B ⊗O (an) with the metric h = ν∗hSK ⊗hL on P1\ν−1(D).
Differentiating log |v |2h on P1\ν−1(D) we have the well-known identity of (1,1)-forms on

P1\ν−1(D)

i∂∂ log |v |2h = |∇v |2h
|v |2h

− |〈∇v, v〉h |2
|v |4h

−RhL −
〈Rν∗hSK (v), v〉h

|v |2h
,

where ∇v is an ν∗Ω1
B ⊗O (an)-valued (1,0)-form, so |∇v |2h is a (1,1)-form, and similarly for the

other terms. Using Cauchy–Schwarz we have

|〈∇v, v〉h |2
|v |4h

⩽
|∇v |2h
|v |2h

,
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and since on P1\ν−1(D) the curvature of ν∗hSK is Griffiths nonpositive, we can estimate

i∂∂ log |v |2h ⩾−RhL −
〈Rν∗hSK (v), v〉h

|v |2h
⩾−RhL ,

(14)

Since RhL is a smooth form on P1, we see that log |v |2h is quasi-psh on P1\ν−1(D), and using (3)
we see that

sup
P1\ν−1(D)

log |v |2h ⩽C + sup
P1\ν−1(D)

log |v |2ν∗hB⊗hL
<∞,

where hB is the smooth metric on Ω1
B induced by ωB . Thus log |v |2h is bounded above, hence by

the Grauert–Remmert extension theorem [15] the inequality RhL + i∂∂ log |v |2h ⩾ 0 extends over
the singularities to all of P1 (in the weak sense). Integrating this over P1 and using Stokes thus
gives

an =
∫
P1

RhL =
∫
P1

(RhL + i∂∂ log |v |2h)⩾ 0,

as desired. □

Lemma 13 says that every rational curve in B which is not contained in D is free, and by Mori
Theory it deforms to cover a Zariski dense subset of B (see e.g. [35]).

The pullback morphism ν∗Ω1
B → Ω1

P1 dualizes to a nontrivial morphism O (2) → ν∗T B , and
hence a1 ⩾ 2. Using this observation and Lemma 13 we can write the splittings in (11) and (12) as

ν∗T B ∼=O (a1)⊕·· ·⊕O (an−ℓ)⊕O⊕ℓ, (15)

ν∗Ω1
B
∼=O (−a1)⊕·· ·⊕O (−an−ℓ)⊕O⊕ℓ, (16)

for some 0⩽ ℓ⩽ n −1, where a1 ⩾ a2 ⩾ · · ·⩾ an−ℓ⩾ 1, a1 ⩾ 2, and

q =
n−ℓ∑
i=1

ai .

Recall now a result by Cho–Miyaoka–Shepherd–Barron [10, Corollary 0.4(11)], which uses
Mori theory:

Theorem 14. Let B be a uniruled projective manifold, D an effective divisor, and suppose that, for
any rational curve ν :P1 → B which is not contained in D, we have the inequality

−KB ·ν(P1)⩾ n +1. (17)

Then B ∼=Pn .

If, in our setting, for all rational curves ν : P1 → B not contained in D we have ℓ= 0, i.e. ai > 0
for all i , then since a1 ⩾ 2 it would follow that −KB ·ν(P1) = ∑n

i=1 ai ⩾ n +1 and so B would be
isomorphic to Pn . In other words, if B ̸∼= Pn then there exists a rational curve ν0 : P1 → B not
contained in D which has ℓ⩾ 1, i.e. there are some trivial factors O⊕ℓ in the splitting (11). We
may also assume that the anticanonical degree q :=−KB ·ν0(P1) is as small as possible among all
rational curves not contained in D (and satisfies 2⩽ q ⩽ n), and we will call these minimal degree
rational curves, which is consistent with the standard terminology, e.g. in [29]. By Lemma 13, this
rational curve ν0 is free and so it deforms to cover a Zariski dense subset of B . Let K be the
irreducible component of the space of rational curves in B (see [35, Section II.2]) which contains
ν0, which we fix once and for all. From Mori Theory (see [35] and [29, Section 3]) we have that K

is a quasiprojective variety equipped with a universal P1-bundle ρ : U → K and an evaluation
map µ : U → B . For any t ∈K we will also write

Ut := ρ−1(t ) ⊂U ,
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so Ut
∼=P1 is the rational curve corresponding to t , and

νt :=µ|Ut : Ut → B ,

will denote the morphism to B .
Furthermore, the generic rational curve in K is free and not contained in D , K is smooth at

such curves, and the integers ai ,ℓ in the decomposition (15) are the same for all generic such
curves. Given x ∈ B◦ there is some minimal degree rational curve ν in K that passes through x
and is smooth at x. Thanks to [35, Proposition II.3.7], we can also assume that ν(P1) intersects
D only at the regular points of D (since the singularities of D have codimension at least 2 in B),
and that these intersections are transverse. The evaluation morphism µ : U → B is a submersion
over a Zariski open subset of B , which up to enlarging D we may assume equals B◦. Thus, if we
define U ◦ := µ−1(B◦), then U ◦ is smooth and µ : U ◦ → B◦ is a submersion. The metric gSK on
T B◦ induces by pullback a metric µ∗T B◦ over U ◦, which we will denote by the same symbol, and
similarly for the connections ∇ and ∇SK, which induce pullback connections denoted in the same
way.

Lemma 15. There is a locally free sheaf V ♯ on U such that for every t ∈K , the restriction V ♯
∣∣
Ut

of

V ♯ to the rational curve Ut equals the factor O⊕ℓ in the splitting (16) for ν∗t Ω
1
B .

Proof. For the sake of clarity, we first define the fiber V ♯ at any point on Ut
∼= P1. For this, we

consider ν∗t Ω
1
B , which from the splitting (16) is isomorphic to O (−a1)⊕·· ·⊕O (−an−ℓ)⊕O⊕ℓ. Its

space of global sections H 0(Ut ,ν∗t Ω
1
B ) is then ℓ-dimensional, and we can find a basis of such

sections which are linearly independent at all points of P1. The fiber of V ♯ at any point on Ut is
then defined as the linear span of any given basis of H 0(Ut ,ν∗t Ω

1
B ).

To prove that this collection of ℓ-dimensional vector spaces form a locally free sheaf, con-
sider first the locally free sheaf µ∗Ω1

B on U , and take its direct image sheaf ρ∗µ∗Ω1
B . Since

h0(Ut ,µ∗Ω1
B |Ut ) = ℓ is independent of t , Grauert’s Theorem on direct images [21, Corol-

lary III.12.9] shows that ρ∗µ∗Ω1
B is a locally free sheaf on K . We then set V ♯ = ρ∗ρ∗µ∗Ω1

B , which
is a locally free sheaf over U whose fibers agree with our previous description. □

Our main interest will be with the restriction of V ♯ to U ◦, which will be denoted with the same
notation. This is a holomorphic vector bundle over U ◦, which is naturally a subbundle of µ∗Ω1

B◦ .
We then define a holomorphic subbundle V ⊂µ∗T B◦ over U ◦ as the annihilator of V ♯, namely

V = {v ∈µ∗T B◦ | γ(v) = 0, for all γ ∈ V ♯}.

For any t ∈ K we have that the restriction of V to Ut equals the factor O (a1)⊕ ·· · ⊕O (an−ℓ) in
the splitting (15) for ν∗t T B . Observe that since the pullback morphism ν∗t Ω

1
B →Ω1

P1 dualizes to a
nontrivial morphism O (2) → ν∗t T B , it follows that the tangent direction to the image of νt at any
point on this curve (which is a line in T B◦) when pulled back via µ lies in the fiber of V over Ut .

We then define a smooth complex subbundle N ⊂ µ∗T B◦ over U ◦ as the gSK-orthogonal
complement of V , and N ♯ ⊂ µ∗Ω1

B◦ as its annihilator (or equivalently as the gSK-orthogonal
complement of V ♯), so that over U ◦ we have the splittings

µ∗T B◦ = V ⊕N , µ∗Ω1
B◦ = V ♯⊕N ♯. (18)

The bundles N ,N ♯ are not yet known to be holomorphic (we will prove this later on). Note also
that the (complex antilinear) smooth isomorphism

µ∗T B◦ →µ∗Ω1
B◦ , (19)

defined by the metric gSK (by “lowering the index” and conjugating) maps N isomorphically
onto V ♯.
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4.2. The rigidity theorem

We have the following rigidity statement:

Theorem 16. Given a rational curve Ut for some t ∈K , with morphism νt :P1 → B, and given a
section u ∈ H 0(P1,V ♯

∣∣
Ut

), let ν∗t hSK be the smooth metric on ν∗t Ω
1
B over P1\ν−1

t (D) induced by gSK,
and let Rν∗t hSK be its curvature. Then we have:

(a) On P1\ν−1
t (D) we have

〈Rν∗t hSK (u),u〉ν∗t hSK = 0. (20)

(b) Let ζ be the smooth section of N
∣∣
Ut

over P1\ν−1
t (D) which corresponds to u under (19),

and let α be a tangent vector to νt (P1). Then at any point on νt (P1)∩B◦ the curvature
tensor of gSK satisfies

R
ααζζ

= 0, (21)

and hence

Ξ(α,ζ,β) = 0, for all β ∈ T B◦. (22)

(c) For ζ as in (b), and for any section v ∈ H 0(P1,V
∣∣
Ut

), at any point on νt (P1)∩B◦ we have

Rv vζζ = 0, (23)

as well as

Ξ(v,ζ,β) = 0, for all β ∈ T B◦. (24)

(d) Every section u ∈ H 0(P1,V ♯
∣∣
Ut

) is parallel on P1\ν−1
t (D) with respect to the Chern connec-

tion ∇ induced by ωSK.
(e) The splitting ν∗t Ω

1
B = V ♯

∣∣
Ut

⊕N ♯
∣∣
Ut

is preserved by ∇.

Proof.

(a). Equip V ♯
∣∣
Ut

with the smooth metric h on P1\ν−1
t (D) induced by ωSK via V ♯

∣∣
Ut

,→ ν∗t Ω
1
B →

Ω1
B . Since ωSK has nonnegative bisectional curvature, the induced metric on Ω1

B (and hence also
the one on ν∗t Ω

1
B ) is Griffiths nonpositively curved, and since curvature decreases in subbundles,

the metric h is also Griffiths nonpositively curved.
As in (14), on P1\ν−1

t (D) we have

i∂∂ log |u|2h = |∇u|2h
|u|2h

− |〈∇u,u〉h |2
|u|4h

− 〈Rh(u),u〉h

|u|2h
⩾−〈Rh(u),u〉h

|u|2h
⩾ 0.

(25)

Thus log |u|2h is psh on P1\ν−1
t (D), and again using (3) we see that

sup
P1\ν−1

t (D)

log |u|2h ⩽C + sup
P1\ν−1

t (D)

log |u|2ν∗t hB
<∞,

where hB is the smooth metric on Ω1
B induced by ωB . Thus log |u|2h is bounded above, and by

the Grauert–Remmert extension theorem [15] it extends to a global psh function on P1, which is
therefore constant.

Thus |u|2h is a nonzero constant, and from (25) we deduce that

〈Rh(u),u〉h = 0, (26)

on P1\ν−1
t (D). But using again the curvature decreasing property, we have

0 = 〈Rh(u),u〉h ⩽ 〈Rν∗t hSK (u),u〉ν∗t hSK ⩽ 0,
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and so

〈Rν∗t hSK (u),u〉ν∗t hSK = 0, (27)

on P1\ν−1
t (D), which proves (20).

(b). Since α ∈ T B◦ is a tangent vector to νt (P1) and since u is equal to the image of ζ under (19),
we have

0 = 〈Rν∗t hSK (u),u〉ν∗t hSK =−R
ααζζ

,

which proves (21). The identity (22) is then a consequence of (1).

(c). Given v ∈ H 0(P1,V
∣∣
Ut

) and a point x ∈ νt (P1)∩B◦, we can find a holomorphic family {νs }s∈∆
of rational curves in K that pass through x, with tangent vectorsαs at x (with∆⊂K a small disc
in some chart centered at our original point t ∈K ), and such that d

ds

∣∣
s=tαs = v(x). Let w = d

dsνs

be the first-order deformation (holomorphic) vector field on this family. When restricted to each
Us , w is a section of

ν∗s T B◦ = V
∣∣
Us

⊕N
∣∣
Us

∼=
⊕

i
O (ai )⊕O⊕ℓ,

and since w(x) = 0, it must be a section of the
⊕

i O (ai ) factors, namely a section of V
∣∣
Us

. Pick
a smooth family U of 1-forms on this family, i.e. a C∞ section of the relative cotangent bundle,
with us :=U |Us ∈ H 0(P1,V ♯

∣∣
Us

), and with ut = u. Then by definition along νs we have

ιwU
∣∣
Us

≡ 0,

for all s ∈∆, and so along νt we have

LwU
∣∣
Ut

= (d ιwU )
∣∣
Ut

+ (ιw dU )
∣∣
Ut

= (ιw dU )
∣∣
Ut

,

which vanishes at x since w(x) = 0.
We now use this to prove (24), which by (1) implies (23). For this, let ζs , s ∈ ∆, be the smooth

section of N
∣∣
Us

over P1\ν−1
s (D) which maps to us under (19), and recall that from (22) at x we

have

Ξx (αs ,ζs ,β) = 0,

for all s ∈∆. Taking d
ds

∣∣
s=t of this, we get

0 =Ξx (v,ζ,β)+Ξx (α,Lwζ,β). (28)

Now at x we have that Lwζ is the vector that maps to LwU under (19), since at x the metric gSK

does not get differentiated as it does not depend on s. Since we have shown that (LwU )(x) = 0,
we deduce that (Lwζ)(x) = 0, and so (24) follows from (28).

(d). Given a section u ∈ H 0(P1,ν∗t V ♯), an analogous computation as in (a) gives

0 = i∂∂|u|2h = |∇u|2h −〈Rh(u),u〉h = |∇u|2h , (29)

and so we conclude that ∇u = 0 on P1\ν−1
t (D).

(e). This is a direct consequence of part (d) and [33, Proposition 1.4.18]. □

Given x ∈U ◦ and v ∈ Vx ,ζ ∈Nx , recall from (18) that

Vx ⊕Nx = Tµ(x)B
◦, (30)

so we can view v and ζ also as tangent vectors in B◦. With this in mind, we have the following
useful corollary:
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Corollary 17. Let x ∈U ◦, and let v ∈ Vx ,ζ ∈Nx . Then at µ(x) ∈ B◦ the curvature of the metric gSK

satisfies

Rv vζζ = 0, (31)

as well as

Ξ(v,ζ,β) = 0, for all β ∈ Tµ(x)B
◦. (32)

Proof. Let t ∈ K be such that the corresponding rational curve Ut contains x, and as usual
denoted by νt : P1 → B the corresponding morphism. Since V

∣∣
Ut

∼=⊕i O (ai ), ai > 0, is a globally
generated vector bundle, we can find a global section V ∈ H 0(P1,V

∣∣
Ut

) such that V (x) = v . Let

then u ∈ V
♯

x be the covector which is the image of ζ under (19). Since V ♯
∣∣
Ut

∼=O⊕ℓ is a trivial vector

bundle, we can find a global section U ∈ H 0(P1,V ♯
∣∣
Ut

) such that U (x) = u. Then Theorem 16(c)
applies to U and V , and (31), (32) follow from (23), (24). □

5. The Ricci curvature in the direction of N

Given x ∈ U ◦ and vectors v ∈ Vx ,ζ ∈ Nx (which we can also view as tangent vectors in Tµ(x)B◦

using (30)), Corollary 17 shows that at µ(x) the Riemann curvature tensor of gSK satisfies

Rv vζζ = 0.

As customary, we define the “rough Laplacian” of the Riemann curvature tensor of gSK, evaluated
on v,ζ by

∆Rv vζζ =
1

2

(∑
i
∇i∇i Rv vζζ+

∑
i
∇i∇i Rv vζζ

)
,

where {ei } is a local unitary frame.
The following is the main result of this section:

Theorem 18. Given x ∈U ◦ and v ∈ Vx ,ζ ∈Nx , then at µ(x) we have

∆Rv vζζ = 0, Rvζβγ = 0, for all β,γ ∈ Tµ(x)B
◦. (33)

Let t ∈K be such that the corresponding rational curve Ut contains x, and as usual denoted
by νt : P1 → B the corresponding morphism. As in the proof of Corollary 17, we can extend v to
a section v ∈ H 0(P1,V

∣∣
Ut

) and we can find a section u ∈ H 0(P1,V ♯
∣∣
Ut

) such that the image of u
under (19) is a smooth section ζ ∈ N |Ut over P1\ν−1

t (D) which extends the given vector ζ. The
Ricci curvature R

ζζ
along this curve and evaluated at ζwill also be denoted by RicgSK (u,u), which

is a smooth function on P1\ν−1
t (D).

We wish to show that RicgSK (u,u) is a constant function on P1\ν−1(D). We will proceed in
steps.

5.1. Subharmonicity of RicgSK (u, ū)

To start, we prove the following:

Proposition 19. The function RicgSK (u,u) on P1\ν−1
t (D) is subharmonic.

Proof. On B◦ define for 0⩽ s ≪ 1

gs = gSK − s RicgSK .

It is clear that given any compact K ⋐ B◦ there is some 0 < sK ≪ 1 such that gs is a Kähler metric
on K for 0⩽ s ⩽ sK .
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Standard direct computations (cf. [44, p. 185]) show that given any x ∈ B◦ and two nonzero
(1,0) tangent vectors v,ζ at x, we have the evolution equation at x and s = 0 for the bisectional
curvature of gs evaluated along v and ζ

∂

∂s

∣∣∣
s=0

R(gs )v vζζ =∆Rv vζζ+F (R)v vζζ, (34)

where, as in Mok [44], we define

F (R)v vζζ =
∑
µ,ν

Rv vµνR
ζζνµ

−∑
µ,ν

|Rvµζν|2 +
∑
µ,ν

|Rvζµν|2 −Re
(
RvµR

µvζζ+RζµRv vµζ

)
.

Equation (34) is identical to the corresponding evolution of the bisectional curvature in the
directions v,ζ along the Kähler–Ricci flow, see [44]. Thanks to the crucial Lemma 20 below, we
see that

∂

∂s

∣∣∣
s=0

R(gs )v vζζ(x)⩾ 0. (35)

Equip ν∗t Ω
1
B over the compact set ν−1

t (K ) with the Hermitian metric hs induced by gs . At any
point y ∈ ν−1

t (K ) for 0⩽ s ⩽ sK , using the argument in (25), we have

i∂∂ log |u|2hs
+ 〈Rhs (u),u〉hs

|u|2hs

⩾ 0. (36)

We know from Theorem 16(d), that u is parallel with respect to h0 (the metric induced by gSK),
hence (assuming without loss that u is nontrivial) we can scale and assume without loss that
|u|2h0

≡ 1 on P1\ν−1
t (D). On the other hand, from Theorem 16(a), we know that (20) holds, and so

〈Rh0 (u),u〉h0 = 0.

Thus the LHS of (36) vanishes at y for s = 0 and is nonnegative for 0⩽ s ⩽ sK , hence at y we have

0⩽
∂

∂s

∣∣∣
s=0

(
i∂∂ log |u|2hs

+ 〈Rhs (u),u〉hs

|u|2hs

)

= i∂∂

(
∂

∂s

∣∣∣
s=0

|u|2hs

)
+ ∂

∂t

∣∣∣
t=0

〈Rhs (u),u〉hs ,

(37)

and writing u = u j dz j and |u|2hs
= ui u j g i j

s , observe that

∂

∂s

∣∣∣
s=0

(
ui u j g i j

s

)
=−ui u j g i s

SKg r j
SK

∂

∂s

∣∣∣
s=0

gs,r s = ui u j g i s
SKg r j

SKRr s = RicgSK (u,u).

Furthermore, we can write

〈Rhs (u),u〉hs =−R(gs )v vi j g i q
s g p j

s up uq ,

so
∂

∂s

∣∣∣
s=0

〈Rhs (u),u〉hs =− ∂

∂s

∣∣∣
s=0

R(gs )v vζζ−Rv viζR
ζi −Rv vζi R

ζi ,

but the last two terms vanish since using (1) and (24), we can write

Rv viζ =Ξvi qΞvζq = 0, Rv vζi =ΞvζqΞvi q = 0,

and putting these all together gives

0⩽ i∂∂
(
RicgSK (u,u)

)− ∂

∂s

∣∣∣
s=0

R(gs )v vζζ

⩽ i∂∂
(
RicgSK (u,u)

)
,

(38)

using (35). Since K ⋐ B◦ is arbitrary, this shows that the function RicgSK (u,u) is subharmonic on
P1\ν−1

t (D). □

We used the following lemma, which is the analog of “condition (♯)” in Mok, but the proof here
is substantially easier:
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Lemma 20. In the setting of Theorem 18, at µ(x) we have

∆Rv vζζ⩾ 0, F (R)v vζζ⩾ 0.

Proof. Recall from (1) that
Ri j kℓ = g pq

SK Ξi kpΞ jℓq .

From (31) we then see that at µ(x) we have

0 = Rv vζζ =
∑
β

|Ξvζβ|2,

and so Ξvζβ(x) = 0 for all β ∈ Tµ(x)B◦, and furthermore for all µ,ν ∈ Tµ(x)B◦

0 =∑
β

ΞvζβΞµνβ = Rvµζν.

Now take the definition of ∆R and use (1) and the fact that Ξ is holomorphic to get

∆Rv vζζ =
∑
i ,p

|∇iΞvζp |2 +
∑
i ,p

Re(Ξvζp∇i∇iΞvζp ) =∑
i ,p

|∇iΞvζp |2 ⩾ 0,

since Ξvζp (x) = 0. For the F (R) term, from its definition we see that at µ(x) we have

F (R)v vζζ =
∑
µ,ν

Rv vµνR
ζζνµ

+∑
µ,ν

|Rvζµν|2.

As in Mok [44, (7)], if we pick {eµ} a unitary basis of eigenvectors of the Hermitian form Hv (µ,ν) =
Rv vµν, then in this basis we see that

F (R)v vζζ =
∑
µ

Rv vµµR
ζζµµ

+∑
µ,ν

|Rvζµν|2 ⩾ 0. (39)

□

5.2. Constancy of RicgSK (u, ū)

The next step is the following:

Proposition 21. The function RicgSK (u,u) on P1\ν−1
t (D) is constant.

Proof. Since the function RicgSK (u,u) on P1\ν−1
t (D) is subharmonic by Proposition 19, it suffices

to show that it is bounded.
Recall that, using (30), our sections v,ζ can be viewed as vector fields along νt (P1)∩B◦. Our

first claim is that for every y ∈ νt (P1)∩B◦ and local sections v of V and ζ of N near y , we have

Rvζ = 0. (40)

Indeed, recall from (1) that
Rvζ =

∑
p,q

Ξv pqΞζpq ,

where {ep } is a gSK-unitary frame at our point y . Since µ∗T B◦ = V ⊕N , we may choose the frame
so that e j ∈ V for 1⩽ j ⩽ n−ℓ, and e j ∈N for n−ℓ+1⩽ j ⩽ n. Recalling from (32) thatΞuv w = 0
whenever u ∈ V and v ∈N , we see that Ξv pq = 0 except possibly when 1⩽ p, q ⩽ n −ℓ, so that

Rvζ =
n−ℓ∑

p,q=1
Ξv pqΞζpq = 0,

since Ξζpq = 0 when 1⩽ p, q ⩽ n −ℓ, proving our claim.
Recall that, as explained earlier, we may assume that νt (P1) intersects D only at regular points

of D and that these intersections are transverse. To prove the boundedness of RicgSK (u,u) it
suffices to prove near any of the finitely many points in ν−1

t (D). Let y be such a point, and choose
an open neighborhood U of z = νt (y) in B with local holomorphic coordinates centered at z such
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that D ∩U = {z1 = 0} and νt (P1)∩U = {z2 = ·· · = zn = 0}, so that ∂1 is tangent to the rational curve
while ∂2, . . . ,∂n are tangent to D . We will work on ν−1

t (U ∩{z1 ̸= 0}) which in our chart is identified
with {z1 ̸= 0, z2 = ·· · = zn = 0} =: V .

Thanks to Proposition 11 we know that on V we have

0⩽Ri i ⩽C , 2⩽ i ⩽ n, (41)

0⩽R11 ⩽
C

|z1|2
. (42)

Using (3), together with the fact that u is a holomorphic section on all of P1, we see that

sup
V

|ζ|2ν∗t gB
⩽C sup

V
|u|2ν∗t gB

<∞. (43)

In our coordinates we can write

ζ= ζ1∂1 +
∑
j⩾2

ζ j∂ j =: ζ1∂1 +ζD ,

and the function ζ1 is equal to 〈dz1,u〉gSK . From (43) we see that

sup
V

|ζD |2ν∗t gB
<∞, (44)

and from this and (41) we see that on V we have

0⩽R
ζDζD

⩽C . (45)

Since ∂1 is the tangent vector to νt (P1), it belongs to V
∣∣
Ut

. On the other hand ζ belongs to
N

∣∣
Ut

, hence (40) (restricted to V ) gives

0 = R1ζ(z1) = ζ1(z1)R11(z1)+R1ζD
(z1),

and since RicgSK ⩾ 0 on {z1 ̸= 0}, Cauchy–Schwarz together with (41) and (45) give

|ζ1(z1)|R11(z1) = |R1ζD
(z1)|⩽R11(z1)

1
2 R

ζDζD
(z1)

1
2 ⩽C R11(z1)

1
2 ,

i.e.

|ζ1(z1)|R11(z1)
1
2 ⩽C ,

and using again that RicgSK ⩾ 0, together with (45) we can estimate

0⩽R
ζζ

(z1)⩽C |ζ1(z1)|2R11(z1)+C R
ζDζD

(z1)⩽C ,

as desired. □

We can now conclude the proof of Theorem 18, by showing that at µ(x) we have

∆Rv vζζ = 0, F (R)v vζζ = 0. (46)

Indeed, Proposition 21 shows that the function RicgSK (u,u) onP1\ν−1
t (D) is constant, hence going

back to (38) and recalling (35) and (34) shows that

0 = ∂

∂s

∣∣∣
s=0

R(gs )v vζζ =∆Rv vζζ+F (R)v vζζ.

Recalling Lemma 20, we see that (46) holds. To finally deduce from (46) that the last equality
in (33) holds, it suffices to plug in the fact that F (R)v vζζ = 0 into (39), and see that∑

µ,ν
|Rvζµν|2 = 0,

as desired.
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6. Constructing a parallel subbundle of µ∗T B◦

Recall that above we have constructed a decomposition µ∗T B◦ = V ⊕N over U ◦, where V is a
nontrivial holomorphic subbundle, which is not equal to µ∗T B◦ whenever B ̸∼=Pn .

The following is then our main theorem (Theorem 3):

Theorem 22. The holomorphic subbundle V ⊂ µ∗T B◦ over U ◦ is preserved by ∇, the pullback of
the Levi-Civita connection of ωSK.

Recall that by Theorem 5 f is either of maximal variation or isotrivial. The proof of Theorem 22
will be quite different in these two cases.

Observe that after Theorem 22 is proved, it follows that the orthogonal complement N ⊂
µ∗T B◦ is also a holomorphic subbundle, preserved by ∇, see e.g. [33, Proposition 1.4.18], and
the same holds for their duals V ♯,N ♯ ⊂µ∗Ω1

B◦ .

6.1. Maximal Variation Case

In this section we give the proof of Theorem 22 in the case when f has maximal variation. Recall
from Corollary 6 that in this case gSK has positive Ricci curvature on B◦.

We work at a point x ∈ U ◦. Let v be a local holomorphic section of V near x, and let
γ : (−ε,ε) → U ◦ be a smooth curve with γ(0) = x, γ̇(0) = η ̸= 0. The goal of Theorem 22 is then
to show that ∇ηv ∈ V . Using the decomposition µ∗T B◦ = V ⊕N , we can write

∇ηv =−ξ−ζ, ξ ∈ Vx ,ζ ∈Nx ,

(the minus sign is only to match the notation in Mok [44]), so we wish to show that ζ = 0. The
following argument is a modification of a result of Mok [44, Proposition 3.1′], specifically of
equation (21) on p. 211:

Proposition 23. At µ(x) we have
R
ζζζ′ζ′ = 0, (47)

for all ζ′ ∈Nx .

Here and in the following we are again using (30) to view ζ,ζ′ also as tangent vectors in Tµ(x)B◦.
Also, since ∇ is the pullback connection, when taking ∇v for some v ∈ T U ◦ it is really only
µ∗(v) ∈ T B◦ that enters.

Proof. For t ∈ (−ε,ε), let β(t ) be the parallel transport of v(x) along γ, let v(t ) = v |γ(t ), and define
ξ(t ),ζ(t ) by

β(t ) = v(t )+ tξ(t )+ tζ(t ), ξ(t ) ∈ Vγ(t ),ζ(t ) ∈Nγ(t ),

so that
0 =∇ηβ(0) =∇ηv +ξ(0)+ζ(0),

and so we see that ξ(0) = ξ,ζ(0) = ζ. Given an arbitrary ζ′ ∈Nx , let χ(t ) be the parallel transport of
ζ′ along γ, so that χ(0) = ζ′ and ∇γ̇(t )χ(t ) = 0. We can also write

χ(t ) = ζ′(t )+ tθ(t ), ζ′(t ) ∈Nγ(t ),θ(t ) ∈ Vγ(t ),

and ζ′(0) = ζ′. We can expand at the point γ(t )

R
β(t )β(t )χ(t )χ(t ) = Rv vζ′ζ′ + t

(
2ReRv vζ′θ+2ReRvξζ′ζ′ +2ReRvζζ′ζ′

)
+ t 2

(
Rv vθθ+2ReRvξζ′θ+2ReRvζζ′θ+2ReRvξθζ′ +2ReRvζθζ′

+R
ξξζ′ζ′ +R

ζζζ′ζ′ +2ReR
ξζζ′ζ′

)
+O(t 3),
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where O(t 3) denotes a vector-valued function of length bounded above by C t 3. Recalling (1), we
can express the curvature tensor in terms of Ξ, and since Ξ(v,ζ′,β) =Ξ(ξ,ζ′,β) = 0 for all ζ′ ∈Nx

and all β ∈ Tµ(x)B◦ (by Corollary 17), many terms in this expansion vanish. Using furthermore
that Rvζβδ = 0 for all β,δ ∈ Tµ(x)B◦ (by Theorem 18), the expression finally reduces to

R
β(t )β(t )χ(t )χ(t ) = t 2

(
Rv vθθ+R

ζζζ′ζ′
)
+O(t 3).

Defining (similarly to Mok)

A = Rv vθθ+R
ζζζ′ζ′ ,

and since the bisectional curvature is nonnegative, we have Rv vθθ ⩾ 0, and so

A ⩾R
ζζζ′ζ′ . (48)

At this point notice that

A = 1

2

d2

dt 2

∣∣∣
t=0

R
β(t )β(t )χ(t )χ(t ) =∇2

ηηRv vζ′ζ′ , (49)

using that β(t ),χ(t ) are parallel along γ and that ∇ is a pullback connection. On the other hand
we claim that at x we have

∇2
w w Rv vζ′ζ′ ⩾ 0,

for all real tangent vectors w at x. Indeed, pick a curve in U ◦ passing through x and tangent to
w , and let ṽ(t ), ζ̃′(t ) be the parallel transport of v,ζ′ along this curve, then R

ṽ(t )ṽ(t )ζ̃′(t )ζ̃′(t )
⩾ 0, and

Rv vζ′ζ′ = 0 by Corollary 17, and so

0⩽
d2

dt 2

∣∣∣
t=0

R
ṽ(t )ṽ(t )ζ̃′(t )ζ̃′(t )

=∇2
w w Rv vζ′ζ′ ,

as claimed. But recall that Theorem 18 showed that ∆Rv vζ′ζ′ = 0, and since this is an average of
terms of the form ∇2

w w Rv vζ′ζ′ as µ∗(w) varies among all gSK-unit tangent vectors at µ(x), we see

that necessarily ∇2
w w Rv vζ′ζ′ = 0 for all w . Using (48) and (49) we get

0 =∇2
ηηRv vζ′ζ′ = 2A ⩾R

ζζζ′ζ′ ⩾ 0,

which proves (47). □

Now that (47) is established, we can show that ζ= 0 as follows: combining (47) with (1) gives

Ξ(ζ,ζ′,β) = 0,

for all β ∈ Tµ(x)B◦ and all ζ′ ∈Nx . But thanks to Corollary 17 we also have

Ξ(ζ,µ,β) = 0,

for all β ∈ Tµ(x)B◦ and all µ ∈ Vx , and since Tµ(x)B◦ ∼= Vx ⊕Nx , it follows that

Ξ(ζ,µ,β) = 0,

for all µ,β ∈ Tµ(x)B◦. From the formula for the curvature tensor,

RicgSK (ζ,ζ) = ∑
p,q

|Ξ(ζ,ep ,eq )|2 = 0.

Since we assume f of maximal variation, RicgSK > 0 on B◦, and so ζ= 0. This concludes the proof
of Theorem 22 when f has maximal variation.
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6.2. Isotrivial Case

In this section we give the proof of Theorem 22 in the case when f is isotrivial, and so ωSK is
flat by Corollary 6. We wish to show that the subbundle V ⊂ µ∗T B◦ is parallel under ∇, and by
duality this is equivalent to showing that V ♯ ⊂ µ∗Ω1

B◦ is parallel under ∇. Recall that ρ : U → K

is a P1-bundle. Thus, given x ∈ U ◦ and v ∈ TxU ◦, we can decompose TxU ◦ as the direct sum
of the tangent line to the vertical P1 direction and a complementary subspace, and thus write
v = v1+v2, where v1 is tangent to a rational curve Ut (for some t ∈K ) that contains x (which on
Ut corresponds to a point y ∈ P1) and v2 is transverse to Ut . The rational curve morphism will
be as usual denoted by νt : P1 → B . We may also assume that νt (P1) intersects D only at regular
points of D . Since νt is free, we can deform it in a 1-parameter family π : P1 ×∆→ B , with s ∈ ∆
(where ∆⊂K is a small disc in some chart centered at t ∈K ), such that νs := π(·, s) :P1 → B are
rational curves in K which are also not contained in D and such that the first order deformation
vector ∂

∂s

∣∣
s=tνs ∈ H 0(P1,ν∗t T B) agrees with v2 at x. Up to shrinking∆, we have a natural inclusion

σ : P1 ×∆ ,→ U such that µ◦σ = π. The intersection σ(P1 ×∆)∩U ◦ is Zariski open in σ(P1 ×∆)
and contains the point (y,0).

We then choose a smooth (1,0) vector field V on P1 ×∆ which restricted to P1 × {0} is the first
order deformation vector, and so it satisfies dσ(y,0)(V ) = v2. To prove that V ♯ is preserved by ∇v

at x, it will suffice to construct a smooth frame u1, . . . ,uℓ for σ∗V ♯ over P1 ×∆ such that

(∇V ui )(y,0) ∈σ∗V
♯

x , 1⩽ i ⩽ ℓ, (50)

where ∇ also denotes the pullback connection, since by Theorem 16(d) we have that along νt

(∇v1 ui )(x) = 0.

For every s ∈ ∆, σ∗V ♯
∣∣
P1×{s} is a trivial vector bundle of rank ℓ over νs , which over P1\ν−1

s (D)
is equipped with the metric induced by ωSK. For each s ∈ ∆ we can then choose a global
holomorphic frame u1(s), . . . ,uℓ(s) ∈ H 0(P1,σ∗V ♯

∣∣
P1×{s}), smoothly dependent on s ∈ ∆. Thanks

to Theorem 16(d), each ui (s) is parallel (with respect to the connection induced by ωSK) over
P1\ν−1

s (D). Varying s, these sections define a smooth frame u1, . . . ,uℓ of σ∗V ♯ over P1 ×∆, which
is parallel when restricted to each (P1 × {s})∩π−1(B◦). Fix now any 1⩽ i ⩽ ℓ, and recall that

π∗Ω1
B◦ =σ∗V ♯⊕σ∗N ♯, (51)

where N ♯ is the annihilator of N ⊂ µ∗T B◦. Let P be the gSK-orthogonal projection onto the
σ∗N ♯ factor, which is defined on π−1(B◦) and consider

P (∇V ui ),

a smooth section of σ∗N ♯ ⊂ π∗Ω1
B◦ over π−1(B◦). Let also ι : P1 ,→ P1 ×∆ be the embedding

z 7→ (z,0), so π◦ ι= νt .

Lemma 24. The pullback ι∗(P (∇V ui )) toP1\ν−1
t (D) is a parallel section of N ♯

∣∣
Ut

overP1\ν−1
t (D).

Proof. We work at an arbitrary point in P1\ν−1
t (D), let W be any local holomorphic vector field

near our point which is tangent to the P1 factor. Since the splitting

ν∗s Ω
1
B◦ = V ♯

∣∣
νs
⊕N ♯

∣∣
νs

is preserved by ∇ (by Theorem 16(e)), and since gSK is flat, we have

∇W (ι∗(P (∇V ui ))) = ι∗(∇W (P (∇V ui )))

= ι∗(P (∇W ∇V ui ))

= ι∗(P (∇V ∇W ui +∇[W,V ]ui )).
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Now, since ui is parallel along the rational curve νs (P1)\D for all s ∈ C, we have that ∇W ui

vanishes identically on U ×∆ and so
∇V ∇W ui = 0.

Furthermore, [W,V ] =−LV W is also tangent to νt (P1), so ∇[W,V ]ui = 0 too. □

Since ι∗(P (∇V ui )) is parallel, it is in particular holomorphic over P1\ν−1
t (D). The following

Lemma then implies that ι∗(P (∇V ui )) extends to a holomorphic section of ν∗t Ω
1
B over P1:

Proposition 25. Let w ∈ H 0(P1\ν−1
t (D),ν∗t Ω

1
B ) be a holomorphic section which is parallel with

respect to ∇ (the Chern connection induced by ωSK). Then w extends to a holomorphic section of
ν∗t Ω

1
B over all of P1.

Proof. Since w is parallel, its pointwise length |w |2
ν∗t gSK

is constant on P1\ν−1
t (D). Recall that

from (3) we have that
ωSK ⩾C−1ωB , (52)

on B◦. Since ν−1
t (D) is a finite subset of P1, we consider the extension problem of w across each

of these points, so let y ∈ ν−1
t (D) be one of them. Recall that D is regular at the point x = νt (y),

and we can choose local holomorphic coordinates z1, . . . zn on a chart U centered at x such that
D ∩U = {z1 = 0}. The volume form ωn

SK is given by a fiber integration as in (4), and its asymptotic
behavior near D is studied in [20, Theorem 2.1] (see also [7, 19] for the case when dimB = 1
and [32], [56] for dimB arbitrary) where it is shown that

ωn
SK ⩽

C

|z1|2(1−γ)
(− log |z1|)Cωn

B , (53)

on U ∩ {z1 ̸= 0}, for some C > 0 and γ ∈ (0,1]. Combining (52) and (53) gives the crude bound

ωSK ⩽
C

|z1|2(1−γ)
(− log |z1|)CωB , (54)

see also [59, (2.1) and Theorem 3.4] and [20, Theorem 1.1] for sharper and more general such
bounds. Passing to the dual metric on Ω1

B and pulling back via νt , (54) implies that on the
punctured neighborhood ν−1

t (U ∩ {z1 ̸= 0}) of y in P1 we have

|w |2ν∗t gB
⩽

C

|z1|2(1−γ)
(− log |z1|)C |w |2ν∗t gSK

= C ′

|z1|2(1−γ)
(− log |z1|)C ,

and from this we see that |w |2
ν∗t gB

is L1 in ν−1
t (U ∩ {z1 ̸= 0}). Since ν∗t Ω

1
B is a trivial bundle over

ν−1
t (U ), we can represent w locally as an n-tuple of holomorphic functions on ν−1

t (U ∩ {z1 ̸= 0}),
and since these functions are in L2, they extend holomorphically across the point y (see e.g. [48,
Proposition 1.14]), which gives us the desired extension of w . □

At this point we have shown that ι∗(P (∇V ui )) gives a holomorphic section w ∈ H 0(P1,ν∗t Ω
1
B ).

Recalling the splitting (12), we see that w must be a section of the factor O⊕ℓ, i.e. a section
of V ♯

∣∣
Ut

. Since it is also a section of N ♯
∣∣
Ut

, it must be identically zero. This shows that

ι∗(P (∇V ui )) = 0, and so ι∗(∇V ui ) ∈ V ♯
∣∣
Ut

, and so (50) is established. This concludes the proof
of Theorem 22 when f is isotrivial.

7. Obtaining a parallel (1,1)-form and Hwang’s Theorem

In this section we show how to combine our main theorem 3 with results of Voisin [60],
Hwang [27, 28] and Bakker–Schnell [2] to deduce Theorem 2. The key step is the following:

Theorem 26. Suppose that B ̸∼= Pn . Then there is a nontrivial real (1,1)-form ψ on B◦ with
∇SKψ= 0 and ψ not proportional to ωSK.
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First, we show that Theorem 2 follows from this (we do not need to assume that X is
projective):

Proof of Theorem 2. Suppose for a contradiction that B ̸∼= Pn . Then by Theorem 26 the 2-
forms ωSK and ψ on B◦ are both ∇SK-parallel and not proportional, and thus they give us a 2-
dimensional space of global sections of the local system R2 f∗RX ◦ over B◦. However, as observed
by Voisin [60, Lemma 5.5], a result of Matsushita [41] together with Deligne’s invariant cycles
theorem show that this space of sections is always 1-dimensional, a contradiction. □

Since B ̸∼= Pn , we know that V ⊂ µ∗T B◦ is a nontrivial proper holomorphic subbundle over
U ◦, which by Theorem 22 is preserved by ∇. As mentioned after Theorem 22, the gSK-orthogonal
complement N ⊂µ∗T B◦ of V is also a nontrivial proper holomorphic subbundle over U ◦ which
is preserved by ∇. Define real subbundles VR,NR of µ∗T RB◦ over U ◦ by

VR = {v + v | v ∈ V } ⊂µ∗T RB◦,

and analogously for NR. The bundle VR is isomorphic to V via the usual inverse map T RB → T B
given by u 7→ u−i J (u)

2 (and similarly for NR), and on U ◦ we have a splitting

µ∗T RB◦ = VR⊕NR. (55)

Consider now the Stein factorization of µ : U → B , given by

U → Z
p→ B ,

where U → Z has connected fibers and p : Z → B is finite. Define also Z ◦ := p−1(B◦). To complete
the proof of Theorem 26, we will then need the following theorem which is implicit in the work of
Hwang [28], and also appears in the recent work of Bakker–Schnell ([2, Proposition 3.2 and proof
of Theorem 1.1]) relying on ideas of Hwang [27, 28]:

Theorem 27. Suppose the splitting (55) is preserved by ∇SK, then p : Z → B is an isomorphism.

We can now give the proof of Theorem 26:

Proof of Theorem 26. Since B ̸∼= Pn , we have the nontrivial splitting (55). By definition, VR is
preserved by J , and since V is preserved by ∇ (and ∇J = 0), it follows that VR is also preserved
by ∇.

We claim that VR is preserved by ∇SK. To see this, recall that Freed shows in [13, (1.29)] that the
special Kähler connection on T RB is given by

∇SK =∇+ A+ A, (56)

where as usual ∇ is the Levi-Civita connection of gSK and A ∈Λ1,0 Hom(T B◦,T B◦) is given by

Aℓ
i j =

p−1g kℓ
SKΞi j k , (57)

and the same holds for the pullback connection on U ◦. Given a local section α of V and a local
(1,0) vector field v ∈ T U , we wish to show that

∇SK
v+v (α+α) ∈ VR.

Since we know that ∇v+v (α+α) ∈ VR, it suffices to check that

(A+ A)v+v (α+α) = Av (α)+ Av (α) ∈ VR,

and so it suffices to see that
Av (α) ∈ V ,

or equivalently that gSK(Av (α),ζ) = 0 for all local sections ζ of N . But from (57) we see that

gSK(Av (α),ζ) =p−1Ξ(v,α,ζ),
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which vanishes by Theorem 16(c). This concludes the proof that VR is preserved by ∇SK. An
analogous argument shows that NR is also preserved by ∇SK, and so the splitting (55) is preserved
by ∇SK. Applying Theorem 27 we see that p : Z ◦ → B◦ is an isomorphism, so we may assume that
µ : U ◦ → B◦ has connected fibers. The vector bundle µ∗T RB◦ is trivial when restricted to these
fibers, and its subbundles VR,NR restricted to a fiber are preserved by the pullback connection
∇SK (which when restricted to the fiber is a trivial connection), and so VR and NR are pullbacks of
vector bundles on B◦ (denoted by the same notation), which are subbundles of T RB◦ and are still
preserved by ∇SK.

We then define a (1,1)-form ψ on B◦ by projecting ωSK onto VR. Since ∇SKωSK = 0 and VR is
preserved by ∇SK, it follows that ∇SKψ= 0 (and also ∇ψ= 0 for the same reason), and since VR is a
nontrivial proper subbundle of T RB◦, we see that ψ is nonzero and not proportional to ωSK, and
we are done. □

8. Comments about the case when B is singular

It is tempting to ask whether our method can be used to prove that B ∼= Pn even when B is
singular. As mentioned in the Introduction, this is currently known only for n ⩽ 2 [6, 26, 49]. In
general, it is known that B is a normal projective variety, with at worst klt singularities, which
is Fano with Picard number one. The natural generalization of our approach (following [52],
who generalized Mori’s Theorem [45] to the singular setting) would be to consider a functorial
resolution of singularities π : B̃ → B and to show that we must have B̃ ∼= Pn , which forces B ∼= Pn

as well. In this setting, B̃ is a uniruled projective manifold and D̃ = π−1(D) is a divisor, so many
of our arguments above can be repeated on B̃◦ := B̃\D̃ , which carries a special Kähler metricωSK.
The fact that π is functorial gives us a morphism µ :π∗T B → T B̃ which is an isomorphism on B̃◦,
where T B = Hom(Ω1

B ,OB ) is the reflexive tangent sheaf. Given a rational curve ν : P1 → B̃ , which
is not contained in D̃ , pulling back µ via ν we obtain a sheaf injection

A := (π◦ν)[∗]T B → ν∗T B̃ ,

between these vector bundles on P1 (which both split as a direct sum of line bundles which
should have nonnegative degrees). Here we use the standard reflexive pullback notation
(π ◦ ν)[∗]T B := (ν∗π∗T B)∗∗. Using Theorem 14, if B̃ ̸∼= Pn then ν∗T B̃ contains a nontrivial O

factor, hence so does A . To implement our strategy, one would need a rigidity statement like in
Theorem 16 for either one of these trivial summands, and a crucial ingredient of the proof of the
rigidity statement is that sections of the dual of the relevant bundle should have bounded norm
(with respect to the pullback of ωSK). The first fundamental issue is that it is not clear to us how
to show that sections of ν∗Ω1

B̃
or of A ∗ have bounded norm. The key ingredient for this when

B is smooth was the estimate (3), but when B is singular this by itself is not sufficient to prove
boundedness.

What can be shown using results in [16] is rather that sections of the reflexive pullback
(π ◦ν)[∗]Ω[1]

B have bounded norm, but in general the Grothendieck decomposition of this vec-
tor bundle is different from those of ν∗Ω1

B̃
and A ∗, and it may happen that these have some non-

trivial O factor but (π◦ν)[∗]Ω[1]
B does not, which invalidates our approach. This undesirable phe-

nomenon can only happen when the generic rational curve (of the type that we are considering)
when projected down to B always passes through some singular point of B . This however seems
unavoidable in general, as finding low-degree rational curves in normal Fano varieties that can be
deformed to avoid the singularities is a very delicate problem in algebraic geometry, see e.g. [31,
34, 61].
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