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Abstract. This paper is devoted to prove that any domain satisfying a (δ0,r0)-capacitary condition of first
order is automatically (m, p)-stable for all m Ê 1 and p > 1, and for any dimension N Ê 1. In particular, this
includes regular enough domains such as C 1-domains, Lipschitz domains, Reifenberg-flat domains, but is
sufficiently weak to also include cusp points. Our result extends some of the results of Hayouni and Pierre
valid only for N = 2,3, and partially extends the results of Bucur and Zolésio for higher order operators, with
a different and simpler proof.

Résumé. Dans cet article nous démontrons que tout domaine satisfaisant une condition de (δ0,r0)-capacité
de premier ordre, est automatiquement (m, p) stable pour tout m ≥ 1 et pour tout p > 1. En particulier,
ceci inclus tous les domaines suffisamment réguliers tels que les domaines C 1, Lipschitz, Reifenberg-plat,
mais la condition est suffisamment faible pour inclure des points de type cusp. Notre résultat généralise
des résultats antérieurs de Hayouni et Pierre valables seulement en dimension N = 2,3 et étend aussi des
résultats antérieurs de Bucur et Zolésio pour des opérateurs d’ordre supérieurs, avec une preuve plus simple
et différente.
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1. Introduction

LetΩ⊂RN be a bounded and open set. Following [3, 5, 10], we say thatΩ is (m, p)-stable if

W m,p (RN )∩
{

u = 0 a.e. inΩc
}
=W m,p

0 (Ω).

This notion is related to the continuity of a 2m-order elliptic PDE with respect to domain
perturbation. In particular, ifΩ is (m,2)-stable, then it implies that for any sequence of domains
(Ωn)n∈N converging to Ω in a certain Hausdorff sense, one has that (un)n∈N converges strongly

∗Corresponding author

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.630
mailto:jean-francois.grosjean@univ-lorraine.fr
mailto:antoine.lemenant@univ-lorraine.fr
mailto:remy.mougenot@univ-lorraine.fr
https://comptes-rendus.academie-sciences.fr/mathematique/


1190 Jean-François Grosjean, Antoine Lemenant and Rémy Mougenot

in H m to u, where un is the unique solution in H m
0 (Ωn) for the equation (−∆)m(un) = f in

Ωn , and u is the solution of the same problem in Ω. It is also equivalent to the convergence
of (W m,p

0 (Ωn))n∈N to W m,p
0 (Ω) in the sense of Mosco (see Section 6).

In the literature, a lot of attention has been devoted to the case m = 1 and p = 2 because of its
relation to the Laplace operator. On the other hand, very few results are available for the higher
order spaces H m

0 (Ω), related to bi-harmonic or more generally poly-harmonic equations, that
have a lot of applications. The objective of this paper is to give a short and elementary proof
of the fact that any domain which is “regular enough” is always (m, p)-stable for all m, p and all
dimensions N .

Notice that in general, the stability for W m,p
0 (Ω) does not simply reduce to the one of W 1,p

0 (Ω).
To enlight this fact we recall that for every open setΩ⊂RN , we have the characterisation (see for
instance [1, Chapter 9])

W m,p
0 (Ω) =W m,p (RN )∩

{
∇k u|Ωc = 0 (m −k, p)−q.e. for all k É m −1

}
,

where ∇k u := (∂αu)|α|=k and ∂αu is the (m − k, p)-quasicontinuous representative, which is in
particular defined pointwise (m −k, p)-q.e. IfΩ is (1, p)-stable, then for any |α| É m −1 and from
the assumption ∂αu = 0 a.e. in Ωc we would only deduce that ∂αu = 0 (1, p)-q.e. on Ωc , whereas
in order to prove that u ∈W m,p

0 (Ω) we would need the stronger condition ∂αu = 0 (m−|α|, p)-q.e.
onΩc .

In [7], Hayouni and Pierre exploited the compact embedding of H 2 into continuous functions
in dimensions 2 and 3, in order to get some stability results for the space H 2

0 . In particular, they
proved that, in dimension 2 and 3, any (1,2)-stable domain is automatically (2,2)-stable (see [7]
or [10]). They also proved in the same paper that, in dimensions 2 and 3, any sufficiently smooth
domain is a (2,2)-stable domain.

In the present paper, we show that there is no true restriction on the dimension N to obtain
(m, p)-stability. Our main result asserts that any domain that satisfies a variant of the classical
(1, p)- capacitary condition will be automatically (m, p)-stable, in any dimension, and for any
m. This includes a large class or “regular” domains such as C 1-domains, Lipschitz domains,
Reifenberg-flat domains, domains satisfying the so-called external corkscrew condition (see
Definition 8), ε-cone property, or even domains with the segment property which allows domains
with cusps, or more generally domains with the so called flat cone property [4].

In the sequel, we restrict ourselves to open subset of a fixed ball D ⊂ RN , and we denote the
set of admissible domains by

O(D) := {
Ω

∣∣Ω⊆ D is open
}

.

In the following definition, the precise definition of capacity has no real importance since they
are most often equivalent up to a constant. In this paper we will work with the Bessel capacity,
that will be precisely defined in the next section.

Definition 1. Let r0 > 0, δ0 > 0 and p ∈ (1,+∞). An open setΩ⊆RN satisfies the (r0,δ0)-capacitary
condition if for all x ∈ ∂Ω and for all r É r0,

Cap1,p

(
1

r

(
Ωc ∩B(x,r )−x

))
Ê δ0, (1)

where Cap1,p is the Bessel capacity of first order. The class of open subset of D having the (r0,δ0)-

capacity condition is denoted by Oδ0,r0
cap (D).

Here is our main statement.

Theorem 2. If Ω ∈ Oδ0,r0
cap (D) satisfies |∂Ω| = 0, then Ω is (m, p)-stable for any m Ê 1 and p ∈

(1,+∞).



Jean-François Grosjean, Antoine Lemenant and Rémy Mougenot 1191

Let us provide some comments about the result. One of the main feature and somewhat
surprising is that the condition involves only the (1, p)-capacity even if the conclusion yields
(m, p)−stability for all m Ê 1.

Our main statement reminds the classical one in [5], where Bucur and Zolésio proved that a
domain is (1,2)-stable under a weaker condition with (1,2)-capacity. More precisely, in [5] the
authors prove that the following condition

∀x ∈ ∂Ω,∀r ≤ r0,
Cap1,2(Ωc ∩B(x,r ),B(x,2r ))

Cap1,2(B(x,r ),B(x,2r ))
Ê δ0. (2)

implies (1,2)-stability. In (2), the notation Cap1,2(A ∩ B(x,r ),B(x,2r )) refers to the so called
“condenser capacity” (see Section 4 for a definition). Actually, it can be proved (see Remark 6
in Section 4) that (2) is equivalent to

∀x ∈ ∂Ω,∀r ≤ r0, Cap1,2

(
1

r

(
Ωc ∩B(x,r )−x

))Ê δ0. (3)

Observe that (3) looks similar to (1) but without a bar over Ω, which stands for a substantial
difference. Since (1) clearly implies (3), the main result of [5] is stronger than ours.

The typical example of domain that satisfies (3) but not (1) is a domain with a crack. For
instance the unit ball of R2 minus a radius, i.e. B(0,1) \ ([0,1]× {0}). The capacity ofΩc in a small
ball B(x,r ) centered at the boundary has a positive (1,2)-capacity, because it always contains a
segment of length at least a radius, so (2) is satisfied. On the other hand for a small ball centered
on the crack, the complement ofΩ in the ball is empty, thus our condition (1) is not satisfied.

In other words for the special case of m = 1 and p = 2 we only partially recover the result
in [5]. In contrast, under the similar and slightly stronger (1,2)-capacitary condition (1), we obtain
(m,2)-stability for all m Ê 1, which is interesting. It is worth mentioning that our proof is different
and simpler than the one [5], thus provides an alternative argument for many standard classes
of domains (such as Lipschitz domains or domain satisfying the uniform flat cone property, or
corkscrew property) which is new even for the standard case m = 1, and works similarly for p ̸= 2.

Let us further emphasis that the difference betweenΩ andΩ has a crucial importance. Indeed,
under our assumption |∂Ω| = 0, the question of (m, p)-stability is equivalent to asking whether

W m,p (RN )∩{
u = 0 a.e. inΩc}=W m,p

0 (Ω).

For instance for m = 1 and p = 2, as already mentioned before, it is known that

H 1
0 (Ω) = H 1(RN )∩{

u = 0 q.e. inΩc} ,

thus the main question for stability is whether {u = 0 a.e inΩc } ⇒ {u = 0 q.e inΩc }. If we add a
bar on Ω then the simliar question becomes trivial because Ωc is open and therefore we always
have, for a precise representative u ∈ H 1(RN ),

{u = 0 a.e inΩc } ⇐⇒ {u = 0 q.e inΩc }.

This fact will play a major role in the proof of our main result. Another fact that we use in our
proof is the following, valid for any u ∈W m,p (RN ),

{u = 0 a.e inΩc } =⇒ {∇k u = 0 a.e. inΩc for all k É m}.

Again, this follows from the fact that Ωc is open and explains why we need a bar over Ω in the
capacitary condition (1) for our proof to work.

Another difference with [5] is the assumption |∂Ω| = 0 that we need in our main statement
Theorem 2 (here |∂Ω| denotes the Lebesgue measure of ∂Ω). In practice this assumption is not
very restrictive since it will be easily satisfied by all standard classes of domains. For instance
it holds true as soon as a corckscrew condition is satisfied (see Proposition 9). We do not know
whether the capacity condition (1) directly implies |∂Ω| = 0, in which case this assumption would
be redundant.
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As a consequence of our main result we get a capacity condition which implies stability for the
polyharmonic equation along a Hausdorff converging sequence of domains. We refer to Section 6
for the definition of Hausdorff convergence, Mosco convergence and γm-convergence, and we
give here in the introduction two different statements. In the first one (Corollary 3) we assume
only the limiting domainΩ to be “regular” while in the second (Theorem 4) we assume the whole
sequence to be “regular”.

Corollary 3. Let Ω ∈ Oδ0,r0
cap (D) and (Ωn)n∈N be a sequence in O(D). If |∂Ω| = 0, (Ωn)n∈N dH -

converges toΩ, and (Ωn)n∈N dH c -converges toΩ, then the sequence (Ωn)n∈N γm-converges toΩ, or
equivalently, (H m

0 (Ωn))n∈N converges to H m
0 (Ω) in the sense of Mosco.

Corollary 3 follows from gathering together Proposition 16 and Theorem 2. Let us now
mention a few remarks.

(1) The interesting feature of Corollary 3 is that only the limiting domain Ω is assumed to
be stable (thus somehow “regular”) and nothing is assumed on the sequence (Ωn)n∈N,
which could be arbitrary open sets.

(2) It is worth mentioning that in [5] the authors assumed only Ωn
dHc→ Ω to obtain the γm-

convergence of a sequence (Ωn)n∈N. On the other hand they assumed that every term
Ωn along the sequence satisfies a capacitary condition with uniform constants. A similar
statement will be given later in Theorem 4.

(3) It is easy to construct an example of stable domain Ω (even smooth) and a sequence

(Ωn)n∈N such that Ωn
dHc−→ Ω and (Ωn)n∈N does not γm-converges to Ω. This shows

that without any other assumption on the sequence, the second assumption Ωn
dH→ Ω

is pivotal for the result to hold true. The construction is rather classical : consider the
sequence made from an enumeration xi ∈ B(0,1) of points with rational coordinates.
Then define

Ωn := B(0,2) \
n⋃

i=0
{xi }.

It is easy to see that (Ωn)n∈N converges to Ω := B(0,2) \ B(0,1) for the complementary
Hausdorff distance, which is clearly a (m,2)-stable domain because the boundary is
smooth. On the other hand, for dimension N Ê 2m we know that Capm,2({xi }) = 0, so
it is classical that (Ωn)n∈N does not γm-converge to Ω (see [10, Section 3.2.6, p. 80] for
the case m = 1). On the other hand Ωn = B(0,2) clearly does not Hausdorff converge to
Ω= B(0,2) \ B(0,1), which explains why Theorem 16 does not apply.

Next, in order to get existence of shape optimisation problems for higher order equations
under geometrical constraints, the following variant is more usefull. Notice that here we sup-

pose (1) on the whole sequence and by this way we can avoid the assumption Ωn
dH−→ Ω but

Ωn
dHc−→Ω suffices.

Theorem 4. Let Ω ∈ O(D) and (Ωn)n∈N all belonging to Oδ0,r0
cap (D). If |∂Ω| = 0 and (Ωn)n∈N dH c -

converges toΩ, then (Ωn)n∈N γm-converges toΩ, or equivalently, (H m
0 (Ωn))n∈N converges to H m

0 (Ω)
in the sense of Mosco.

Since the complementary Hausdorff topology is relatively compact, it is easy to get existence
results for shape optimisation problems using Theorem 4, with additional geometrical con-
straints on the domain. This applies to various standard classes of domains such as uniformly
Lipschitz domains, Reifenberg-flat, corkscrew, or ε-cone, as described in the last section of the
paper (see Theorem 19).
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2. Preliminaries

The term domain and the symbol Ω will be reserved for an open and bounded set in the N -
dimensional euclidean space RN . We will denote the Lebesgue measure of a set A ⊂ RN by |A|.
The norm of a point x ∈ RN is denoted by |x| := (∑N

i=1 x2
i

)1/2. If α is a multi-indice, i.e. α ∈ NN ,
then the norm of α is |α| :=∑N

i=1αi and we define the partial derivative operator

∂α := ∂|α|

∂
α1
1 · · ·∂αk

N

,

and the vector ∇k := (∂α)|α|=k . The notations ∂Ω and Ω stand for the boundary and the closure
ofΩ, respectively. Let C∞

c (Ω) be the space of smooth functions with compact support inΩ. The
ball of radius r Ê 0 and centered at x ∈ RN is denoted by B(x,r ). For m ∈ N and p ∈ (1,+∞), we
consider the usual Sobolev space W m,p (Ω) endowed with the norm

∥u∥W m,p (Ω) :=
(

m∑
k=0

∥∇k u∥p
Lp (Ω)

)1/p

,

where
∥∇k u∥p

Lp (Ω) :=
∫
Ω
|∇k u|p dx.

Finally, the space W m,p
0 (Ω) is the completion of C∞

c (Ω) with respect to the norm ∥ ·∥W m,p (Ω).
When the dimension N < mp, elements of W m,p (RN ) can be represented as continuous

functions. However, if N Ê mp, this is no longer the case and the natural way of measuring by
how much the functions deviate from continuity is by means of capacity.

In this paper we will work with the Bessel capacity defined for instance in [13, Chapter 2.6]. If
K ⊂RN is any set, then we define the (m, p)-capacity of K by

Capm,p (K ) := inf
{∥ f ∥p

p

∣∣ f ≥ 0 and gm ∗ f Ê 1 on K
}

, (4)

where gm with m ≥ 1 is the Bessel kernel, defined as being the function whose Fourier transform
is ĝα(x) = (2π)−N /2(1+|x|2)−m/2. We refer to [13, Chapter 2.6] for more details and several basic
properties of the Bessel Capacity.

In this paper, while considering a function u ∈ W 1,p (RN ), we will always tacitly mean that u
is a quasicontinuous representative, without mentioning it explicitly (see for instance [1] for a
definition).

The proof of the main result will use the following Poincaré type inequality that can be found
for instance in [13, Corollary 4.5.2, p. 195]. To be more precise, we can use the inequality stated
for B(0,1) in [13, Corollary 4.5.2, p. 195], and apply it to the function x 7→ u(Rx) to get (5). A similar
statement can also be found in [9, Theorem 4.1]. According to [9], Lemma 5 was first proved in [8]
by Hedberg in 1978.

Lemma 5 ([13, Corollary 4.5.2, p. 195]). Let r > 0, p ∈ (1,+∞) and u ∈ W 1,p (B(0,r )). We define
Z (u) := {x ∈ B(0,r ) | u(x) = 0}. If Cap1,p (Z (u)) > 0, then∫

B(0,r )
|u|p dx ÉC

r p

Cap1,p (r−1Z (u))

∫
B(0,r )

|∇u|p dx, (5)

where C > 0 depends only on p and N .

3. Proof of Theorem 2

Proof of Theorem 2. Let Ω be a bounded domain satisfying the assumptions of Theorem 2 and
let u ∈ W m,p (RN ) be given satisfying u = 0 almost everywhere in Ωc . To prove the theorem it
suffices to prove that u can be approximated in the W m,p (RN ) norm by a sequence of functions
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in C∞
c (Ω). To do so we will first truncate u near the boundary of Ω as follows. For all n ∈ N, we

consider
Kn := {

x ∈Ω ∣∣ d(x,∂Ω) Ê 2−n}
.

The exhaustive family of compact (Kn)n∈N satisfies Kn ⊆ Kn+1 andΩ=⋃
n∈NKn . Then take a test

function ρ ∈C∞
c (B(0,1)) such that ρ Ê 0 and∫

RN
ρ(x)dx = 1.

We define ρε(x) := ε−Nρ(x/ε) and

θn,ε(x) := 1Kn ∗ρε(x) = ε−N
∫

Kn

ρ
( x − y

ε

)
dy,

which satisfies Supp(θn,ε) ⊆ Kn +B(0,ε). We take εn := 2n+1 and denote now θn := θn,εn so that
θn ∈C∞

c (Ω), θn = 1 on Kn−1, θn = 0 on K c
n+1,

Supp(∇kθn) ⊆ Kn+1 \ Int(Kn−1).

To prove the theorem it suffices to prove that

un := uθn −−−−−→
n→+∞ u in W m,p (RN ),

because then we can conclude by using the density of C∞
c (Ω) into W m,p (Int(Kn+2)), and a

diagonal argument. Let k É m be a positive integer. To prove the claim we first estimate the
Lp norm :

∥un −u∥p
Lp (RN )

É
∫
Ω\Kn−1

|u|p dx.

Using the fact that (Ω\Kn)n∈N is a decreasing sequence of Lebesgue measurable sets, and thanks
to the condition |Ω \Ω| = 0, we know that |Ω\Kn | → 0 as n → +∞ and therefore un → u in
Lp (RN ). Next for the norm of gradients we will use a covering of ∂Ω. More precisely, the infinite
family (B(x,2−(n−2)))x∈∂Ω is a cover of Supp(∇kθn) and by the famous 5B-covering lemma (see for
instance [2, Theorem 2.2.3]) there exists a countably subcover indexed by (xi )i∈N ⊆ ∂Ω such that
(B(xi ,2−(n−2)))i∈N is a disjoint family,

Supp(∇kθn) ⊆ ⋃
i∈N

B(xi ,5 ·2−(n−2)), and
∑
i∈N

1B(xi ,5·2−(n−2)) É N0,

for a universal constant N0 ∈N. In the sequel, we simply write Bn(xi ) instead of B(xi ,5 ·2−(n−2)).
Afterwards, we estimate

∥∇k un −∇k u∥p
Lp (RN )

ÉC
∫
Ω\Kn−1

|∇k u|p dx +C
∑

k=|β|+|γ|
γ̸=0

∫
Ω\Kn−1

|∂βu|p |∂γθn |p dx.

The first term converges to 0 as n →+∞ for the same reasons as before. For the other term we
use the following estimate

|∂γθn(x)|p É ε−pN
n

∫
Kn

ε
−p|γ|
n

∣∣∣∣∂γρ (
x − y

εn

)∣∣∣∣p

dy ÉCε−p|γ|
n .

The function u vanishes almost everywhere on the open set Ωc , so ∂βu is zero in D ′(Ωc ) and
vanishes almost everywhere on this open set. Hence the Poincaré inequality (5) applies to all the
∂βu for |β| < m, and for all ball Bn(xi ) such that 2−(n−2) É r0, thanks to our capacitary condition (1)
we get

Cap1,p (5−1 ·2n−2(Z (∂βu)−xi )) Ê Cap1,p (5−1 ·2n−2(Ωc ∩B(xi ,5 ·22−n)−xi )) Ê δ0.

Therefore, ∫
Bn (xi )

|∂βu|p dx ÉCδ−1
0 ε

p
n

∫
Bn (xi )

|∇∂βu|p dx, (6)
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and using successively (k −|β|)-times the Poincaré inequality and the covering of ∂Ω, we get∫
Ω\Kn−1

|∂βu|p |∂γθn |p dx ÉCε−p|γ|
n

∫
Ω\Kn−1

|∂βu|p dx

ÉCε−p|γ|
n

∑
i∈N

∫
Bn (xi )

|∂βu|p dx

ÉC
∑
i∈N

∫
Bn (xi )

|∇k u|p dx

ÉC N0

∫
Ω\Kn−5

|∇k u|p dx

and this tends to zero as n →+∞ so follows the proof. □

4. Equivalent condition with condenser capacity

In this section we give an equivalent condition to (1) with the notion of “condenser capacity”
which allows us to compare it with the condition in [5]. More precisely, in [5] the condition
involves the condenser capacity defined for any compact subset K ⊂RN and p ∈ (1,+∞) by

Cap1,p (K ∩B(x,r ),B(x,2r )) := inf

{∫
B(x,2r )

|∇ϕ|p dx

∣∣∣∣ϕ ∈C∞
0 (B(x,2r )), ϕ≥ 1 on K ∩B(x,r )

}
.

This notion can then be extended to arbitrary sets K by approximation (see for instance [1,
Definition 2.2.4]). The difference with the Bessel capacity defined in (4) can be seen through the
following well-known equivalent definition of Bessel Capacity (see for instance [9, Section 2]), for
a closed set K ,

Cap1,p (K ) = inf

{∫
RN

|ϕ|p +|∇ϕ|p dx

∣∣∣∣ϕ ∈C∞
0 (RN ), ϕ≥ 1 on K

}
.

The next proposition says in particular that our condition implies the one in [5].

Proposition 6. LetΩ⊂RN be open. Then the condition

∃δ0,r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1, Cap1,p

(
1

r

(
Ωc ∩B(x,r )−x

))
Ê δ0, (7)

is equivalent to the following one

∃δ0,r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1,
Cap1,p (Ωc ∩B(x,r ),B(x,2r ))

Cap1,p (B(x,r ),B(x,2r ))
Ê δ0. (8)

Proof. The condenser capacity enjoys a nice scaling property. Assume for simplicity and without
loss of generality, that x = 0. It is easy to prove by a simple change of variables that for all λ> 0,

Cap1,p ((λK )∩B(0,λr ),B(0,2λr )) =λN−p Cap1,p (K ∩B(0,r ),B(0,2r )). (9)

In particular,
Cap1,p (B(0,r ),B(0,2r )) =C0r N−p ,

with C0 := Cap1,p (B(0,1),B(0,2)), and it follows that

Cap1,p (Ωc ∩B(0,r ),B(0,2r ))

Cap1,p (B(0,r ),B(0,2r ))
=

r N−p Cap1,p

(
( 1

r Ω
c )∩B(0,1),B(0,2)

)
Cap1,p (B(0,r ),B(0,2r ))

.

= 1

C0
Cap1,p

(
(

1

r
Ωc )∩B(0,1),B(0,2)

)
.

Therefore, to prove the Proposition it suffices to prove that there exist some constants C1,C2 > 0
such that for all sets K ⊂ B(0,1),

C1 Cap1,p (K ) ≤ Cap1,p (K ∩B(0,1),B(0,2)) ≤C2 Cap1,p (K ).
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But this is a well-known fact about relative capacity. A proof can be found for instance in [10,
Proposition 3.3.17]. □

Remark 7. Of course, arguing as in the proof of Proposition 6, we can also prove that the
condition in [5],

∃δ0,r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1,
Cap1,p (Ωc ∩B(x,r ),B(x,2r ))

Cap1,p (B(x,r ),B(x,2r ))
Ê δ0, (10)

is equivalent to the following one

∃δ0,r1 > 0 s.t. ∀x ∈ ∂Ω,∀r ≤ r1, Cap1,p

(
1

r

(
Ωc ∩B(x,r )−x

))Ê δ0. (11)

5. Examples of domains satisfying our condition

As we said in the introduction, any smooth enough domain will satisfy our condition. For
instance domains satisfying an external corkscrew condition as defined below.

Definition 8. LetΩ⊂RN be an open and bounded set, a ∈ (0,1), and r0 > 0. We say thatΩ satisfies
an (a,r0)-external corkscrew condition if for every x ∈ ∂Ω and r É r0, one can find a ball B(y, ar )
such that

B(y, ar ) ⊂ B(x,r )∩Ωc .

We give a non-exhaustive list of classes of domains included in O(D) :

• Oconvex(D) := {
Ω⊆ D

∣∣Ω open and convex
}
.

• Or0
seg(D) := {

Ω⊆ D
∣∣Ω open and has the r0-external segment property

}
. We say Ω satis-

fies the r0-external segment property if for every x ∈ ∂Ω, there exists a vector yx ∈
SN−1(0,r0) such that x + t yx ∈ Ωc for t ∈ (0,1). This notion can also be generalized by
the “flat cone” condition as in [5, Definition 5.2] (see also [4]).

• Oλ
Lip(D) := {

Ω⊆ D
∣∣Ω open and is a Lipschitz domain

}
.

• Oδ0,r0
Reif flat(D) := {

Ω⊆ D
∣∣Ω open and is (ε0,δ0)-Reifenberg flat

}
. We say Ω is (ε0,δ0)-

Reifenberg flat for ε0 ∈ (0,1/2) and δ0 ∈ (0,1) if for all x ∈ ∂Ω and δ ∈ (0,δ0], there exists an
hyperplane Px (δ) of RN such that x ∈Px (δ) and

dH

(
∂Ω∩B(x,δ),Px (δ)∩B(x,δ)

)
É δε0.

Moreover for all x ∈ ∂Ω, the set

B(x,δ0)∩{
x ∈RN ∣∣ d(x,Px (δ0)) Ê 2δ0ε0

}
has two connected components: one is contained inΩ, the other one in RN \Ω.

• Oε
cone(D) := {

Ω⊆ D
∣∣Ω open and has the external ε-cone condition

}
. We say Ω has the

external ε-cone condition if there exists a cone C of angle ε such that for every x ∈ ∂Ω,
there exists a cone Cx with non empty interior, congruent to C by rigid motion and such
that x is the vertex of Cx and Cx ⊂Ωc .

• Oa,r0
corks(D) := {

Ω⊆ D
∣∣Ω open and has the (a,r0)-external corkscrew condition

}
, see defi-

nition 8.
• Oδ0,r0

cap (D) := {
Ω⊆ D

∣∣Ω open and has the (δ0,r0)-capacity condition (1)
}
.

It is easy to see that for some fixed parameters we have the inclusions

Oε
cone(D) ⊆Oa,r0

corks(D),

and
Oconvex(D) ⊆Oλ

Lip(D) ⊆Oδ0,r0
Reif flat(D) ⊆Oa,r1

corks(D) ⊆Oδ1,r2
cap (D).
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Since a segment has positive (1, p)-Capacity provided p > N −1 (see [6, Proposition 2.5]) we have

Or0
seg(D) ⊆Oδ0,r1

cap (D).

Any C 1 domain or Lipschitz domain satisfies an external corkscrew condition. It also follows
from porosity estimates that the corkscrew condition implies |Ω\Ω| = 0, as stated in the following
useful proposition.

Proposition 9. IfΩ ∈Oa,r0
corks(D), then |∂Ω| = 0.

Proof. For all x ∈ ∂Ω and r É r0, there exists y ∈RN such that

B(y, ar ) ⊂ B(x,r )∩Ωc ⊂RN \∂Ω.

In other words, ∂Ω is a σ-porous set in RN , in the sense of [12, Definition 2.22], with σ = 2a.
In virtue of [12] (see the last paragraph at the bottom of page 321 in [12], or see also [11,
Proposition 3.5]), we conclude that |∂Ω| = 0. □

Corollary 10. If Ω belongs to one of the following classes : Oε
cone(D), Oconvex(D), Oλ

Lip(D),

Oδ0,r0
Reif flat(D), or Oa,r0

corks(D), thenΩ is (m, p)-stable for any m Ê 1 and 1 < p <+∞.

6. Stability with respect to domain perturbation

As before, we consider a fixed bounded domain D ⊂ RN . Let Ω and (Ωn)n∈N be bounded
subdomains of D such thatΩn →Ω and D\Ω→ D\Ω as n →+∞ for the Hausdorff convergence.
In particular, this implies the convergence “in the sense of compacts” (see [10, Section 2.2.4]). In
this section we verify that the (m,2)-stability ofΩ implies the Mosco convergence of the sequence
(H m

0 (Ωn))n∈N towards H m
0 (Ω). This will follow from the same argument as for the classical case

of H 1
0 (see for instance [10, Proposition 3.5.4]), but for the sake of completeness we give here the

full details. For this purpose, we first prove the equivalence between γm-convergence and Mosco
convergence (Proposition 13). Then we show that (Ωn)n∈N γm-converges to Ω when Ω is (m,2)-
stable (Proposition 16).

Definition 11. The sequence (Ωn)n∈N γm-converges toΩ if for all f ∈ L2(D), the sequence (un)n∈N
strongly converges in H m

0 (D) to u, where un (resp. u) is the unique solution of the Dirichlet problem
(−∆)mun = f (resp. (−∆)mu = f ) in H m

0 (Ωn) (resp. H m
0 (Ω)).

Definition 12. The sequence (H m
0 (Ωn))n∈N converges to H m

0 (Ω) in the sense of Mosco if the
following holds :

(1) If (vnk )k∈N is a subsequence, where vnk ∈ H m
0 (Ωnk ), and weakly converges to v ∈ H m

0 (D),
then v ∈ H m

0 (Ω).
(2) For all v ∈ H m

0 (Ω), there exists a sequence (vn)n∈N, where vn ∈ H m
0 (Ωn), which strongly

converges to v in H m
0 (D).

Proposition 13. The sequence (Ωn)n∈N γm-converges toΩ if, and only if, (H m
0 (Ωn))n∈N converges

to H m
0 (Ω) in the sense of Mosco.

Proof. Assume that the sequence (Ωn)n∈N γm-converge to Ω. Let (vnk )k∈N be a subsequence
which weakly converges to v ∈ H m

0 (D), where vnk ∈ H m
0 (Ωnk ). Consider the distribution f :=

(−∆)m v . Then f ∈ H−m(D) and v is the unique solution of the Dirichlet problem in H 1
0 (D). To

prove the first item in the definition of Mosco convergence we need to prove that v ∈ H 1
0 (Ω).
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The γm-convergence implies that (unk )k∈N strongly converges in H m
0 (D) to u ∈ H m

0 (Ω) where
unk satisfies (−∆)munk = f inΩnk and u satisfies (−∆)mu = f in H 1

0 (Ω). So it suffices to show that
u = v . For all k ∈N,∫

D
∇munk : ∇m(unk − vnk )dx =

∫
Ωnk

∇munk : ∇m(unk − vnk )dx

= 〈 f , (unk − vnk )〉.
Then as k → +∞, we use the strong convergence of (unk )k∈N and the weak convergence of
(vnk )k∈N to obtain ∫

D
∇mu : ∇m(u − v)dx = 〈 f , (u − v)〉.

Then according to equality f := (−∆)m v , we have∫
D
|∇m(u − v)|2 dx =

∫
D
∇m(u − v) : ∇mu dx −

∫
D
∇m(u − v) : ∇m v dx

= 〈 f , (u − v)〉−〈 f , (u − v)〉 = 0,

thus u = v and the first point of Mosco convergence follows.
The proof of the second item of the Mosco convergence is simpler. Consider v ∈ H m

0 (Ω) ⊆
H m

0 (D) and let f := (−∆)m v . We need to find a recovery sequence un ∈ H m
0 (Ωn) that converges

strongly to v . It suffice to define un being the solution of −∆un = f in H 1
0 (Ωn). By γm-

convergence we directly have un → v strongly in H m(D).
Now we prove the converse. Namely, we suppose that (H m

0 (Ωn))n∈N converges in the sense of
Mosco to H m

0 (Ω). Then we want to prove the γm-convergence. Consider f ∈ H−m(D) and the
associated solutions un of the Dirichlet problem inΩn . For all n ∈N,∫

D
|∇mun |2 dx =

∫
Ωn

∇mun : ∇mun dx = 〈 f ,un〉.

We infer that the sequence (un)n∈N is bounded in H m
0 (D) since

|〈 f ,un〉| É ∥ f ∥H−m (D)∥un∥H m
0 (D).

Let (unk )k∈N be a subsequence which weakly converges to a function v ∈ H m
0 (D). Using the

Mosco convergence, v ∈ H m
0 (Ω) and for all ϕ ∈ H m

0 (Ω), there exists a sequence (ϕk )k∈N, with
ϕk ∈ H m

0 (Ωnk ), strongly converging to ϕ in H m
0 (D). Hence, for all k ∈N,∫

D
∇munk : ∇mϕk dx =

∫
Ωnk

∇munk : ∇mϕk dx = 〈 f ,ϕk〉,

and using the strong convergence of (ϕk )k∈N and the weak convergence of (unk )n∈N as k →+∞,
we obtain ∫

Ω
∇m v : ∇mϕdx = 〈 f ,ϕ〉.

The uniqueness of the solution of the Dirichlet problem proves u = v . Moreover,∫
D
|∇munk |2 dx = 〈 f ,unk 〉

and

〈 f ,unk 〉 −−−−−→k→+∞
〈 f ,u〉 =

∫
D
|∇mu|2 dx.

This yields

∥unk ∥H m
0 (D) −−−−−→

k→+∞
∥u∥H m

0 (D),

and the convergence of the subsequence is strong. By uniqueness of the limit, the whole se-
quence is strongly converging to u in H m

0 (D), and this achieves the proof of the γm-convergence,
so follows the Proposition. □
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Definition 14. For two closed sets A,B ⊂RN , the Hausdorff distance dH (A,B) is defined by

dH (A,B) := max
x∈A

dist(x,B)+max
x∈B

dist(x, A).

A sequence of closed sets (An)n∈N converges to A for the Hausdorff distance if dH (An , A) → 0 as

n →+∞. In this case, we will write An
dH→ A.

Next, we define the complementary Hausdorff distance over O(D) by

dH c (Ω1,Ω2) := dH (D\Ω1,D\Ω2),

and one can show that the topology induced on O(D) is compact. In the sequel we will use the
following well known result.

Proposition 15. If (Ωn)n∈N is a sequence in O(D) such thatΩn
dHc→ Ω ∈O(D), then for any compact

set K ⊂Ω there exists n0 ∈N depending on K such that K ⊂Ωn for all n Ê n0.

Proof. Since K is compact andΩ is open, we know that

inf
x∈K

dist(x,Ωc ) =: a > 0.

By Hausdorff convergence of the complements, there exists n0(a) ∈N such that for all n Ê n0(a),

Ωc
n ⊂ {y ∈RN | dist(y,Ωc ) < a/2}.

We deduce from the triangle inequality that infx∈K dist(x,Ωc
n) > 0 for n large enough and in

particular K ⊂Ωn . □

We are now ready to state the following result that will directly imply Corollary 3 stated in the
introduction.

Proposition 16. Let (Ωn)n∈N be a sequence in O(D) such that Ωn
dH−→ Ω and Ωn

dHc−→ Ω where
Ω ∈ O(D). If Ω is (m,2)-stable, then the sequence (Ωn)n∈N γm-converges to Ω or equivalently,
(H m

0 (Ωn))n∈N converges to H m
0 (Ω) in the sense of Mosco.

Proof of Proposition 16. Under the assumptions of the Proposition we will prove the γm-
convergence. Consider then f ∈ H−m(D). We know that the sequence (un)n∈N of solutions to
the Dirichlet problem associated with f in H m

0 (Ωn), is bounded in H m
0 (D). Therefore there exists

a subsequence (unk )k∈N that weakly converges to a function v ∈ H m
0 (D). Let ϕ ∈C∞

c (Ω) be a test
function. By complementary Hausdorff convergence, there exists an integer k0 ∈N such that for
all k Ê k0,

Supp(ϕ) ⊆Ωnk .

Thus, for all k Ê k0, ∫
Ωnk

∇munk : ∇mϕdx = 〈 f ,ϕ〉,

and by weak convergence of (unk )kÊk0 in H m
0 (D),∫

Ω
∇m v : ∇mϕdx = 〈 f ,ϕ〉. (12)

Let us now prove that v ∈ H m
0 (Ω). Up to a subsequence, we can assume that (unk )k∈N

converges almost everywhere to v . The functions unk vanishe (m,2)-quasi everywhere on Ωc
nk

so almost everywhere. By Hausdorff convergence of the adherence we know that for all compact
K ⊂ Ωc then K ⊂ Ωc

n for n large enough thus finaly v = 0 almost everywhere in Ωc . Using the
definition of (m,2)-stability, we conclude that v ∈ H m

0 (Ω). Therefore v = u, the unique solution
to the Dirichlet problem associated to f in H m

0 (Ω).



1200 Jean-François Grosjean, Antoine Lemenant and Rémy Mougenot

To conclude the proof it remains to show the strong convergence in H m
0 (D). By density the

equality (12) stays true for ϕ ∈ H m
0 (Ω). In particular for ϕ= v we get∫

Ω
|∇m v |2 dx = 〈 f , v〉.

On the other hand by weak convergence we have∫
Ωnk

|∇munk |2 dx = 〈 f ,unk 〉 −−−−−→k→+∞
〈 f , v〉.

In other words ∥∇munk ∥L2(D) → ∥∇m v∥L2(D) which together with the weak convergence, proves
the strong convergence of unk to v in H m(D). At the end, from the uniqueness of the possible
limit we infer that the whole sequence converges to v , not only a subsequence. This achieves the
proof of γm-convergence. □

7. Proof of Theorem 4

In this section we give a proof of Theorem 4 stated in the introduction.

Proof of Theorem 4. Let Ω,Ωn ⊂ D be bounded domains as in the statement of Theorem 4 that
satisfies

Ωn
dHc−→Ω,

and such that (1) holds true for allΩn with the same δ0 > 0 and r0 > 0. We want to prove thatΩn

γm-converges toΩ. To this aim we start with a similar argument as in the proof of Proposition 16.
Consider f ∈ H−m(D). We know that the sequence (un)n∈N of the solutions to the Dirichlet
problem associated to f inΩn is bounded in H m

0 (D). There exists a subsequence (unk )k∈N which
weakly converges to a function v ∈ H m

0 (D). Let ϕ ∈ C∞
c (Ω) be test function. By complementary

Hausdorff convergence, there exists an integer k0 ∈N such that for all k Ê k0,

Supp(ϕ) ⊆Ωnk .

Thus, for all k Ê k0, ∫
Ω
∇munk : ∇mϕd =

∫
Ωnk

∇munk : ∇mϕdx = 〈 f ,ϕ〉

and by weak convergence of (unk )kÊk0 in H m
0 (D),∫

Ω
∇m v : ∇mϕdx =

∫
Ω

f ϕdx.

Now argument as in the proof of Proposition 16, in order to conclude it suffices to prove that
v ∈ H m

0 (Ω). In particular, the strong convergence would then follow by use of the same argument
as in the proof of Proposition 16.

Thus let us prove that v ∈ H m
0 (Ω). Since Ω satisfies the (δ0,r0)-capacitary condition we know

from Theorem 2 that Ω is a (m,2)-stable domain. Thus we are left to prove that v = 0 a.e. in Ωc .
From here the proof differs from the one of Proposition 16 because we do not know anymore

that Ωn
dH−→Ω. Instead, we shall benefit from the fact that (1) holds true for the whole sequence

Ωn and we will use a construction similar to the one used in the proof of Theorem 2, but on the
functions un . From now on we will simply denote by n instead of nk for the subsequence un → v
in H m(D) as n →+∞. Let K ⊂ Ωc be an arbitrary compact set and let ε > 0 be given. Our goal
is to prove that v = 0 a.e. on K . For a general closed set F ⊂ RN and λ> 0 we denote by (F )λ the
λ-enlargement of F , namely,

Fλ := {
x ∈RN ∣∣ dist(x,F ) Éλ}

.
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By the Hausdorff convergence of Ωc
n to Ωc we know that there exists n0(ε) ∈ N such that for all

n Ê n0(ε),

Ωc ⊂ (Ωc
n)ε, andΩc

n ⊂ (Ωc )ε.

From the above we deduce that

K ⊂Ωc ⊂ (Ωc
n)ε ⊂ (Ωc )2ε. (13)

Next, we want to construct a test function in C∞
c (Ωn) which is very close to un in L2 and equal to

0 on K . Let us consider the following subset ofΩn ,

An,ε := {
x ∈Ωn

∣∣ d(x,Ωc
n) Ê 10ε

}
,

and the function

wn,ε := un 1An,ε .

The main point being that wn,ε = 0 in (Ωc
n)ε and in virtue of (13) we deduce that wn,ε = 0 on K .

Now we estimate the difference wn,ε−un in L2(RN ) using a covering of ∂Ωn . More precisely, the
infinite family (B(x,20ε))x∈∂Ωn is a cover ofΩn \ An,ε and by the 5B-covering Lemma there exists
a countably subcover indexed by (xi )i∈N ⊂ ∂Ω such that (B(xi ,20ε))i∈N is a disjoint family,

Ωn \ An,ε ⊂
⋃
i∈N

B(xi ,100ε), and
∑
i∈N

1B(xi ,100ε) É N0,

for a universal constant N0 ∈N. Then we can estimate,∫
D
|wn,ε−un |2 dx É

∫
Ωn \An,ε

|un |2 dx.

The functions ∂βun vanishes almost everywhere on the open setΩn
c , so thanks to our capacitary

condition (1) we have for ε small enough

(100ε)−(N−p)Cap1,2(Z (∂βun)) ÊCε−(N−p)Cap1,2(Ωn
c ∩B(0,100ε)) ÊCδ0.

Therefore, the Poincaré inequality (5) applied to ∂βun in all ball B(xi ,100ε) gives∫
B(xi ,100ε)

|∂βun |2 dx ÉCδ−1
0 ε2

∫
B(xi ,100ε)

|∇∂βun |2 dx. (14)

We deduce that ∫
Ωn \An,ε

|un |2 dx É ∑
i∈N

∫
B(xi ,100ε)

|un |2 dx

ÉC
∑
i∈N

ε2m
∫

B(xi ,100ε)
|∇mun |2 dx

ÉC N0ε
2m

∫
D
|∇mun |2 dx

ÉCε2,

since the sequence un is uniformly bounded in H 1(D). In conclusion we have proved the
following : for each ε > 0, we have n0(ε) ∈N such that for all n Ê n0(ε), there exists wn,ε ∈ L2(D)
such that ∥wn,ε−un∥L2 É Cε and wn,ε = 0 on K . Now for n sufficiently large let ε = 2−n and let
wn := wn0(2−n ),2−n . We can assume that n0(2−n) → +∞. The function wn converges to v in L2

because un converges to v in L2, and wn = 0 on K for all n ∈N. Therefore, up to a subsequence,
wn converges a.e. on K and this shows that u = 0 a.e. on K . Since K is arbitrary, this shows that
v = 0 a.e. onΩc , hence u ∈ H m

0 (Ω) becauseΩ is (m,2)-stable. This achieves the proof. □
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8. Existence for shape optimisation problems under geometrical constraints

Let D ⊂RN be a fixed bounded open set and let OD := {
Ω⊆ D

∣∣Ω is open
}

denote all open subsets
of D . For a shape functional F : OD → R+, it is a natural question to ask if there exists extremal
points. In order to answer this question, we introduce a subfamily of OD which is compact for
the γm-convergence and satisfies the capacitary condition (1). If F is lower semi-continuous for
the γm-convergence, then we use Theorem 4 to conclude.

Proposition 17. Any class of the following list is compact for the complementary Hausdorff
convergence : Oconvex(D), Oε

cone(D), Oa,r0
corks(D).

Proof.

(1) Case O =Oconvex(D),Oε
cone(D). The proof can be found in [3, Proposition 5.1.1, p. 126].

(2) Case O =Oa,r0
corks(D). Suppose (Ωn)n∈N is sequence of (a,r0)-corkscrew domains which con-

verges to an open set Ω ⊂ D . Let x ∈ ∂Ω and r É r0. By Hausdorff complementary conver-
gence properties, there exists a sequence (xn)n∈N such that xn ∈ ∂Ωn and xn → x as n → +∞.
By corkscrew conditions, one finds B(yn , ar ) ⊂Ωc

n ∩B(xn ,r ) with, up to a subsequence, yn → y
as n →+∞. First of all, it is obvious that B(y, ar ) ⊂ B(x,r ), it remains to prove that B(y, ar ) ⊂Ωc .
Let ε> 0, from the enlargement characterisation of Hausdorff convergence, there exists N (ε) ∈N
such that for every n Ê N (ε), D\Ωn ⊂ (D\Ω)ε where

(D\Ω)ε :=
{

x ∈RN
∣∣∣ dist(x,D\Ω) É ε

}
.

Thus B(yn , ar ) ⊂ (D\Ω)ε and passing to the limit as n →+∞, then taking the intersection in ε, we
get

B(y, ar ) ⊂ ⋂
ε>0

(D\Ω)ε = D\Ω.

The ball B(y, ar ) is open so we conclude B(y, ar ) ⊂Ωc ∩B(x,r ). □

Proposition 18. Any class of the following list is compact for the γm-convergence: Oconvex(D),
Oε

cone(D), Oa,r0
corks(D).

Proof. Let O be one of the class of domains listed above and let (Ωn)n∈N be a sequence in
O . Because of the compactness of the complementary Hausdorff convergence in O(D), there
exists a subsequence (Ωn)n∈N denoted by the same indices which dH c -converges to Ω ∈ O(D).
Using Theorem 4 and Proposition 9, it is sufficient to prove that Ω ∈ O , i.e. O is closed for dH c -
convergence. Proposition 17 concludes the proof. □

Theorem 19. Let O be a γm-compact class of subset listed in Proposition 18. Let F : O → R be a
lower semi-continuous functional for the γm-convergence. There existsΩ ∈O such that

F (Ω) = inf
{
F (ω) |ω ∈O

}
.

Proof. Let (Ωn)n∈N be a minimising sequence in O , i.e. F (Ωn) converges to inf
{
F (ω) |ω ∈O

}
as

n →+∞. Using Proposition 18, up to a subsequence there exists an open setΩ ∈O such that

Ωn
γm−−−−−→

n→+∞ Ω.

Then by lower semi-continuity of the functional we get

F (Ω) É liminf
n→+∞F (Ωn) = inf

{
F (ω) |ω ∈O

}
,

which finishes the proof. □
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